FREQUENT PATTERN MINING FOR EFFICIENT LIBRARY MANAGEMENT
|
|
|
- Aubrie Adams
- 9 years ago
- Views:
Transcription
1 FREQUENT PATTERN MINING FOR EFFICIENT LIBRARY MANAGEMENT ANURADHA.T Assoc.prof, SRI SAI KRISHNA.A SATYATEJ.K NAGA ANIL KUMAR.G Abstract Data mining is used to extract meaningful information and to develop significant relationships among variables stored in large data sets involving methods from statistics and artificial intelligence but also management. In this paper data mining technique named association technique is applied to analyze the patterns which depicts the relationship between more frequently taken books by the students. The student s record of library data was studied based on many factors such as their subject requirements, number of books issued, and duration for each book. It is recommended that all these correlated information should be conveyed to the library department such that it helps them to improve the issue performance by avoiding the delay, maintain more number of highly required books according to the current subjects of the different streams of students. Keywords frequent pattern; association technique; minimal support. I. Introduction The actual data mining task is the automatic or semi-automatic analysis of large quantities of data in order to extract previously unknown interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection) and dependencies (association rule mining) [1].Library management concerns with the management of resources which basically includes books, manuscripts, journals etc. and providing effective and efficient services to its users. Since the manual management of books and other resources in a library and keeping track of every books of the library accessed by the user is tedious job and hence often technological support is expected [7]. Further, to keep track of the books issued and returned across the counters, journals, periodicals and manuscripts consulted by the users and so on needs additional book keeping on additional parameters and are generally not done in a typical library which operates manually. The situation becomes acute when the library does procurement of resources. II. Data Mining Data mining techniques are used to operate on large volumes of data to discover hidden patterns and relationships helpful in decision making [7].Data mining software allow the users to analyze data from different dimensions categorize it and a summarized the relationships, identified during the mining process [1].Different data mining techniques are used in various fields of life such as medicine, statistical analysis, engineering, education, banking, marketing, sale etc., A. Frequent Patterns ISSN : Vol. 3 No. 11 November
2 Frequent item sets play an essential role in many data mining tasks that try to find interesting patterns from databases, such as association rules, correlations, sequences, episodes, classifiers, clusters and many more of which the mining of association rules is one of the most popular problems [6].The original motivation for searching association rules came from the need to analyze so called supermarket transaction data, that is, to examine customer behavior in terms of the purchased products [5]. Association rules describe how often items are purchased together. B. Associations in Data-Mining In data mining, association rule learning is a popular and well researched method for discovering interesting relations between variables in large databases [5]. Piatetsky-Shapiro describes analyzing and presenting strong rules discovered in databases using different measures of interestingness [3]. Based on the concept of strong rules, many introduced association rules for discovering regularities between products in large scale transaction data recorded by point-of-sale (POS) systems in supermarkets. For example, the rule {Onions, Potatoes} => {Burger} found in the sales data of a supermarket would indicate that if a customer buys onions and potatoes together, he or she is likely to also buy hamburger meat [3]. Such information can be used as the basis for decisions about marketing activities such as, e.g., promotional pricing or product placements. In addition to the above example from market basket analysis [2] association rules are employed today in many application areas including Web usage mining, intrusion detection and bioinformatics. C. Data mining in Library Management System Library provides an essential element for the betterment and progress of the student career. It enables the students of a college/university to get updated in the academic subjects. Mining in educational environment is called Educational Data Mining, concern with developing new methods to discover knowledge from educational databases like library, sports, health and management etc., in order to analyze student s trends and behaviors towards particular subjects when in-close with examinations [1]. With the information deep and enough on management in library maintenance system will provide the student s to achieve quality objectives in their academic curriculum, data mining methodology which was used in Library Management can help bridging this knowledge gaps in higher education system. Student. No CRYPTOGRAPHY AND NETWORK SECURITY TABLE:1 ANSCII- C DBMS DATAMINING TECHNIQUES Sample table showing some of the books issued to students In the above table, when the book is taken by the student it is considered as 1 and if not it is 0.Similarly about 2000 different student records for seven different books are considered. III. Proposed Model In a university library overall books issued to a student is determined by the automation records of the university library. The proposed model mainly deals with finding relationship between the most frequent books that are taken by the students for that semester based on the conditions of stipulated time period and maximum books issued. In general the books were issued for a period of 15 days and providing an option for students to renewal those books for later period of time. While at the same time issued books of a student can get returned ISSN : Vol. 3 No. 11 November
3 in any of these 15 days. A student can take a maximum of four different books within that period. The proposed model makes prediction about most chosen books by students based on class automation as well as system information from the department. We have considered about 2000 records of students, and the books considered were the important books required by the students for that particular semester. Initially, we calculated the count of the various seven books which are taken individually. Then the books which were less than the minimum support key were eliminated from further proceedings. Count of the books were as follows: 1. Computer Networks : Compiler Design : Data Mining : Operating Systems : Web designing : Java : Software Engineering : 896 From the above data we can identify that the count of both Web designing and Java is less than the minimum support count of 300.So they are eliminated from further proceedings of frequent patterns. Fig.1. Representation of individual books issued to students Now for the frequent patterns we have to consider the rest of books over which we are applying the data-mining techniques. On applying the frequent patterns we calculated what the count among 2000 students who have taken both the books together at the same time. After calculating the count of each frequent patterns, the later process was similar to the above process where the frequent 2 patterns are eliminated whose count was less than the minimal support key. Following data shows the count of various frequent 2 patterns: 1. COMPUTER NETWORKS and COMPILER DESIGN = COMPUTER NETWORKS and DATA MINING = COMPUTER NETWORKS and OPERATING SYSTEMS = COMPUTER NETWORKS and SOFTWARE ENGINEERING = COMPILER DESIGN and DATA MINING = COMPILER DESIGN and OPERATING SYSTEMS = COMPILER DESIGN and SOFTWARE ENGINEERING = DATA MINING and OPERATING SYSTEMS = DATA MINING and SOFTWARE ENGINEERING = OPERATING SYSTEMS and SOFTWARE ENGINEERING = 269 Now the combinations COMPILER DESIGN and OPERATING SYSTEMS, COMPILER DESIGN and SOFTWARE ENGINEERING, DATA MINING and SOFTWARE ENGINEERING and OPERATING SYSTEMS and SOFTWARE ENGINEERING are not considered for further proceedings for less than minimum support. ISSN : Vol. 3 No. 11 November
4 Fig.2. Representation of Frequent 2 pattern books Finally, for the frequent 3 patterns we have only 2 different sets obtained (COMPUTER NETWORKS,COMPILER DESIGN,DATA MINING) and (COMPUTER NETWORKS,DATA MINING,OPERATING SYSTEMS) after considering the minimum support and minimum confidence values. Fig.3. Representation of Frequent 3 pattern books IV.Results On applying the data mining techniques on different 2000 records available we came with frequent patterns between (CN,CD,DataMining) and (CN,DataMining,SE).We can conclude that among 2000 students 356 students take all the three books namely (CN,CD,DataMining) and 320 students take all (CN,Data Mining,SE). Further, frequent 4 pattern book set is not obtained as the count of the combinations is less than the required minimum support key value. V.Conclusion By this way of applying the association techniques over a library data, it will help the library management to buy and maintain those books that are much required and hold them in large number than those that are not much preferred by the students.so, this helps for maximum number of students to get those frequent pattern related books and also for efficient retrieval of books. User can retrieve the books which he needed in a faster way which can save a lot of time for him rather than just searching for various books. ISSN : Vol. 3 No. 11 November
5 VI.Future Work We have applied the data-mining technique for proper functioning of Library management. This can be extended from 7 available books to many books and over many thousands of students information so that library management of much required books and efficient retrieval can be done successfully. Similarly indeed having more books we can divide the books as per departments and can apply these techniques so that it would be beneficial for all the students of different departments. References [1] Anitha, V; Sunitha Jeevan, C; Kala, S. (2011): Library Management System Using Association Rule Mining. International Journal of Biotech Trends and Technology may to june issue. [2] Data on Market Basket analysis from wikipedia. [3] Fayyad, U.M., Piatetsky-Shapiro, G.;Smyth, P. From Data Mining To Knowledge Discovery: An Overview. In Advances In Knowledge Discovery And Data Mining, eds. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, AAAI Press/The MIT Press, Menlo Park, CA, 1996, pp [4] Frawley, W.J; Piatetsky-Shapiro,G;Matheus,C.J. Knowledge Discovery in Databases: AAAI/MIT Press, [5] Khattak,A.M;Khan,A.M;Sungyoung,L.(2010) : Analyzing Association Rule Mining and Clustering on Sales Day Data with XLMiner and Weka. International Journal of Database Theory and Application Vol. 3, No. 1, March, [6] R. Agrawal, T. Imielinski, and A. Swami, Mining Associations between set of items in Massive Databases. In proc. Of the ACM- SIGMOD 1993 int l conf. on Management of Data, pages , Washington D.C. USA, [7] Shaeela,A;Tasleem,M;Ahsan,R.S;Inayat Khan,M. (2010): Data Mining Model for Higher Education System. European Journal of Scientific Research Vol.43 No.1 (2010), pp Authors Profile [1] T.ANURADHA Assoc.Prof and doing research in DATA BASE MANAGEMENT STUDIES in KL UNIVERSITY, GUNTUR [2] A.SRI SAI KRISHNA Student at, studying IVth year B.tech in [3] K.SATYATEJ Student at, studying IVth year B.tech in [4] G.NAGA ANIL KUMAR Student at, studying IVth year B.tech in ISSN : Vol. 3 No. 11 November
Data Mining for Manufacturing: Preventive Maintenance, Failure Prediction, Quality Control
Data Mining for Manufacturing: Preventive Maintenance, Failure Prediction, Quality Control Andre BERGMANN Salzgitter Mannesmann Forschung GmbH; Duisburg, Germany Phone: +49 203 9993154, Fax: +49 203 9993234;
A Survey on Association Rule Mining in Market Basket Analysis
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 4, Number 4 (2014), pp. 409-414 International Research Publications House http://www. irphouse.com /ijict.htm A Survey
Mining an Online Auctions Data Warehouse
Proceedings of MASPLAS'02 The Mid-Atlantic Student Workshop on Programming Languages and Systems Pace University, April 19, 2002 Mining an Online Auctions Data Warehouse David Ulmer Under the guidance
Static Data Mining Algorithm with Progressive Approach for Mining Knowledge
Global Journal of Business Management and Information Technology. Volume 1, Number 2 (2011), pp. 85-93 Research India Publications http://www.ripublication.com Static Data Mining Algorithm with Progressive
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
New Matrix Approach to Improve Apriori Algorithm
New Matrix Approach to Improve Apriori Algorithm A. Rehab H. Alwa, B. Anasuya V Patil Associate Prof., IT Faculty, Majan College-University College Muscat, Oman, [email protected] Associate
Data Mining in Telecommunication
Data Mining in Telecommunication Mohsin Nadaf & Vidya Kadam Department of IT, Trinity College of Engineering & Research, Pune, India E-mail : [email protected] Abstract Telecommunication is one of
Example application (1) Telecommunication. Lecture 1: Data Mining Overview and Process. Example application (2) Health
Lecture 1: Data Mining Overview and Process What is data mining? Example applications Definitions Multi disciplinary Techniques Major challenges The data mining process History of data mining Data mining
ASSOCIATION RULE MINING ON WEB LOGS FOR EXTRACTING INTERESTING PATTERNS THROUGH WEKA TOOL
International Journal Of Advanced Technology In Engineering And Science Www.Ijates.Com Volume No 03, Special Issue No. 01, February 2015 ISSN (Online): 2348 7550 ASSOCIATION RULE MINING ON WEB LOGS FOR
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS Mrs. Jyoti Nawade 1, Dr. Balaji D 2, Mr. Pravin Nawade 3 1 Lecturer, JSPM S Bhivrabai Sawant Polytechnic, Pune (India) 2 Assistant
Healthcare Measurement Analysis Using Data mining Techniques
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik
II. OLAP(ONLINE ANALYTICAL PROCESSING)
Association Rule Mining Method On OLAP Cube Jigna J. Jadav*, Mahesh Panchal** *( PG-CSE Student, Department of Computer Engineering, Kalol Institute of Technology & Research Centre, Gujarat, India) **
Inner Classification of Clusters for Online News
Inner Classification of Clusters for Online News Harmandeep Kaur 1, Sheenam Malhotra 2 1 (Computer Science and Engineering Department, Shri Guru Granth Sahib World University Fatehgarh Sahib) 2 (Assistant
NEW TECHNIQUE TO DEAL WITH DYNAMIC DATA MINING IN THE DATABASE
www.arpapress.com/volumes/vol13issue3/ijrras_13_3_18.pdf NEW TECHNIQUE TO DEAL WITH DYNAMIC DATA MINING IN THE DATABASE Hebah H. O. Nasereddin Middle East University, P.O. Box: 144378, Code 11814, Amman-Jordan
How To Use Neural Networks In Data Mining
International Journal of Electronics and Computer Science Engineering 1449 Available Online at www.ijecse.org ISSN- 2277-1956 Neural Networks in Data Mining Priyanka Gaur Department of Information and
Data Mining System, Functionalities and Applications: A Radical Review
Data Mining System, Functionalities and Applications: A Radical Review Dr. Poonam Chaudhary System Programmer, Kurukshetra University, Kurukshetra Abstract: Data Mining is the process of locating potentially
How To Use Data Mining For Knowledge Management In Technology Enhanced Learning
Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 115 Data Mining for Knowledge Management in Technology Enhanced Learning
Application of Data Mining Techniques in Intrusion Detection
Application of Data Mining Techniques in Intrusion Detection LI Min An Yang Institute of Technology [email protected] Abstract: The article introduced the importance of intrusion detection, as well as
International Journal of World Research, Vol: I Issue XIII, December 2008, Print ISSN: 2347-937X DATA MINING TECHNIQUES AND STOCK MARKET
DATA MINING TECHNIQUES AND STOCK MARKET Mr. Rahul Thakkar, Lecturer and HOD, Naran Lala College of Professional & Applied Sciences, Navsari ABSTRACT Without trading in a stock market we can t understand
AN INTELLIGENT ANALYSIS OF CRIME DATA USING DATA MINING & AUTO CORRELATION MODELS
AN INTELLIGENT ANALYSIS OF CRIME DATA USING DATA MINING & AUTO CORRELATION MODELS Uttam Mande Y.Srinivas J.V.R.Murthy Dept of CSE Dept of IT Dept of CSE GITAM University GITAM University J.N.T.University
Selection of Optimal Discount of Retail Assortments with Data Mining Approach
Available online at www.interscience.in Selection of Optimal Discount of Retail Assortments with Data Mining Approach Padmalatha Eddla, Ravinder Reddy, Mamatha Computer Science Department,CBIT, Gandipet,Hyderabad,A.P,India.
131-1. Adding New Level in KDD to Make the Web Usage Mining More Efficient. Abstract. 1. Introduction [1]. 1/10
1/10 131-1 Adding New Level in KDD to Make the Web Usage Mining More Efficient Mohammad Ala a AL_Hamami PHD Student, Lecturer m_ah_1@yahoocom Soukaena Hassan Hashem PHD Student, Lecturer soukaena_hassan@yahoocom
Association rules for improving website effectiveness: case analysis
Association rules for improving website effectiveness: case analysis Maja Dimitrijević, The Higher Technical School of Professional Studies, Novi Sad, Serbia, [email protected] Tanja Krunić, The
Laboratory Module 8 Mining Frequent Itemsets Apriori Algorithm
Laboratory Module 8 Mining Frequent Itemsets Apriori Algorithm Purpose: key concepts in mining frequent itemsets understand the Apriori algorithm run Apriori in Weka GUI and in programatic way 1 Theoretical
Standardization of Components, Products and Processes with Data Mining
B. Agard and A. Kusiak, Standardization of Components, Products and Processes with Data Mining, International Conference on Production Research Americas 2004, Santiago, Chile, August 1-4, 2004. Standardization
Single Level Drill Down Interactive Visualization Technique for Descriptive Data Mining Results
, pp.33-40 http://dx.doi.org/10.14257/ijgdc.2014.7.4.04 Single Level Drill Down Interactive Visualization Technique for Descriptive Data Mining Results Muzammil Khan, Fida Hussain and Imran Khan Department
An Introduction to Data Mining
An Introduction to Intel Beijing [email protected] January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
SPATIAL DATA CLASSIFICATION AND DATA MINING
, pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal
Mining Pharmacy Data Helps to Make Profits
Data Mining and Knowledge Discovery 2, 391 398 (1998) c 1998 Kluwer Academic Publishers. Manufactured in The Netherlands. Mining Pharmacy Data Helps to Make Profits YUKINOBU HAMURO [email protected]
Text Mining: The state of the art and the challenges
Text Mining: The state of the art and the challenges Ah-Hwee Tan Kent Ridge Digital Labs 21 Heng Mui Keng Terrace Singapore 119613 Email: [email protected] Abstract Text mining, also known as text data
Data Mining: Concepts and Techniques
Data Mining: Concepts and Techniques Chapter 1 Introduction SURESH BABU M ASST PROF IT DEPT VJIT 1 Chapter 1. Introduction Motivation: Why data mining? What is data mining? Data Mining: On what kind of
72. Ontology Driven Knowledge Discovery Process: a proposal to integrate Ontology Engineering and KDD
72. Ontology Driven Knowledge Discovery Process: a proposal to integrate Ontology Engineering and KDD Paulo Gottgtroy Auckland University of Technology [email protected] Abstract This paper is
Machine Learning, Data Mining, and Knowledge Discovery: An Introduction
Machine Learning, Data Mining, and Knowledge Discovery: An Introduction AHPCRC Workshop - 8/17/10 - Dr. Martin Based on slides by Gregory Piatetsky-Shapiro from Kdnuggets http://www.kdnuggets.com/data_mining_course/
Statistics 215b 11/20/03 D.R. Brillinger. A field in search of a definition a vague concept
Statistics 215b 11/20/03 D.R. Brillinger Data mining A field in search of a definition a vague concept D. Hand, H. Mannila and P. Smyth (2001). Principles of Data Mining. MIT Press, Cambridge. Some definitions/descriptions
EFFECTIVE USE OF THE KDD PROCESS AND DATA MINING FOR COMPUTER PERFORMANCE PROFESSIONALS
EFFECTIVE USE OF THE KDD PROCESS AND DATA MINING FOR COMPUTER PERFORMANCE PROFESSIONALS Susan P. Imberman Ph.D. College of Staten Island, City University of New York [email protected] Abstract
Data Mining and Exploration. Data Mining and Exploration: Introduction. Relationships between courses. Overview. Course Introduction
Data Mining and Exploration Data Mining and Exploration: Introduction Amos Storkey, School of Informatics January 10, 2006 http://www.inf.ed.ac.uk/teaching/courses/dme/ Course Introduction Welcome Administration
Mining Association Rules: A Database Perspective
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.12, December 2008 69 Mining Association Rules: A Database Perspective Dr. Abdallah Alashqur Faculty of Information Technology
Mining Online GIS for Crime Rate and Models based on Frequent Pattern Analysis
, 23-25 October, 2013, San Francisco, USA Mining Online GIS for Crime Rate and Models based on Frequent Pattern Analysis John David Elijah Sandig, Ruby Mae Somoba, Ma. Beth Concepcion and Bobby D. Gerardo,
Mobile Phone APP Software Browsing Behavior using Clustering Analysis
Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Mobile Phone APP Software Browsing Behavior using Clustering Analysis
A Comprehensive Study of CRM through Data Mining Techniques
Proceedings of the National Conference; NCCIST-2011, September 09, 2011 Apeejay School of Management, Sector-8, Dwarka, New Delhi A Comprehensive Study of CRM through Data Mining Techniques Md. Rashid
Data Mining to Recognize Fail Parts in Manufacturing Process
122 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.7, NO.2 August 2009 Data Mining to Recognize Fail Parts in Manufacturing Process Wanida Kanarkard 1, Danaipong Chetchotsak
Knowledge Discovery and Data. Data Mining vs. OLAP
Knowledge Discovery and Data Mining Data Mining vs. OLAP Sajjad Haider Spring 2010 1 Acknowledgement All the material in this presentation is taken from the Internet. A simple search of Data Mining vs.
Use of Data Mining in the field of Library and Information Science : An Overview
512 Use of Data Mining in the field of Library and Information Science : An Overview Roopesh K Dwivedi R P Bajpai Abstract Data Mining refers to the extraction or Mining knowledge from large amount of
TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM
TOWARDS SIMPLE, EASY TO UNDERSTAND, AN INTERACTIVE DECISION TREE ALGORITHM Thanh-Nghi Do College of Information Technology, Cantho University 1 Ly Tu Trong Street, Ninh Kieu District Cantho City, Vietnam
Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis
IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727 Volume 6, Issue 5 (Nov. - Dec. 2012), PP 36-41 Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis
COURSE RECOMMENDER SYSTEM IN E-LEARNING
International Journal of Computer Science and Communication Vol. 3, No. 1, January-June 2012, pp. 159-164 COURSE RECOMMENDER SYSTEM IN E-LEARNING Sunita B Aher 1, Lobo L.M.R.J. 2 1 M.E. (CSE)-II, Walchand
ISSN: 2348 9510. A Review: Image Retrieval Using Web Multimedia Mining
A Review: Image Retrieval Using Web Multimedia Satish Bansal*, K K Yadav** *, **Assistant Professor Prestige Institute Of Management, Gwalior (MP), India Abstract Multimedia object include audio, video,
Information Security in Big Data using Encryption and Decryption
International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842 Information Security in Big Data using Encryption and Decryption SHASHANK -PG Student II year MCA S.K.Saravanan, Assistant Professor
DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM
INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM M. Mayilvaganan 1, S. Aparna 2 1 Associate
Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI
Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI Yudho Giri Sucahyo, Ph.D, CISA ([email protected]) Faculty of Computer Science, University of Indonesia Objectives
Extend Table Lens for High-Dimensional Data Visualization and Classification Mining
Extend Table Lens for High-Dimensional Data Visualization and Classification Mining CPSC 533c, Information Visualization Course Project, Term 2 2003 Fengdong Du [email protected] University of British Columbia
Dr. U. Devi Prasad Associate Professor Hyderabad Business School GITAM University, Hyderabad Email: [email protected]
96 Business Intelligence Journal January PREDICTION OF CHURN BEHAVIOR OF BANK CUSTOMERS USING DATA MINING TOOLS Dr. U. Devi Prasad Associate Professor Hyderabad Business School GITAM University, Hyderabad
Cost Drivers of a Parametric Cost Estimation Model for Data Mining Projects (DMCOMO)
Cost Drivers of a Parametric Cost Estimation Model for Mining Projects (DMCOMO) Oscar Marbán, Antonio de Amescua, Juan J. Cuadrado, Luis García Universidad Carlos III de Madrid (UC3M) Abstract Mining is
An application for clickstream analysis
An application for clickstream analysis C. E. Dinucă Abstract In the Internet age there are stored enormous amounts of data daily. Nowadays, using data mining techniques to extract knowledge from web log
A Spatial Decision Support System for Property Valuation
A Spatial Decision Support System for Property Valuation Katerina Christopoulou, Muki Haklay Department of Geomatic Engineering, University College London, Gower Street, London WC1E 6BT Tel. +44 (0)20
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
2.1. Data Mining for Biomedical and DNA data analysis
Applications of Data Mining Simmi Bagga Assistant Professor Sant Hira Dass Kanya Maha Vidyalaya, Kala Sanghian, Distt Kpt, India (Email: [email protected]) Dr. G.N. Singh Department of Physics and
College information system research based on data mining
2009 International Conference on Machine Learning and Computing IPCSIT vol.3 (2011) (2011) IACSIT Press, Singapore College information system research based on data mining An-yi Lan 1, Jie Li 2 1 Hebei
Homomorphic Encryption Schema for Privacy Preserving Mining of Association Rules
Homomorphic Encryption Schema for Privacy Preserving Mining of Association Rules M.Sangeetha 1, P. Anishprabu 2, S. Shanmathi 3 Department of Computer Science and Engineering SriGuru Institute of Technology
Introduction to Data Mining
Introduction to Data Mining a.j.m.m. (ton) weijters (slides are partially based on an introduction of Gregory Piatetsky-Shapiro) Overview Why data mining (data cascade) Application examples Data Mining
Enhancing Quality of Data using Data Mining Method
JOURNAL OF COMPUTING, VOLUME 2, ISSUE 9, SEPTEMBER 2, ISSN 25-967 WWW.JOURNALOFCOMPUTING.ORG 9 Enhancing Quality of Data using Data Mining Method Fatemeh Ghorbanpour A., Mir M. Pedram, Kambiz Badie, Mohammad
Semantic Analysis of Business Process Executions
Semantic Analysis of Business Process Executions Fabio Casati, Ming-Chien Shan Software Technology Laboratory HP Laboratories Palo Alto HPL-2001-328 December 17 th, 2001* E-mail: [casati, shan] @hpl.hp.com
Analyzing Huge Data Sets in Forensic Investigations
Analyzing Huge Data Sets in Forensic Investigations Kasun De Zoysa Yasantha Hettiarachi Department of Communication and Media Technologies University of Colombo School of Computing Colombo, Sri Lanka Centre
Data Mining. Knowledge Discovery, Data Warehousing and Machine Learning Final remarks. Lecturer: JERZY STEFANOWSKI
Data Mining Knowledge Discovery, Data Warehousing and Machine Learning Final remarks Lecturer: JERZY STEFANOWSKI Email: [email protected] Data Mining a step in A KDD Process Data mining:
TIM 50 - Business Information Systems
TIM 50 - Business Information Systems Lecture 15 UC Santa Cruz March 1, 2015 The Database Approach to Data Management Database: Collection of related files containing records on people, places, or things.
An Agile Methodology Based Model for Change- Oriented Software Engineering
An Agile Methodology Based Model for Change- Oriented Software Engineering Naresh Kumar Nagwani, Pradeep Singh Department of Computer Sc. & Engg. National Institute of Technology, Raipur [email protected],
Building A Smart Academic Advising System Using Association Rule Mining
Building A Smart Academic Advising System Using Association Rule Mining Raed Shatnawi +962795285056 [email protected] Qutaibah Althebyan +962796536277 [email protected] Baraq Ghalib & Mohammed
Keywords Big Data; OODBMS; RDBMS; hadoop; EDM; learning analytics, data abundance.
Volume 4, Issue 11, November 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analytics
NEURAL NETWORKS IN DATA MINING
NEURAL NETWORKS IN DATA MINING 1 DR. YASHPAL SINGH, 2 ALOK SINGH CHAUHAN 1 Reader, Bundelkhand Institute of Engineering & Technology, Jhansi, India 2 Lecturer, United Institute of Management, Allahabad,
20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns
20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns John Aogon and Patrick J. Ogao Telecommunications operators in developing countries are faced with a problem of knowing
Data Mining Application in Advertisement Management of Higher Educational Institutes
Data Mining Application in Advertisement Management of Higher Educational Institutes Priyanka Saini M.Tech(CS) Student, Banasthali University Rajasthan Sweta Rai M.Tech(CS) Student, Banasthali University
Decision Support System For A Customer Relationship Management Case Study
61 Decision Support System For A Customer Relationship Management Case Study Ozge Kart 1, Alp Kut 1, and Vladimir Radevski 2 1 Dokuz Eylul University, Izmir, Turkey {ozge, alp}@cs.deu.edu.tr 2 SEE University,
Explanation-Oriented Association Mining Using a Combination of Unsupervised and Supervised Learning Algorithms
Explanation-Oriented Association Mining Using a Combination of Unsupervised and Supervised Learning Algorithms Y.Y. Yao, Y. Zhao, R.B. Maguire Department of Computer Science, University of Regina Regina,
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
How To Analyze Web Server Log Files, Log Files And Log Files Of A Website With A Web Mining Tool
International Journal of Advanced Computer and Mathematical Sciences ISSN 2230-9624. Vol 4, Issue 1, 2013, pp1-8 http://bipublication.com ANALYSIS OF WEB SERVER LOG FILES TO INCREASE THE EFFECTIVENESS
Profile Based Personalized Web Search and Download Blocker
Profile Based Personalized Web Search and Download Blocker 1 K.Sheeba, 2 G.Kalaiarasi Dhanalakshmi Srinivasan College of Engineering and Technology, Mamallapuram, Chennai, Tamil nadu, India Email: 1 [email protected],
Process Mining in Big Data Scenario
Process Mining in Big Data Scenario Antonia Azzini, Ernesto Damiani SESAR Lab - Dipartimento di Informatica Università degli Studi di Milano, Italy antonia.azzini,[email protected] Abstract. In
Data Mining: Introduction. Lecture Notes for Chapter 1. Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler
Data Mining: Introduction Lecture Notes for Chapter 1 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Why Mine Data? Commercial Viewpoint Lots of data is being collected and warehoused - Web
A Survey on Intrusion Detection System with Data Mining Techniques
A Survey on Intrusion Detection System with Data Mining Techniques Ms. Ruth D 1, Mrs. Lovelin Ponn Felciah M 2 1 M.Phil Scholar, Department of Computer Science, Bishop Heber College (Autonomous), Trichirappalli,
Meeting Scheduling with Multi Agent Systems: Design and Implementation
Proceedings of the 6th WSEAS Int. Conf. on Software Engineering, Parallel and Distributed Systems, Corfu Island, Greece, February 16-19, 2007 92 Meeting Scheduling with Multi Agent Systems: Design and
Financial Trading System using Combination of Textual and Numerical Data
Financial Trading System using Combination of Textual and Numerical Data Shital N. Dange Computer Science Department, Walchand Institute of Rajesh V. Argiddi Assistant Prof. Computer Science Department,
Ethical Issues in Data Mining
Ethical Issues in Data Mining Mandana Mir Moftakhari PhD Student at Hacettepe University, Department of Information Management. Email: [email protected] Güleda Doğan PhD Student & Research Assistant
Journal of Global Research in Computer Science RESEARCH SUPPORT SYSTEMS AS AN EFFECTIVE WEB BASED INFORMATION SYSTEM
Volume 2, No. 5, May 2011 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info RESEARCH SUPPORT SYSTEMS AS AN EFFECTIVE WEB BASED INFORMATION SYSTEM Sheilini
Mining Signatures in Healthcare Data Based on Event Sequences and its Applications
Mining Signatures in Healthcare Data Based on Event Sequences and its Applications Siddhanth Gokarapu 1, J. Laxmi Narayana 2 1 Student, Computer Science & Engineering-Department, JNTU Hyderabad India 1
International Journal of Advance Research in Computer Science and Management Studies
Volume 2, Issue 12, December 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
Computational Intelligence in Data Mining and Prospects in Telecommunication Industry
Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 2 (4): 601-605 Scholarlink Research Institute Journals, 2011 (ISSN: 2141-7016) jeteas.scholarlinkresearch.org Journal of Emerging
DEVELOPMENT OF HASH TABLE BASED WEB-READY DATA MINING ENGINE
DEVELOPMENT OF HASH TABLE BASED WEB-READY DATA MINING ENGINE SK MD OBAIDULLAH Department of Computer Science & Engineering, Aliah University, Saltlake, Sector-V, Kol-900091, West Bengal, India [email protected]
