ISMI Predictive Preventive Maintenance Implementation Guideline

Size: px
Start display at page:

Download "ISMI Predictive Preventive Maintenance Implementation Guideline"

Transcription

1 Predictive Preventive Maintenance Implementation Guideline International SEMATECH Manufacturing Initiative

2 Advanced Materials Research Center, AMRC, International SEMATECH Manufacturing Initiative, and are servicemarks of SEMATECH, Inc. SEMATECH and the SEMATECH logo are registered servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners International SEMATECH Manufacturing Initiative, Inc.

3 Predictive Preventive Maintenance Implementation Guideline International SEMATECH Manufacturing Initiative October 25, 2010 Abstract: This document from the MFGM032M project provides guidance for semiconductor equipment suppliers, device makers, and other implementers of predictive/preventive maintenance (PPM) interfaces. It introduces common language to describe the data requirements and functionalities of the equipment and factory systems and uses examples to justify extending existing preventive maintenance (PM) factory systems to create an optimized maintenance scheduler. Keywords: Authors: Toysha Walker (Micron) and David Stark () Approvals: David Stark, Author Sue Gnat, Technology Transfer Team Leader

4

5 iii Table of Contents 1 EXECUTIVE SUMMARY BACKGROUND Preventive Maintenance (PM) Condition-based Maintenance (CBM) Predictive Maintenance (PdM) PPM INTERFACE CBM AND PDM DATA INPUTS AND ANALYSIS Equipment Hardware Data Equipment Performance Index Data Factory Metrology Data FDC and APC Data CBM Analysis PdM Analysis DECISION APPLICATION Maintenance Management Data Factory Information and Control System (FICS) Data Scheduled PMs Data Decision Rules FINGERPRINTING DATA SELECTING CBM AND PDM CASES Scheduled Maintenance, CBM, and PdM Case Selection Methodology SUMMARY REFERENCES...9 List of Figures Figure 1 PPM Interface for PdM...3 Figure 2 PPM Data Inputs and Analysis...5 Figure 3 PPM Data Flow and Interoperability with Other Factory Systems...6 Figure 4 Quadrant Analysis...8

6 iv Acronyms and Abbreviations ALID Alarm Event Identifier APC Advanced Process Control CBM Condition-based Maintenance CEID Collection Event Identifier EDA Equipment Data Acquisition EPI Equipment Performance Index FDC Fault Detection & Classification FICS Fab Information & Control System IDM Integrated Device Manufacturer MES Manufacturing Execution System MTTF Mean Time to Failure OCAP Out of Control Action Plan OEE Overall Equipment Efficiency (SEMI E79) PdM Predictive Maintenance PHM Prognostics & Health Management PM Preventive Maintenance RUL Remaining Useful Life; product s life expectancy SEMI Semiconductor Equipment and Materials International SECS-II Semiconductor Equipment Communications Standards (SEMI E5) SPC Statistical Process Control SVID Status Variable Identifier TBM Time-based Maintenance UBM Usage-based Maintenance

7 v Definitions Advanced Process Control (APC) Techniques covering both feed-forward and feedback control and automated fault detection, applied by both the equipment (in situ) and by the factory (ex situ). Degradation Rate Rate at which the operational quality of an equipment system, subsystem, and component decreases over time. Equipment Performance Index (EPI) Indicators composed of equipment hardware and/or factory data. They can be used to calculate system/sub-system/component health metrics. Fault Detection & Classification (FDC) A methodology of monitoring statistical variations in processing tool data and detecting anomalies. Forecast An estimation in unknown situations. Just-in-Time (JIT) Inventory A strategy to improve the return on investment by reducing inprocess inventory and its associated carrying costs. Maintenance Event Any activity (e.g., tests, measurements, replacements, adjustments and repairs) intended to retain or restore a functional unit in or to a specified state in which the unit can perform its required functions. Mean Time to Failure (MTTF) The average time between failures with the modeling assumption that the failed system is run until it fails without preventive maintainence. Out of Control Action Plan (OCAP) A controlled document detailing the procedure to disposition product/processes or equipment repairs or maintenance activities in response to an equipment fault indication. Prediction A statement or claim that a particular event will occur in the future. Prognostics & Health Management (PHM) Information The discipline that links studies of failure mechanisms to system lifecycle management. PHM uses information to allow early detection of impending or incipient faults, remaining useful life calculations, and logistical decision-making based on predictions. Raw Data Unprocessed data. Remaining Useful Life (RUL) A forecast of time or operating cycles remaining until a failure occurs. Run-To-Failure Methodology A method whereby an equipment system, subsystem, and component is fixed or replaced only after it fails. Sensor A component that responds to changes in the physical environment and provides an analog or digital output value. Subsystem An intelligent aggregate that behaves as a unit. A subsystem is made up of sensors and/or actuators and may contain mechanical assemblies. Multiple modules may share subsystems.

8

9 1 EXECUTIVE SUMMARY This document provides guidance for semiconductor equipment suppliers, device makers, and other implementers of preventive and predictive maintenance (PPM). It introduces a common language to describe PPM data requirements and functionalities to enable seamless interactions between equipment and factory systems. Functionalities include gathering health indicators, assessing conditional states, and forecasting performance degradation to establish a condition-based and predictive maintenance program. The document explains how PPM information flows and interoperates with PM systems to create a maintenance event and suggests a methodology for selecting PPM cases. This document complements the 2008 Predictive and Preventive Maintenance (PPM) Equipment Implementation Guidelines [4] that details requirements for the equipment supplier. 1 2 BACKGROUND The objective of PPM is to optimize capital equipment return on investment. A PPM system will optimize scheduled maintenance, condition-based maintenance, and predictive maintenance. Scheduled maintenance is performed on a fixed, calendar-based schedule. Condition-based maintenance is accomplished by instantaneous monitoring of equipment and by performing maintenance when an equipment indicator reaches a predetermined threshold. Predictive maintenance is accomplished through acquiring relevant equipment and factory data and applying an equipment degradation model to predict the equipment s remaining useful life (RUL). A PPM system will combine scheduled maintenance, condition-based maintenance, and predictive maintenance to enable effective cost vs. performance decisions. 2.1 Preventive Maintenance (PM) In the early history of the semiconductor industry, chip manufacturers practiced run-to-failure maintenance, where equipment maintenance was performed once equipment had failed. Relying on run to failure maintenance was costly and infeasible in a mass manufacturing setting. With accumulated field experience, equipment manufacturers and users developed preventive maintenance programs. Preventive maintenance is the servicing of equipment and facilities before incipient failures occur or before they develop into major defects. The first implementations of preventive maintenance were scheduled maintenance programs. A scheduled preventive maintenance program is a fixed, calendar-based schedule of maintenance activities, where the schedule is derived from a priori knowledge of the historical, statistical frequency of specific failures. Scheduled Preventive Maintenance Example: Over 10 years ago, robot bearings belonging to a leading OEM supplier were being run to failure. These failures resulted in an increase in particle contamination due to bearing breakdown, minor wafer scratching, eventual wafer breakage, and extended downtime. As defect inspection methods and tool qualification procedures improved, particles and minor scratches were detected on product wafers before broken wafer events. Accumulated experience with this failure allowed the determination of a statistically valid robot bearing lifetime estimate. This estimate allowed the establishment of a scheduled preventive maintenance event to replace the robot bearing.

10 2 2.2 Condition-based Maintenance (CBM) While PM was superior to run-to-failure methodologies, condition-based maintenance (CBM) presented new opportunities to contain costs and increase overall equipment effectiveness (OEE). CBM involves direct monitoring of equipment, onboard sensors, processes, and external systems data to determine current equipment operating condition. Advanced analysis techniques such as real-time fault detection and classification (FDC) are applied to the data to identify whether performance indicators have deteriorated to a predetermined threshold or control limit. The CBM applications warn IDM factory systems of anomalies to trigger a maintenance event when they first occur. Condition Based Maintenance Example: The next evolution of the robot bearing PM incorporated robot speed, motor current, and blade position measurements into an adaptive control model. In conjunction with factory metrology measurements (particles and in-line inspections), a CBM indicator can be developed to show when the bearings are beginning to display degradation. 2.3 Predictive Maintenance (PdM) Predictive maintenance is accomplished through acquiring relevant equipment and factory data and applying an equipment degradation model to predict the equipment s RUL. CBM, where applied, has helped the OEM and IDM engineering organizations gain insight into equipment degradation mechanisms. The next logical step is to develop a predictive model of maintenance events where the degradation mechanisms are known, relevant data is available, and the business case is favorable (e.g., high value and low frequency maintenance events). Predictive maintenance acquires the relevant data, applies a mathematical model, and predicts the RUL until a specific maintenance event must be scheduled to avoid equipment failure. Predictive Maintenance Example: The last evolution in the robot bearing example is Predictive Maintenance. To predict the RUL of the robot bearing, the PdM application continuously acquires the relevant data from the equipment and factory and inputs this data into a predictive model. The predictive model provides continuous updates to the estimated RUL of the robot bearing. The predicted RUL allows the factory to optimally schedule for the preventive maintenance to repair the robot, taking into account work schedules, yield, parts inventory, and more. 3 PPM INTERFACE The PPM interface is defined as the interface designed to communicate prognostics and health management (PHM) information between the equipment and IDM factory systems. 1 The equipment provides data that can be used to derive equipment health. Collected health information is usually derived sensor data, not raw sensor values; for PPM, however, the Working Group asks the equipment to provide raw data wherever possible. The equipment communicates feature values with the following attributes: Ability to detect impending or incipient fault conditions Ability to detect a fault early enough to support prognosis 1 According to the PPM Working Group.

11 Ability to distinguish one fault type from another Ability to evaluate fault progression A low false-positive rate The PdM model may require equipment data only or a combination of equipment data and factory data to predict an RUL. Where factory data is required, the factory system adds metrology data to facilitate factory and equipment data analysis to make RUL predictions. As depicted in Figure 1, the IDM factory system accepts this PHM information from the equipment to make asset management decisions, which involve tool control, PM and work-in-progress (WIP) scheduling, and just-in-time (JIT) inventory parts management. Decisions including any tool interdictions (stop, idle, pause events) or maintenance schedules are the responsibility of the factory only, not the equipment. The PHM information should be communicated from the equipment to factory system by standard communication protocol SECS-II and/or equipment data acquisition (EDA) ports. Figure 1 shows the information flow through these protocols as dotted lines. SECS-II, a well established standard mechanism, not only allows the required PHM information to flow from equipment to factory, but also allows the factory system to set control limits and enable/disable PHM mechanisms. 2 The 2008 PPM Equipment Implementation Guidelines require that equipment suppliers extend SVIDs, CEIDs, and ALIDs to allow this capability. EDA allows PHM information and raw data to flow at a faster throughput. Additionally, EDA s multi-client functionality allows factory systems to create data collection plans based on specific needs. Both protocols are beneficial to PPM implementations. 3 Asset Management Decision Results of Equipment Predictive Analysis Factory Factory & Equipment Data Analysis Factory Metrology Data Equipment Results of Equipment Predictive Analysis PHM Information via SECS/GEM or EDA Equipment Data Analysis Hardware Data Input Figure 1 PPM Interface for PdM 2 Factory communication to equipment is not shown in Figure 1.

12 4 4 CBM AND PDM DATA INPUTS AND ANALYSIS CBM and PdM require equipment hardware data and factory metrology data to provide the parameters to discover and correct root problems before misprocessing or unscheduled downtime can occur. By monitoring equipment usage and operating conditions, OEMs and IDMs can avoid unnecessary maintenance on under-utilized equipment while properly maintaining equipment used under harsher conditions. 4.1 Equipment Hardware Data Equipment hardware data inputs consist of raw data, sensor data, and/or parts condition data. Equipment raw data is command or state data, either as classification, numerical value, or trace data from the equipments functional components or command and control software. Sensor data are measurements of the physical result of equipment component performance or environmental conditions. Parts condition data is data derived from raw data and sensor data to indicate part condition. Since the equipment supplier should have superior knowledge of the design and function of the equipment, requests that the supplier derive and make accessible all the required raw data, sensor data, and condition data to make PPM successful. 4.2 Equipment Performance Index Data The Equipment Performance Index (EPI) 3 is an indicator of the current health of a device. EPIs are data derived from raw data, sensor data, condition data, and factory data to indicate the instantaneous condition or health of a device. EPIs may be useful as PHM information to allow equipment health monitoring, early detection of impending or incipient faults, or remaining useful life calculations. EPIs may also be constructed by the equipment supplier as a means to provide customers required value-added data while maintaining intellectual property protection. EPIs can be constructed at any level in the equipment hierarchy: tool, module, subsystem, and component. EPIs may be consumed by CBM, FDC, PdM, and other equipment health monitoring applications. The PPM working group desires that equipment suppliers constructing EPIs explain the construction and use of each EPI the supplier provides. As shown in Figure 2, the equipment and factory data may be combined to provide EPIs. EPIs are derived from all available data sources, including raw data, sensor data, feature values, and metrology data. 4.3 Factory Metrology Data Because PPM considers both the reliability of the device and the quality of the product being manufactured, factory metrology data is pertinent to PPM. MES process data, defects, parametric data, and yield parameters must also figure into the PHM information. 4.4 FDC and APC Data CBM and PdM applications will consume FDC and APC data as value-added data from the factory, similar to the use of EPIs from the equipment. FDC and APC outputs have their own intended purpose, which overlaps with the purpose of CBM and PdM. The use of data constructed within the FDC and APC applications by CBM and PdM is a natural extension. This connection is shown in Figure 2. 3 EPIs are still under development. Upcoming pilots will produce best known methods for deriving EPIs. Therefore, this document does not cover how to construct an EPI.

13 5 Data Collection Data Analysis Event Trigger Equipment Hardware Data Parts Condition Data Equipment Raw Data PdM Input: Equipment and factory data Output: RUL for maintenance event CBM Input: equipment and factory data, EPI, FDC, SPC Output: CBM health status, alert maintenance needed due to indicator at threshold Decision Application Inputs: scheduled maintenance calendar, CBM alerts, PdM RULs, parts inventory, staffing, WIP schedules, factory schedule, decision rules Output: recommended maintenance schedule FDC System Factory/Metrology Data MES Process Data Defects Parametric Yield Parameter Statistical Process Control (SPC) Optional APC Systems Figure 2 PPM Data Inputs and Analysis 4.5 CBM Analysis The CBM application monitors the equipment health and indicates that a maintenance event is required when an instantaneous equipment health metric surpasses a predefined threshold. The health metric may be an SPC output, an FDC output, an EPI, raw or combined equipment and/or factory data. CBM may include usage-based counters, as in wafer count or process time, between signaling that a particular maintenance is due. What discerns CBM from PdM is that CBM monitors current health and invokes a maintenance action when a threshold is reached; PdM forecasts, or predicts, future healthy performance in the form of an RUL. CBM data analysis is less complicated than PdM analysis and thus is likely to be applied more broadly. 4.6 PdM Analysis The PdM application monitors the equipment health and indicates when in the future a maintenance event will be required. PdM uses advanced mathematical models applied to each failure that requires a specific maintenance event. The prediction is in the form of an RUL estimate. The RUL is continuously updated with each new batch of input data modeled and can be as often as with every wafer processed or less frequent where the input data to make the prediction includes factory metrology data. RUL estimates must be output in useful terms. Where the failure is independent of equipment use, the RUL will be denominated in calendar hours. Where the failure is dependent on equipment use, the RUL will be in denominated in process time or wafer count. Where there is recipe dependency, RUL estimates should be given for each recipe. PdM is more complicated than CBM; therefore, PdM must be done judiciously.

14 6 5 DECISION APPLICATION The decision application uses a rules engine to determine the optimal maintenance schedule. The inputs to the decision application are the existing schedule for scheduled PMs, CBM output, PdM output, parts inventory, maintenance event information (duration, parts required, staff required), staffing, WIP schedules, factory schedule, and other economic value drivers the IDM may elect to include (e.g., value by product, lot priorities, etc.). The variety of data input to the decision application will require a careful factory integration effort. The interconnectivity is expected to be different depending on the particular factory s system architecture. The IDM will set the decision rule logic to maximize profits. The decision application output is a recommended maintenance schedule. The IDM may elect to allow the decision application to set maintenance schedules or may elect to retain manual control. It is suggested that the recommended maintenance schedule highlights any changes with the source of the change noted. Thus, if the CBM application output is that a specific maintenance event existing on the schedule in the future is required immediately, and the decision application schedules that maintenance immediately, then the recommended maintenance schedule should highlight that the change was invoked by the CBM output. Data Collection Data Analysis Event Trigger & Scheduling Event Execution Equipment Hardware Data Parts Condition Data Equipment Raw Data Factory Metrology Data MES Process Data Defects Parametric Yield Parameter PdM Input: Equipment & factory data Output: RUL for maintenance event CBM Input: equipment & factory data, EPI, FDC, SPC Output: CBM health status, alert maintenance needed due to indicator at threshold FDC System SPC Decision Application Inputs: scheduled maintenance calendar, CBM alerts, PdM RULs, parts inventory, staffing, WIP schedules, factory schedule, decision rules Output: recommended maintenance schedule Maintenance Management Duration Scheduled PMs Parts Availability Necessary Resources Maintenance Cost TBM-Data (due date) Equipment QUAL Data UBM-Data (Wafer count) PPM Maintenance Event FAB Information & Control System Qualification Data Equipment Availability Production Constraints Qualification Data Equipment Availability Production Constraints Figure 3 PPM Data Flow and Interoperability with Other Factory Systems 5.1 Maintenance Management Data Maintenance management data, such as PM duration, regular PM schedule, parts availability, and required resources are important in creating an optimized maintenance event schedule. 5.2 Factory Information and Control System (FICS) Data FICS data, including equipment availability and production constraints, is required to create an optimal maintenance event schedule.

15 5.3 Scheduled PMs Data The scheduled PM calendar is required by the decision application to create an optimal maintenance event schedule. The decision application will determine whether to recommend rescheduling a maintenance event being invoked by CBM or PdM that is already an event on the scheduled maintenance calendar. 5.4 Decision Rules The decision application is a rules engine. The IDM sets the rule limits to maximize profits. A generic basic set of common rules make up the majority of those needed in the decision application for all IDMs. It is expected, however, that individual IDMs will customize the decision application by setting the limits on the rules and by adding additional rules. 7 6 FINGERPRINTING DATA Equipment fingerprinting is a method of taking a snapshot of the configuration of the equipment including all hardware/software settings, parameters, states, setpoints, calibrations, variables, etc. While fingerprinting is outside the scope of PPM, it is an application with significant overlap with PPM. Fingerprinting can be used to capture the health status of equipment in a golden state to be compared to any other time. This comparison can be useful in chamber matching, pre-to-post maintenance tool status comparison, and general historical tool performance monitoring. An effective fingerprinting function that captures status and dynamic tool performance may be used instead of costly tool qualification runs. 7 SELECTING CBM AND PDM CASES Intelligently implementing an integrated PHM system in a factory requires care. Not every piece of equipment in the factory requires PdM and CBM. Because developing CBM and/or PdM for tools whose performance will benefit requires significant resources, it should be undertaken judiciously. High cost, high downtime tools are candidates. Once the candidate tools are selected, a method can be followed to determine what maintenance should be calendar time-based scheduled maintenance, CBM, or PdM. Each maintenance event represents a case. 7.1 Scheduled Maintenance, CBM, and PdM Case Selection Methodology Case selection should follow a prescribed methodology, based on business value and technical criteria. 1. Select subject tool. To maximize the benefit, high cost and high downtime tools are prime candidates. The IDM should prioritize the toolset by these factors. 2. For the subject tool, analyze maintenance event frequency and cost from the tool history in use in the factory. One to two years of data from multiple copies of the subject tool is recommended. Estimate the cost for each downtime event. The cost may include parts, labor, scrap, rework, depreciation (monetized downtime), and opportunity costs (lost wafer processing due to wafer inventory build-up at subject tool). 3. Organize the maintenance history by maintenance event; scheduled maintenance and unscheduled maintenance. For each unscheduled maintenance event, determine the root cause failure. For each scheduled maintenance event, determine the root cause failure that the maintenance is intended to prevent. Group maintenance events with a common root cause. 4. Determine the technical probability of success. Is the degradation/failure understood? Can the degradation be sensed using indicator data from the equipment? Is this data accessible and transformable for use in the prediction algorithm or CBM? Is there data in the factory that can be used to sense the degradation? It this data accessible and transformable for use in the prediction algorithm or CBM? The answers to these questions will give an indication of the

16 8 probability of success for developing PdM or CBM for the maintenance event. algorithm or CBM? The answers to these questions will give an indication of the probability of success for developing PdM or CBM for the maintenance event. 5. Create a quadrant chart for all maintenance events for the subject tool. The quadrant chart displays the frequency of the event on the Y axis (occurrences per year) and the cost, or value, of the event on the X axis. Figure 4 shows an example quadrant chart with simulated data. The red quadrant-determining lines placement is not specified, but is up to the IDM to estimate and move them as a sensitivity analysis to determine their proper placement. 6. Simply stocking parts and making repairs as needed using a run to failure operation is recommended for maintenance events that have high frequency and low value (top left quadrant). 7. Calendar-based scheduled preventive maintenance is the recommended practice for maintenance events that are infrequent and low value (bottom left quadrant). 8. Tool redesign is required for events of high frequency and high value, as this mode of operation cannot be tolerated or simply responded to in a CBM or PdM practice (this is the top right quadrant). 9. CBM and PdM should be developed for events in the bottom right quadrant plus or minus some intrusion into the neighboring quadrants where the technical feasibility is high. These events have low frequency and high value. The CBM events are in triangles, and the PdM events are circled in the figure. Some events may be candidates for CBM or PdM; the determinant of which to pursue will be the technical assessment in FREQUENCY (X/YR) Stock Parts Run to Fail Sched PM CBM Redesign PdM VALUE Figure 4 Quadrant Analysis

17 8 SUMMARY PHM calls for a paradigm shift from scheduled preventive maintenance plus unscheduled maintenance towards continuous data-driven, condition-based monitoring using CBM and PdM. Proper application of CBM and PdM will increase the profitability of the IDM by reducing downtime and reducing maintenance costs. Modeled data complemented by decision support tools will allow for optimized maintenance programs that promote efficient asset management decisions. Thus, health assessment, degradation forecasting, and performance diagnosis functionalities added to existing PM systems will raise maintenance activities to next generation standards. 9 9 REFERENCES [1] Getting the most from Predictive Maintenance, Engineer s Digest, February [2] Consensus Preventive and Predictive Maintenance Vision Guideline: Version 1.1, Technology Transfer # C-ENG (ismi.sematech.org/docubase/abstracts/4819ceng.htm). [3] PPM Initiative: Research on the Current Status of Predictive Maintenance (PdM) Algorithms and Applications, Project Report # [4] Predictive and Preventive Maintenance Equipment Implementation Guidelines, Technology Transfer # A-ENG (ismi.sematech.org/docubase/abstracts/4934aeng.htm). [5] Liao, H., Zhao, W., & Guo, H., Predicting remaining useful life of an individual unit using proportional hards model and logistic recession model, Reliability and Maintainability Symposium, Jan. 2006, pp [6] Mosher, P., Enhancing Your Predictive Maintenance Program with Condition Monitoring, Flowserve Corp., October 11, 2006, (May 2009)

18

19

20 International SEMATECH Manufacturing Initiative Technology Transfer 2706 Montopolis Drive Austin, TX

Data Usage. SEMICON Japan ISMI NGF Briefing and e-manufacturing Workshop December 2, 2008

Data Usage. SEMICON Japan ISMI NGF Briefing and e-manufacturing Workshop December 2, 2008 Data Usage Accelerating Manufacturing Productivity SEMICON Japan ISMI NGF Briefing and e-manufacturing Workshop December 2, 2008 David Stark David.Stark@ismi.sematech.org 512-356-3278 Copyright 2008 SEMATECH,

More information

INTELLIGENT DEFECT ANALYSIS, FRAMEWORK FOR INTEGRATED DATA MANAGEMENT

INTELLIGENT DEFECT ANALYSIS, FRAMEWORK FOR INTEGRATED DATA MANAGEMENT INTELLIGENT DEFECT ANALYSIS, FRAMEWORK FOR INTEGRATED DATA MANAGEMENT Website: http://www.siglaz.com Abstract Spatial signature analysis (SSA) is one of the key technologies that semiconductor manufacturers

More information

Engineering Optimization through the qualified use of CMMS and Predictive Software

Engineering Optimization through the qualified use of CMMS and Predictive Software 2 nd International Conference on Engineering Optimization September 6-9, 2010, Lisbon, Portugal Engineering Optimization through the qualified use of CMMS and Predictive Software Elena Lacatus 1, Paul

More information

of The New England Water Works Association

of The New England Water Works Association Journal Our 132nd Year of The New England Water Works Association Volume 127 No. 2 June 2013 PUTNAM WATER TREATMENT PLANT AQUARION WATER COMPANY OF CONNECTICUT GREENWICH, CONNECTICUT New England Water

More information

TestScape. On-line, test data management and root cause analysis system. On-line Visibility. Ease of Use. Modular and Scalable.

TestScape. On-line, test data management and root cause analysis system. On-line Visibility. Ease of Use. Modular and Scalable. TestScape On-line, test data management and root cause analysis system On-line Visibility Minimize time to information Rapid root cause analysis Consistent view across all equipment Common view of test

More information

Equipment Modeling in EDA

Equipment Modeling in EDA SEMICON West 2009 Accelerating Manufacturing Productivity Equipment Modeling in EDA Gino Crispieri gino.crispieri@ismi.sematech.org Copyright 2009 SEMATECH, Inc. SEMATECH, and the SEMATECH logo are registered

More information

Maximizing return on plant assets

Maximizing return on plant assets Maximizing return on plant assets Manufacturers in nearly every process industry face the need to improve their return on large asset investments. Effectively managing assets, however, requires a wealth

More information

SIMATIC IT Historian. Increase your efficiency. SIMATIC IT Historian. Answers for industry.

SIMATIC IT Historian. Increase your efficiency. SIMATIC IT Historian. Answers for industry. SIMATIC IT Historian Increase your efficiency SIMATIC IT Historian Answers for industry. SIMATIC IT Historian: Clear Information at every level Supporting Decisions and Monitoring Efficiency Today s business

More information

Operational Business Intelligence in Manufacturing

Operational Business Intelligence in Manufacturing Operational Business Intelligence in Manufacturing Copyright 2007 KeyTone Technologies Inc. Page 1 SmartWIP - Intelligent Manufacturing with RFID Manufacturers are under competitive pressure to fulfill

More information

Understanding Manufacturing Execution Systems (MES)

Understanding Manufacturing Execution Systems (MES) Understanding Manufacturing Execution Systems (MES) Presented by: Shirley Schmidt Freedom Technologies 10370 Citation Dr., Suite 200 Brighton, MI 48116 Phone: 810-227-3737 www.freedomcorp.com What is a

More information

Bob Steibly, GenesisSolutions

Bob Steibly, GenesisSolutions THE BUILDING BLOCKS FOR MAINTENANCE AN ASSET RELIABILITY APPROACH Bob Steibly, GenesisSolutions Have you considered implementing an asset reliability program in your plant but have continued putting it

More information

Approaches for Implementation of Virtual Metrology and Predictive Maintenance into Existing Fab Systems

Approaches for Implementation of Virtual Metrology and Predictive Maintenance into Existing Fab Systems Workshop - Statistical methods applied in microelectronics 13. June 2011, Catholic University of Milan, Milan, Italy Approaches for Implementation of Virtual Metrology and Predictive Maintenance into Existing

More information

On-line PD Monitoring Makes Good Business Sense

On-line PD Monitoring Makes Good Business Sense On-line PD Monitoring Makes Good Business Sense An essential tool for asset managers to ensure reliable operation, improve maintenance efficiency and to extend the life of their electrical assets. Executive

More information

Peak Sensor Systems e-diagnostics Initiative

Peak Sensor Systems e-diagnostics Initiative Peak Sensor Systems e-diagnostics Initiative Adding e-diagnostic Capability to ProPak Technology Pam Ward / Peak Sensor Systems ppward@peaksensor.com, 505.342.1170, 106 18 March 2003 03/13/2003-1 ProPak

More information

Enterprise Asset Performance Management

Enterprise Asset Performance Management Application Solution Enterprise Asset Performance Management for Power Utilities Using the comprehensive Enterprise Asset Performance Management solution offered by Schneider Electric, power utilities

More information

Scheduler/Dispatcher User Requirements

Scheduler/Dispatcher User Requirements Scheduler/Dispatcher User Requirements SEMATECH and the SEMATECH logo are registered service marks of SEMATECH, Inc. and the logo are registered service marks of, Inc., a wholly-owned subsidiary of SEMATECH,

More information

Advanced Diagnostic/Prognostic Solutions for Complex Information Technology (IT) Networks

Advanced Diagnostic/Prognostic Solutions for Complex Information Technology (IT) Networks Application Note AN106 Advanced Diagnostic/Prognostic Solutions for Complex Information Technology (IT) Networks As computer networks have become an increasingly important element of business and industrial

More information

Introduction. Background

Introduction. Background Predictive Operational Analytics (POA): Customized Solutions for Improving Efficiency and Productivity for Manufacturers using a Predictive Analytics Approach Introduction Preserving assets and improving

More information

CBM IV Prognostics and Maintenance Scheduling

CBM IV Prognostics and Maintenance Scheduling FL Lewis, Assoc Director for Research Moncrief-O Donnell Endowed Chair Head, Controls, Sensors, MEMS Group Automation & Robotics Research Institute (ARRI) The University of Texas at Arlington CBM IV Prognostics

More information

INTELLIGENT DEFECT ANALYSIS SOFTWARE

INTELLIGENT DEFECT ANALYSIS SOFTWARE INTELLIGENT DEFECT ANALYSIS SOFTWARE Website: http://www.siglaz.com Semiconductor fabs currently use defect count or defect density as a triggering mechanism for their Statistical Process Control. However,

More information

Predictive Analytics. Going from reactive to proactive. Mats Stellwall - Nordic Predictive Analytics Enterprise Architect 2012-06-14

Predictive Analytics. Going from reactive to proactive. Mats Stellwall - Nordic Predictive Analytics Enterprise Architect 2012-06-14 Mats Stellwall - Nordic Predictive Analytics Enterprise Architect 2012-06-14 Predictive Analytics Going from reactive to proactive 2011 IBM Corporation Nothing exists until it is measured Niels Bohr the

More information

SAP Preventive Maintenance The Core and More. Len Harms - Vesta

SAP Preventive Maintenance The Core and More. Len Harms - Vesta SAP Preventive Maintenance The Core and More Len Harms - Vesta Agenda The Core Preventive Maintenance The Core Light CBM and More The Core PM Preventive Maintenance: Forms Preventive maintenance Time-based

More information

Increase Equipment Uptime Through Robust Enterprise Asset Management. For the Upstream, Midstream & Downstream Sectors of the Oil & Gas Industry

Increase Equipment Uptime Through Robust Enterprise Asset Management. For the Upstream, Midstream & Downstream Sectors of the Oil & Gas Industry Increase Equipment Uptime Through Robust Enterprise Asset Management For the Upstream, Midstream & Downstream Sectors of the Oil & Gas Industry The Oil & Gas industry is challenged with effectively maximizing

More information

Lean manufacturing in the age of the Industrial Internet

Lean manufacturing in the age of the Industrial Internet Lean manufacturing in the age of the Industrial Internet From Henry Ford s moving assembly line to Taiichi Ohno s Toyota production system, now known as lean production, manufacturers globally have constantly

More information

Manufacturing Analytics: Uncovering Secrets on Your Factory Floor

Manufacturing Analytics: Uncovering Secrets on Your Factory Floor SIGHT MACHINE WHITE PAPER Manufacturing Analytics: Uncovering Secrets on Your Factory Floor Quick Take For manufacturers, operational insight is often masked by mountains of process and part data flowing

More information

The Semiconductor Industry: Out in Front, but Lagging Behind Tom Mariano Published September, 2014

The Semiconductor Industry: Out in Front, but Lagging Behind Tom Mariano Published September, 2014 As seen in The Semiconductor Industry: Out in Front, but Lagging Behind Tom Mariano Published September, 2014 Capital equipment suppliers must provide advanced analytical systems that leverage data generated

More information

Autonomous Maintenance

Autonomous Maintenance Autonomous Maintenance TPM & Autonomous Maintenance I run it, you fix it! I fix it, you run it! What is Maintenance? Why is Possible Utilization Rate Necessary? One way to look at Lean (JIT) production

More information

Big Data Analytics and Decision Analysis for Manufacturing Intelligence to Empower Industry 3.5

Big Data Analytics and Decision Analysis for Manufacturing Intelligence to Empower Industry 3.5 ISMI2015, Oct. 16-18, 2015 KAIST, Daejeon, South Korea Big Data Analytics and Decision Analysis for Manufacturing Intelligence to Empower Industry 3.5 Tsinghua Chair Professor Chen-Fu Chien, Ph.D. Department

More information

How To Manage It Asset Management On Peoplesoft.Com

How To Manage It Asset Management On Peoplesoft.Com PEOPLESOFT IT ASSET MANAGEMENT KEY BENEFITS Streamline the IT Asset Lifecycle Ensure IT and Corporate Compliance Enterprise-Wide Integration Oracle s PeopleSoft IT Asset Management streamlines and automates

More information

Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing Systems: Software Tool & Simulation Case Studies

Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing Systems: Software Tool & Simulation Case Studies 1 Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing Systems: Software Tool & Simulation Case Studies José A. Ramírez-Hernández, Member, IEEE, Jason Crabtree, Xiaodong Yao, Member,

More information

WARRANTY MANAGEMENT REDESIGN

WARRANTY MANAGEMENT REDESIGN TECHNICAL SERVICE DEPARTMENT Jan/2014 SUMMARY The Technical Service Department has established a set of business principles to support a variety of Departments within the District that includes Maintenance,

More information

PM Optimization: Using Data-driven Analytics for Life Centered Maintenance

PM Optimization: Using Data-driven Analytics for Life Centered Maintenance 5/8/4 WE KNOW WHAT HAPPENS NEXT PM Optimization: Using Data-driven Analytics for Life Centered Edzel Lapira, PhD lapira@predictronics.com David Siegel, PhD siegel@predictronics.com Rodrigo Vieira vieiraro@ucmail.uc.edu

More information

Advanced Diagnostic/Prognostic Solutions for Information Technology (IT) UPS & Power Supply Systems

Advanced Diagnostic/Prognostic Solutions for Information Technology (IT) UPS & Power Supply Systems Application Note AN107 Advanced Diagnostic/Prognostic Solutions for Information Technology (IT) UPS & Power Supply Systems Overview In today s business networks, continuous operation of network devices

More information

Predictive Analytics in Quality Early Warning Systems Smarter with Analytics

Predictive Analytics in Quality Early Warning Systems Smarter with Analytics Predictive Analytics in Quality Early Warning Systems Smarter with Analytics SC Lim Growth Markets Leader Integrated Supply Chain Engineering Agenda: IBM Point of View Maintenance & Quality Management

More information

PEOPLESOFT IT ASSET MANAGEMENT

PEOPLESOFT IT ASSET MANAGEMENT PEOPLESOFT IT ASSET MANAGEMENT K E Y B E N E F I T S Streamline the IT Asset Lifecycle Ensure IT and Corporate Compliance Enterprise-Wide Integration P E O P L E S O F T F I N A N C I A L M A N A G E M

More information

Small Data, Big Impact

Small Data, Big Impact Small Data, Big Impact The importance of extracting actionable insights from lift truck telematics to improve efficiency and protect the bottom line Yale Materials Handling Corporation Small Data, Big

More information

Operations & Maintenance 101 Maintenance Strategies and Work Practices to Reduce Costs

Operations & Maintenance 101 Maintenance Strategies and Work Practices to Reduce Costs 2003 Emerson Process Management. All rights reserved. View this and other courses online at www.plantwebuniversity.com. Operations & Maintenance 101 Maintenance Strategies and Work Practices to Reduce

More information

Recipe and Parameter Management (RaP) Evaluation Method

Recipe and Parameter Management (RaP) Evaluation Method Recipe and Parameter Management (RaP) Evaluation Method International SEMATECH Manufacturing Initiative Technology Transfer #08094959A-TR Advanced Materials Research Center, AMRC, International SEMATECH

More information

To meet the requirements of demanding new

To meet the requirements of demanding new Optimising LED manufacturing LED manufacturers seek new methods to reduce manufacturing costs and improve productivity in an increasingly demanding market. Tom Pierson, Ranju Arya, Columbine Robinson of

More information

Network Management Basics

Network Management Basics CHAPTER 6 Chapter Goal Become familiar with the basic functions of a network management system. Introduction This chapter describes functions common to most network-management architectures and protocols.

More information

Data Validation and Data Management Solutions

Data Validation and Data Management Solutions FRONTIER TECHNOLOGY, INC. Advanced Technology for Superior Solutions. and Solutions Abstract Within the performance evaluation and calibration communities, test programs are driven by requirements, test

More information

This paper describes Digital Equipment Corporation Semiconductor Division s

This paper describes Digital Equipment Corporation Semiconductor Division s WHITEPAPER By Edd Hanson and Heather Benson-Woodward of Digital Semiconductor Michael Bonner of Advanced Energy Industries, Inc. This paper describes Digital Equipment Corporation Semiconductor Division

More information

Available online at www.sciencedirect.com. ScienceDirect. Procedia CIRP 38 (2015 ) 3 7

Available online at www.sciencedirect.com. ScienceDirect. Procedia CIRP 38 (2015 ) 3 7 Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 38 (2015 ) 3 7 The Fourth International Conference on Through-life Engineering Services Industrial big data analytics and cyber-physical

More information

SureSense Software Suite Overview

SureSense Software Suite Overview SureSense Software Overview Eliminate Failures, Increase Reliability and Safety, Reduce Costs and Predict Remaining Useful Life for Critical Assets Using SureSense and Health Monitoring Software What SureSense

More information

CA NSM System Monitoring. Option for OpenVMS r3.2. Benefits. The CA Advantage. Overview

CA NSM System Monitoring. Option for OpenVMS r3.2. Benefits. The CA Advantage. Overview PRODUCT BRIEF: CA NSM SYSTEM MONITORING OPTION FOR OPENVMS Option for OpenVMS r3.2 CA NSM SYSTEM MONITORING OPTION FOR OPENVMS HELPS YOU TO PROACTIVELY DISCOVER, MONITOR AND DISPLAY THE HEALTH AND AVAILABILITY

More information

IMPLEMENTING A RELIABILITY CENTERED MAINTENANCE PROGRAM AT NASA'S KENNEDY SPACE CENTER

IMPLEMENTING A RELIABILITY CENTERED MAINTENANCE PROGRAM AT NASA'S KENNEDY SPACE CENTER IMPLEMENTING A RELIABILITY CENTERED MAINTENANCE PROGRAM AT NASA'S KENNEDY SPACE CENTER Raymond E. Tuttle and Robert R. Pete EG&G Florida BOC-035 Kennedy Space Center FL 32899 (407) 867-5705!qq, Abstract:

More information

How To Develop Software

How To Develop Software Software Engineering Prof. N.L. Sarda Computer Science & Engineering Indian Institute of Technology, Bombay Lecture-4 Overview of Phases (Part - II) We studied the problem definition phase, with which

More information

PEOPLESOFT MAINTENANCE MANAGEMENT

PEOPLESOFT MAINTENANCE MANAGEMENT PEOPLESOFT MAINTENANCE MANAGEMENT KEY BENEFITS Streamline Maintenance Operations Manage Full Asset Lifecycle Lower Total Cost of Ownership Oracle s PeopleSoft Maintenance Management completes the Enterprise

More information

BIG DATA ANALYTICS: THE TRANSFORMATIVE POWERHOUSE FOR BIOTECH INDUSTRY ADVANCEMENT. David Wiggin October 8, 2013

BIG DATA ANALYTICS: THE TRANSFORMATIVE POWERHOUSE FOR BIOTECH INDUSTRY ADVANCEMENT. David Wiggin October 8, 2013 BIG DATA ANALYTICS: THE TRANSFORMATIVE POWERHOUSE FOR BIOTECH INDUSTRY ADVANCEMENT David Wiggin October 8, 2013 AGENDA Big Data Analytics Four Examples Global Supply Chain Visibility Demand Signal Repository

More information

Best Practices in Microtechnology for PV production effectiveness

Best Practices in Microtechnology for PV production effectiveness Best Practices in Microtechnology for PV production effectiveness PV meets Microtechnology Chancen und Herausforderungen Erfurt, 29./30. Oktober 2008 Agenda 1 Motivation 2 History of Microtechnology 3

More information

Agile Manufacturing for ALUMINIUM SMELTERS

Agile Manufacturing for ALUMINIUM SMELTERS Agile Manufacturing for ALUMINIUM SMELTERS White Paper This White Paper describes how Advanced Information Management and Planning & Scheduling solutions for Aluminium Smelters can transform production

More information

JOINT STRIKE FIGHTER PHM VISION

JOINT STRIKE FIGHTER PHM VISION Joint Strike Fighter,JSF, and the JSF Logo are Trademarks of the United States Government JOINT STRIKE FIGHTER PHM VISION Joint Strike Fighter Program Office. VISION BE THE MODEL ACQUISITION PROGRAM FOR

More information

PdM Overview. Predictive Maintenance Services

PdM Overview. Predictive Maintenance Services PdM Overview Predictive Maintenance Services Objective Assessments Maximize Uptime, Lower Costs Predictive Maintenance (PdM) solutions from Rexnord Industrial Services help manage the condition of your

More information

Improve the product lifecycle

Improve the product lifecycle Improve the product lifecycle Vodafone M2M solutions for manufacturing m2m.vodafone.com Vodafone Power to you Vodafone M2M solutions for manufacturing What s facing manufacturers today? Whether you re

More information

Proactive Asset Management with IIoT and Analytics

Proactive Asset Management with IIoT and Analytics Proactive Asset Management with IIoT and Analytics by Ralph Rio in Industrial Internet of Things, Analytics & Big Data Summary The Industrial Internet of Things (IIoT) with advanced analytics, offers new

More information

Industrial IT System 800xA Satt Products and Systems

Industrial IT System 800xA Satt Products and Systems Industrial IT System 800xA Satt Products and Systems Overview Features and Benefits Reducing Time to Decision and Action: System 800xA Process Portal delivers the exact information, filters out noise to

More information

Airline Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches

Airline Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches 2003 2004 2005 2006 2007 2008 2009 2010 Cost per Flight Hour (USD) Airline Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches Mike Dupuy, Dan Wesely, Cody Jenkins Abstract

More information

The University of Iowa. Enterprise Information Technology Disaster Plan. Version 3.1

The University of Iowa. Enterprise Information Technology Disaster Plan. Version 3.1 Version 3.1 November 22, 2004 TABLE OF CONTENTS PART 1: DISASTER RECOVERY EXPECTATIONS... 3 OVERVIEW...3 EXPECTATIONS PRIOR TO AN INCIDENT OCCURRENCE...3 EXPECTATIONS PRIOR TO A DISASTER OCCURRENCE...4

More information

Reliability centered maintenance: managing cost and risk

Reliability centered maintenance: managing cost and risk Maintaining data center performance Lower Your Cost I Lower Your Risk I Enable Your Business Reliability-Centered Maintenance Whitepaper May 2012 Dave Whitcomb/RTKL Reliability centered maintenance: managing

More information

ValveSight. Prevention Delivered

ValveSight. Prevention Delivered ValveSight Prevention Delivered ValveSight It s all about increasing your bottom line ValveSight represents our conception of a proactive maintenance strategy for critical equipment. It improves output

More information

ITIL Roles Descriptions

ITIL Roles Descriptions ITIL Roles s Role Process Liaison Incident Analyst Operations Assurance Analyst Infrastructure Solution Architect Problem Manager Problem Owner Change Manager Change Owner CAB Member Release Analyst Test

More information

How To Use Safety System Software (S3)

How To Use Safety System Software (S3) SPECIFICATION DATA Safety System Software (S3) APPLICATION Safety System Software (S 3 ) is a robust, full featured configuration, diagnostic, programming and real-time monitoring package for integrators

More information

control manual Optimal maintenance decisions for asset managers by andrew k.s. jardine and neil montgomery 44 Industrial Engineer

control manual Optimal maintenance decisions for asset managers by andrew k.s. jardine and neil montgomery 44 Industrial Engineer control manual Optimal maintenance decisions for asset managers by andrew k.s. jardine and neil montgomery 44 Industrial Engineer Most of us are familiar with the effort involved in purchasing a new car.

More information

Lawrence S. Farey. 193 S.W. Seminole Drive Aloha, OR 97006

Lawrence S. Farey. 193 S.W. Seminole Drive Aloha, OR 97006 Proceedings of the 1996 Winter Simulation Conference. ed. J. 1\1. Charnes, D. J. l\iorrice, D. T. Brunner, and J. J. S,valfl TRWITED ACCELEROMETER WAFER PROCESS PRODUCTION FACILITY: MANUFACTURING SIM:ULATION

More information

Engineering a EIA - 632

Engineering a EIA - 632 es for Engineering a System EIA - 632 SE Tutorial es for Engr Sys - 1 Fundamental es for Engineering a System Acquisition and Supply Supply Acquisition es for Engineering A System Technical Management

More information

Value Paper Author: Edgar C. Ramirez. Diverse redundancy used in SIS technology to achieve higher safety integrity

Value Paper Author: Edgar C. Ramirez. Diverse redundancy used in SIS technology to achieve higher safety integrity Value Paper Author: Edgar C. Ramirez Diverse redundancy used in SIS technology to achieve higher safety integrity Diverse redundancy used in SIS technology to achieve higher safety integrity Abstract SIS

More information

ADVANCES IN AUTOMATIC OPTICAL INSPECTION: GRAY SCALE CORRELATION vs. VECTORAL IMAGING

ADVANCES IN AUTOMATIC OPTICAL INSPECTION: GRAY SCALE CORRELATION vs. VECTORAL IMAGING ADVANCES IN AUTOMATIC OPTICAL INSPECTION: GRAY SCALE CORRELATION vs. VECTORAL IMAGING Vectoral Imaging, SPC & Closed Loop Communication: The Zero Defect SMD Assembly Line Mark J. Norris Vision Inspection

More information

Semiconductor Equipment Security: Virus and Intellectual Property Protection Guidelines Harvey Wohlwend harvey.wohlwend ismi.sematech.

Semiconductor Equipment Security: Virus and Intellectual Property Protection Guidelines Harvey Wohlwend harvey.wohlwend ismi.sematech. Semiconductor Equipment Security: Virus and Intellectual Property Protection Guidelines Harvey Wohlwend harvey.wohlwend ismi.sematech.org Advanced Materials Research Center, AMRC, International SEMATECH

More information

Improve the Agility of Demand-Driven Supply Networks

Improve the Agility of Demand-Driven Supply Networks GE Intelligent Platforms Improve the Agility of Demand-Driven Supply Networks Leverage real-time production data to optimize the supply chain for a sustainable competitive advantage Improve the Agility

More information

Louisiana Tech University Lean Manufacturing Courses

Louisiana Tech University Lean Manufacturing Courses Lean Course Objectives: Your Employees will be able to: Louisiana Tech University Lean Manufacturing Courses Understand the tools, terms, terminology, and most importantly the benefits of Lean Manufacturing.

More information

Chapter 9 Reliability Centered Maintenance

Chapter 9 Reliability Centered Maintenance Chapter 9 Reliability Centered Maintenance Marvin Rausand marvin.rausand@ntnu.no RAMS Group Department of Production and Quality Engineering NTNU (Version 0.1) Marvin Rausand (RAMS Group) System Reliability

More information

The Advantages of Enterprise Historians vs. Relational Databases

The Advantages of Enterprise Historians vs. Relational Databases GE Intelligent Platforms The Advantages of Enterprise Historians vs. Relational Databases Comparing Two Approaches for Data Collection and Optimized Process Operations The Advantages of Enterprise Historians

More information

WW OPS-05 Improve Production Execution Visibility, Agility & Performance with Wonderware MES

WW OPS-05 Improve Production Execution Visibility, Agility & Performance with Wonderware MES Slide 1 WW OPS-05 Improve Production Execution Visibility, Agility & Performance with Wonderware MES social.invensys.com @InvensysOpsMgmt / #SoftwareRevolution Jeff Nuse /InvensysVideos Senior Product

More information

Uniformance Asset Sentinel. Advanced Solutions. A real-time sentinel for continuous process performance monitoring and equipment health surveillance

Uniformance Asset Sentinel. Advanced Solutions. A real-time sentinel for continuous process performance monitoring and equipment health surveillance Uniformance Asset Sentinel Advanced Solutions A real-time sentinel for continuous process performance monitoring and equipment health surveillance What is Uniformance Asset Sentinel? Honeywell s Uniformance

More information

Achieving Quality Manufacturing Process with the Agilent Quality Tool

Achieving Quality Manufacturing Process with the Agilent Quality Tool BACKGROUNDER EDITORIAL CONTACT: Jana Knezovich, Americas + 970 679-3399 jana_knezovich@agilent.com Paul Guerrero, Japan, Europe & Asia +1 970 635-6013 paul_guerrero@agilent.com Achieving Quality Manufacturing

More information

Advanced Planning and Scheduling

Advanced Planning and Scheduling Taylor Scheduler Welcome! Taylor Scheduler is our advanced planning and production scheduling software. Its many features allow Taylor Scheduler to be able to handle just about any manufacturing scheduling

More information

Industry Solution. Predictive Asset Analytics at Power Utilities

Industry Solution. Predictive Asset Analytics at Power Utilities Industry Solution Predictive Asset Analytics at Power Utilities Overview With pressure from new regulations and consumers, operating with the highest levels of efficiency, reliability and safety is a top

More information

Asset Management 101

Asset Management 101 Asset Management 101 Part 1: Maintenance Strategy Overview Larry Covino Product Line Leader, Strategic Partnerships Bently Nevada Asset Condition Monitoring, GE Energy, lawrence.covino@ge.com Michael Hanifan

More information

Lean Manufacturing: Part 1. Charles Theisen, CPIM, CIRM. Lean Manufacturing Part 1

Lean Manufacturing: Part 1. Charles Theisen, CPIM, CIRM. Lean Manufacturing Part 1 Lean Manufacturing Part 1 2013 ProcessPro, the ProcessPro logos, and the ProcessPro product and service names mentioned herein are registered trademarks or trademarks of Blaschko Computers, Inc. d.b.a.

More information

Using Predictive Maintenance to Approach Zero Downtime

Using Predictive Maintenance to Approach Zero Downtime SAP Thought Leadership Paper Predictive Maintenance Using Predictive Maintenance to Approach Zero Downtime How Predictive Analytics Makes This Possible Table of Contents 4 Optimizing Machine Maintenance

More information

Predictive Maintenance

Predictive Maintenance PART ONE of a predictive maintenance series Predictive Maintenance Overview Predictive maintenance programs come in all shapes and sizes, depending on a facility s size, equipment, regulations, and productivity

More information

GE Intelligent Platforms. solutions for dairy manufacturing

GE Intelligent Platforms. solutions for dairy manufacturing GE Intelligent Platforms solutions for dairy manufacturing Optimize your dairy operations Combining extensive knowledge of the dairy industry and processes with the latest innovative technologies, we have

More information

Fundamentals of Measurements

Fundamentals of Measurements Objective Software Project Measurements Slide 1 Fundamentals of Measurements Educational Objective: To review the fundamentals of software measurement, to illustrate that measurement plays a central role

More information

Rotorcraft Health Management System (RHMS)

Rotorcraft Health Management System (RHMS) AIAC-11 Eleventh Australian International Aerospace Congress Rotorcraft Health Management System (RHMS) Robab Safa-Bakhsh 1, Dmitry Cherkassky 2 1 The Boeing Company, Phantom Works Philadelphia Center

More information

Management of VMware ESXi. on HP ProLiant Servers

Management of VMware ESXi. on HP ProLiant Servers Management of VMware ESXi on W H I T E P A P E R Table of Contents Introduction................................................................ 3 HP Systems Insight Manager.................................................

More information

G DATA TechPaper #0275. G DATA Network Monitoring

G DATA TechPaper #0275. G DATA Network Monitoring G DATA TechPaper #0275 G DATA Network Monitoring G DATA Software AG Application Development May 2016 Contents Introduction... 3 1. The benefits of network monitoring... 3 1.1. Availability... 3 1.2. Migration

More information

DESIGNED FOR QUALITY ASSURANCE

DESIGNED FOR QUALITY ASSURANCE DESIGNED FOR QUALITY ASSURANCE DESIGNED FOR QUALITY ASSURANCE Executive Summary Quality can be defined as fitness for use as defined by the customer. A quality product or service contributes to customer

More information

TrakSYS. www.parsec-corp.com

TrakSYS. www.parsec-corp.com TrakSYS TM Real-time manufacturing operations and performance management software. TrakSYS makes it possible to significantly increase productivity throughout the value stream. TM www.parsec-corp.com Contents

More information

Program Life Cycle Cost Driver Model (LCCDM) Daniel W. Miles, General Physics, June 2008

Program Life Cycle Cost Driver Model (LCCDM) Daniel W. Miles, General Physics, June 2008 Program Life Cycle Cost Driver Model (LCCDM) Daniel W. Miles, General Physics, June 28 Introduction Several years ago during the creation of the Periscope Total Ownership Cost (TOC) Program, it became

More information

A 10-Minute Guide to Increasing Supply Chain Visibility

A 10-Minute Guide to Increasing Supply Chain Visibility A 10-Minute Guide to Increasing Supply Chain Visibility 1 CONTENT MAKE THE CASE LEVEL 1 - VIEW THE INVENTORY LEVEL 2 - COLLABORATE SMARTER LEVEL 3 - TRACK & TRACE CONCLUSION 2 MAKE THE CASE It s imperative

More information

Quality Manual. DuraTech Industries, Inc. 3216 Commerce Street La Crosse, WI 54603 MANUAL SERIAL NUMBER 1

Quality Manual. DuraTech Industries, Inc. 3216 Commerce Street La Crosse, WI 54603 MANUAL SERIAL NUMBER 1 Quality Manual Approval Page Document: QA1000 Issue Date: 5/29/1997 Page 1 of 17 Revision Date: 5/20/2013 DuraTech Industries, Inc. 3216 Commerce Street La Crosse, WI 54603 MANUAL SERIAL NUMBER 1 This

More information

THE VALUE OF SIMULATION IN MODELING SUPPLY CHAINS. Ricki G. Ingalls

THE VALUE OF SIMULATION IN MODELING SUPPLY CHAINS. Ricki G. Ingalls Proceedings of the 1998 Winter Simulation Conference D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds. THE VALUE OF SIMULATION IN MODELING SUPPLY CHAINS Ricki G. Ingalls Manufacturing Strategy

More information

SWITCHING STRATEGIES: MOVING TO CONDITION- BASED MAINTENANCE. By David Stevens, Technical Manager & Trainer, AVT Reliability

SWITCHING STRATEGIES: MOVING TO CONDITION- BASED MAINTENANCE. By David Stevens, Technical Manager & Trainer, AVT Reliability SWITCHING STRATEGIES: MOVING TO CONDITION- BASED MAINTENANCE By David Stevens, Technical Manager & Trainer, AVT Reliability Balancing cost reduction and efficiency improvement targets is a common source

More information

Standardizing Best Industry Practices

Standardizing Best Industry Practices MEDICAL DEVICES Current market conditions have created a highly competitive and challenging environment for the medical device industry. With stricter FDA regulatory oversight, increasing material costs

More information

Appendix O MANUFACTURING YOUTH APPRENTICESHIP PRODUCTION OPERATIONS MANAGEMENT PATHWAY PRODUCTION OPERATIONS MANAGEMENT (UNIT 8)

Appendix O MANUFACTURING YOUTH APPRENTICESHIP PRODUCTION OPERATIONS MANAGEMENT PATHWAY PRODUCTION OPERATIONS MANAGEMENT (UNIT 8) Appendix O MANUFACTURING YOUTH APPRENTICESHIP PRODUCTION OPERATIONS MANAGEMENT PATHWAY PRODUCTION OPERATIONS MANAGEMENT (UNIT 8) Pathway: (Unit 8) PAGE 1 OF 17 Unit 8: Pathway 1. Assist to purchase materials

More information

Ensuring Reliability in Lean New Product Development. John J. Paschkewitz, P.E., CRE

Ensuring Reliability in Lean New Product Development. John J. Paschkewitz, P.E., CRE Ensuring Reliability in Lean New Product Development John J. Paschkewitz, P.E., CRE Overview Introduction and Definitions Part 1: Lean Product Development Lean vs. Traditional Product Development Key Elements

More information

PROJECT MANAGEMENT PLAN TEMPLATE < PROJECT NAME >

PROJECT MANAGEMENT PLAN TEMPLATE < PROJECT NAME > PROJECT MANAGEMENT PLAN TEMPLATE < PROJECT NAME > Date of Issue: < date > Document Revision #: < version # > Project Manager: < name > Project Management Plan < Insert Project Name > Revision History Name

More information

The Advantages of Plant-wide Historians vs. Relational Databases

The Advantages of Plant-wide Historians vs. Relational Databases GE Intelligent Platforms The Advantages of Plant-wide Historians vs. Relational Databases Comparing Two Approaches for Data Collection and Optimized Process Operations The Advantages of Plant-wide Historians

More information

<name of project> Software Project Management Plan

<name of project> Software Project Management Plan The document in this file is adapted from the IEEE standards for Software Project Management Plans, 1058-1998, which conforms to the requirements of ISO standard 12207 Software Life Cycle Processes. Tailor

More information