Data Mining: Introduction. Lecture Notes for Chapter 1. Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler
|
|
|
- Timothy Chad Dennis
- 9 years ago
- Views:
Transcription
1 Data Mining: Introduction Lecture Notes for Chapter 1 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler
2 Why Mine Data? Commercial Viewpoint Lots of data is being collected and warehoused - Web data, e-commerce - purchases at department/ grocery stores - Bank/Credit Card transactions Computers have become cheaper and more powerful Competitive Pressure is Strong - Provide better, customized services for an edge (e.g. in Customer Relationship Management)
3 Why Mine Data? Scientific Viewpoint Data collected and stored at enormous speeds (GB/hour) - remote sensors on a satellite - telescopes scanning the skies - microarrays generating gene expression data - scientific simulations generating terabytes of data Traditional techniques infeasible for raw data Data mining may help scientists - in classifying and segmenting data - in Hypothesis Formation
4 Mining Large Data Sets - Motivation There is often information hidden in the data that is not readily evident Human analysts may take weeks to discover useful information Much of the data is never analyzed at all Total new disk (TB) since The Data Gap Number of analysts From: R. Grossman, C. Kamath, V. Kumar, Data Mining for Scientific and Engineering Applications
5 What is Data Mining? Many Definitions Non-trivial extraction of implicit, previously unknown and potentially useful information from data Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns What is not Data Mining? What is Data Mining? Look up phone number in phone directory Query a Web search engine for information about Amazon Certain names are more prevalent in certain US locations (O Brien, O Rurke, O Reilly in Boston area) Group together similar documents returned by
6 Knowledge Discovery in Databases (KDD) Process Understand domain Noise/outliers Missing data Data/dim. reduction Finding useful features Decide on task & algorithm Performance?
7 Origins of Data Mining Draws ideas from machine learning/ai, pattern recognition, statistics, and database systems Traditional Techniques may be unsuitable due to Enormity of data High dimensionality of data Heterogeneous, distributed nature of data Statistics Machine Learning/AI & Pattern Recognition Data Mining Database systems & CS
8 Data Mining Tasks Description Methods - Find human-interpretable patterns that describe the data. Prediction Methods Use some variables to predict unknown or future values of other variables. From [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1996
9 Data Mining Tasks... Classification
10 Data Mining Tasks... Classification
11 Classification: Definition Given a collection of records (training set ) - Each record contains a set of attributes, one of the attributes is the class. Find a model for class attribute as a function of the values of other attributes. Goal: previously unseen records should be assigned a class as accurately as possible. - A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.
12 Classification Example categorical categorical continuous class Tid Refund Marital Taxable Status Income Cheat 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes Refund Marital Taxable Status Income Cheat No Single 75K? Yes Married 50K? No Married 150K? Yes Divorced 90K? No Single 40K? No Married 80K? Test Set Training Set Learn Classifier Model
13 Classification: Application 1 Direct Marketing Goal: Reduce cost of mailing by targeting a set of consumers likely to buy a new cell-phone product. Approach: Use the data for a similar product introduced before. We know which customers decided to buy and which decided otherwise. This {buy, don t buy} decision forms the class attribute. Collect various demographic, lifestyle, and company-interaction related information about all such customers. Type of business, where they stay, how much they earn, etc. Use this information as input attributes to learn a classifier model. From [Berry & Linoff] Data Mining Techniques, 1997
14 Classification: Application 2 Fraud Detection Goal: Predict fraudulent cases in credit card transactions. Approach: Use credit card transactions and the information on its account-holder as attributes. When and where does a customer buy, what does he buy, how often he pays on time, etc Label past transactions as fraud or fair transactions. This forms the class attribute. Learn a model for the class of the transactions. Use this model to detect fraud by observing credit card transactions on an account.
15 Classification: Application 3 Customer Attrition/Churn Goal: To predict whether a customer is likely to be lost to a competitor. Approach: Use detailed record of transactions with each of the past and present customers, to find attributes. How often the customer calls, where he calls, what time-of-the day he calls most, his financial status, marital status, etc. Label the customers as loyal or disloyal. Find a model for loyalty. From [Berry & Linoff] Data Mining Techniques, 1997
16 Classification: Application 4 Sky Survey Cataloging Goal: To predict class (star or galaxy) of sky objects, especially visually faint ones, based on the telescopic survey images (from Palomar Observatory) images with 23,040 x 23,040 pixels per image. Approach: - Segment the image. - Measure image attributes (features) - 40 of them per object. - Model the class based on these features. - Success Story: Could find 16 new high red-shift quasars, some of the farthest objects that are difficult to find! From [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1996
17 Data Mining Tasks... Classification
18 Clustering Definition Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that - Data points in one cluster are more similar to one another. - Data points in separate clusters are less similar to one another. Proximity Measures: - Euclidean Distance if attributes are continuous. - Other Problem-specific Measures.
19 Illustrating Clustering Euclidean Distance Based Clustering in 3-D space. Intracluster distances are minimized Intercluster distances are maximized
20 Clustering: Application 1 Market Segmentation Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix. Approach: Collect different attributes of customers based on their geographical and lifestyle related information. Find clusters of similar customers. Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.
21 Clustering: Application 2 Document Clustering Goal: To find groups of documents that are similar to each other based on the important terms appearing in them. Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster. Gain: Information Retrieval can utilize the clusters to relate a new document or search term to clustered documents.
22 Illustrating Document Clustering Clustering Points: 3204 Articles of Los Angeles Times. Similarity Measure: How many words are common in these documents (after some word filtering). Category Total Articles Correctly Placed Financial Foreign National Metro Sports Entertainment
23 Data Mining Tasks... Classification
24 Association Rule Discovery: Definition Given a set of records each of which contain some number of items from a given collection; Produce dependency rules which will predict occurrence of an item based on occurrences of other items. TI D Items 1 Bread, Coke, Milk 2 Beer, Bread 3 Beer, Coke, Diaper, Milk 4 Beer, Bread, Diaper, Milk Discovered Rules: {Milk} {Coke} {Diaper, Milk} {Beer} 5 Coke, Diaper, Milk
25 Association Rule Discovery: Application 1 Marketing and Sales Promotion Let the rule discovered be {Bagels, } {Potato Chips} Potato Chips as consequent: Can be used to determine what should be done to boost its sales. Bagels in the antecedent: Can be used to see which products would be affected if the store discontinues selling bagels. Bagels in antecedent and Potato chips in consequent: Can be used to see what products should be sold with Bagels to promote sale of Potato chips!
26 Association Rule Discovery: Application 2 Supermarket shelf management Goal: To identify items that are bought together by sufficiently many customers. Approach: Process the point-of-sale data collected with barcode scanners to find dependencies among items. A classic rule: If a customer buys diaper and milk, then he is very likely to buy beer. So, don t be surprised if you find six-packs stacked next to diapers!
27 Association Rule Discovery: Application 3 Inventory Management Goal: A consumer appliance repair company wants to anticipate the nature of repairs on its consumer products and keep the service vehicles equipped with right parts to reduce on number of visits to consumer households. Approach: Process the data on tools and parts required in previous repairs at different consumer locations and discover the co-occurrence patterns.
28 Sequential Pattern Discovery: Definition Given is a set of objects, with each object associated with its own timeline of events, find rules that predict strong sequential dependencies among different events. (A B) (C) (D E) Rules are formed by first disovering patterns. Event occurrences in the patterns are governed by timing constraints. (A B) (C) (D E) <= xg >ng <= ws <= ms
29 Sequential Pattern Discovery: Examples In telecommunications alarm logs (Inverter_Problem Excessive_Line_Current) (Rectifier_Alarm) (Fire_Alarm) In point-of-sale transaction sequences Computer Bookstore: (Intro_To_Visual_C) (C++_Primer) (Perl_for_dummies,Tcl_Tk) Athletic Apparel Store: (Shoes) (Racket, Racketball) (Sports_Jacket)
30 Data Mining Tasks... Classification
31 Deviation/Anomaly Detection Detect significant deviations from normal behavior Applications: Credit Card Fraud Detection Network Intrusion Detection Typical network traffic at University level may reach over 100 million connections per day
32 Challenges of Data Mining Scalability Dimensionality Complex and Heterogeneous Data Data Quality Data Ownership and Distribution Privacy Preservation Streaming Data
Introduction of Information Visualization and Visual Analytics. Chapter 4. Data Mining
Introduction of Information Visualization and Visual Analytics Chapter 4 Data Mining Books! P. N. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining. First Edition, ISBN-13: 978-0321321367, 2005.
Quick Introduction of Data Mining Techniques
Quick Introduction of Data Mining Techniques *Sources partially from Introduction to Data Mining, by P.-N. Tan, M. Steinbach, V. Kumar, Addison-Wesley, 2005. Main Data Mining Techniques Link Analysis Associations
DATA MINING - 1DL105, 1Dl111
1 DATA MINING - 1DL105, 1Dl111 Fall 2006 An introductory class in data mining http://www.it.uu.se/edu/course/homepage/infoutv/ht06 Kjell Orsborn Uppsala Database Laboratory Department of Information Technology,
Data Mining. Yeow Wei Choong Anne Laurent
Data Mining Yeow Wei Choong Anne Laurent Why Mine Data? Commercial Viewpoint Lots of data is being collected and warehoused Web data, e-commerce purchases at department/ grocery stores Bank/Credit Card
Marta Zorrilla Universidad de Cantabria
Tipos de problemas Marta Zorrilla Universidad de Cantabria Slides from Tan, P., Steinbach, M., Kumar, V. Introduction to data mining. Pearson Prentice Hall. 2006 Data Mining Tasks Prediction Methods Use
Data Mining: Introduction
Data Mining: Introduction Introducing the course How the course is organized How students are evaluated Deadlines Data Mining [Chapt. 1 of course book] What is it about? The KDD process Relations to other
Foundations of Artificial Intelligence. Introduction to Data Mining
Foundations of Artificial Intelligence Introduction to Data Mining Objectives Data Mining Introduce a range of data mining techniques used in AI systems including : Neural networks Decision trees Present
Introduction to Artificial Intelligence G51IAI. An Introduction to Data Mining
Introduction to Artificial Intelligence G51IAI An Introduction to Data Mining Learning Objectives Introduce a range of data mining techniques used in AI systems including : Neural networks Decision trees
CSE4334/5334 Data Mining Lecturer 2: Introduction to Data Mining. Chengkai Li University of Texas at Arlington Spring 2016
CSE4334/5334 Data Mining Lecturer 2: Introduction to Data Mining Chengkai Li University of Texas at Arlington Spring 2016 Big Data http://dilbert.com/strip/2012-07-29 Big Data http://www.ibmbigdatahub.com/infographic/four-vs-big-data
Data Mining on Social Networks. Dionysios Sotiropoulos Ph.D.
Data Mining on Social Networks Dionysios Sotiropoulos Ph.D. 1 Contents What are Social Media? Mathematical Representation of Social Networks Fundamental Data Mining Concepts Data Mining Tasks on Digital
Big Data. Introducción. Santiago González <[email protected]>
Big Data Introducción Santiago González Contenidos Por que BIG DATA? Características de Big Data Tecnologías y Herramientas Big Data Paradigmas fundamentales Big Data Data Mining
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca
Clustering Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 Cluster Analysis What is Datamining? Cluster Analysis 2 K-means 3 Hierarchical Clustering What is Datamining?
Business Intelligence and Data Mining
Business Intelligence and Data Mining Dr. Hui Xiong Rutgers University Learning Objectives Understand the need for business intelligence systems. Know the characteristics of reporting systems. Know the
Introduction to Data Mining
Bioinformatics Ying Liu, Ph.D. Laboratory for Bioinformatics University of Texas at Dallas Spring 2008 Introduction to Data Mining 1 Motivation: Why data mining? What is data mining? Data Mining: On what
Data Mining. Introduction to Modern Information Retrieval from Databases and the Web. Administrivia
Administrivia Data Mining Introduction to Modern Information Retrieval from Databases and the Web Instructor: Kostis Sagonas (MIC, Hus 1, 352) Course home page: http://user.it.uu.se/~kostis/teaching/dm-05/
Data Mining and Machine Learning in Bioinformatics
Data Mining and Machine Learning in Bioinformatics PRINCIPAL METHODS AND SUCCESSFUL APPLICATIONS Ruben Armañanzas http://mason.gmu.edu/~rarmanan Adapted from Iñaki Inza slides http://www.sc.ehu.es/isg
not possible or was possible at a high cost for collecting the data.
Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their day-to-day
Example application (1) Telecommunication. Lecture 1: Data Mining Overview and Process. Example application (2) Health
Lecture 1: Data Mining Overview and Process What is data mining? Example applications Definitions Multi disciplinary Techniques Major challenges The data mining process History of data mining Data mining
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
Hexaware E-book on Predictive Analytics
Hexaware E-book on Predictive Analytics Business Intelligence & Analytics Actionable Intelligence Enabled Published on : Feb 7, 2012 Hexaware E-book on Predictive Analytics What is Data mining? Data mining,
Lecture 6 - Data Mining Processes
Lecture 6 - Data Mining Processes Dr. Songsri Tangsripairoj Dr.Benjarath Pupacdi Faculty of ICT, Mahidol University 1 Cross-Industry Standard Process for Data Mining (CRISP-DM) Example Application: Telephone
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
Data Mining System, Functionalities and Applications: A Radical Review
Data Mining System, Functionalities and Applications: A Radical Review Dr. Poonam Chaudhary System Programmer, Kurukshetra University, Kurukshetra Abstract: Data Mining is the process of locating potentially
Mining Big Data. Pang-Ning Tan. Associate Professor Dept of Computer Science & Engineering Michigan State University
Mining Big Data Pang-Ning Tan Associate Professor Dept of Computer Science & Engineering Michigan State University Website: http://www.cse.msu.edu/~ptan Google Trends Big Data Smart Cities Big Data and
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
Data Mining and Exploration. Data Mining and Exploration: Introduction. Relationships between courses. Overview. Course Introduction
Data Mining and Exploration Data Mining and Exploration: Introduction Amos Storkey, School of Informatics January 10, 2006 http://www.inf.ed.ac.uk/teaching/courses/dme/ Course Introduction Welcome Administration
Data Mining Techniques
15.564 Information Technology I Business Intelligence Outline Operational vs. Decision Support Systems What is Data Mining? Overview of Data Mining Techniques Overview of Data Mining Process Data Warehouses
Transforming the Telecoms Business using Big Data and Analytics
Transforming the Telecoms Business using Big Data and Analytics Event: ICT Forum for HR Professionals Venue: Meikles Hotel, Harare, Zimbabwe Date: 19 th 21 st August 2015 AFRALTI 1 Objectives Describe
http://datamining.rutgers.edu Financial Fraud Detection and Prevention with Data Mining Techniques Professor Hui Xiong Rutgers Business School
Financial Fraud Detection and Prevention with Data Mining Techniques Professor Hui Xiong Rutgers Business School What is Financial Fraud General Violation of Good Behavior in regards to Financial Issues
MBA 8473 - Data Mining & Knowledge Discovery
MBA 8473 - Data Mining & Knowledge Discovery MBA 8473 1 Learning Objectives 55. Explain what is data mining? 56. Explain two basic types of applications of data mining. 55.1. Compare and contrast various
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
Data Warehousing and Data Mining for improvement of Customs Administration in India. Lessons learnt overseas for implementation in India
Data Warehousing and Data Mining for improvement of Customs Administration in India Lessons learnt overseas for implementation in India Participants Shailesh Kumar (Group Leader) Sameer Chitkara (Asst.
131-1. Adding New Level in KDD to Make the Web Usage Mining More Efficient. Abstract. 1. Introduction [1]. 1/10
1/10 131-1 Adding New Level in KDD to Make the Web Usage Mining More Efficient Mohammad Ala a AL_Hamami PHD Student, Lecturer m_ah_1@yahoocom Soukaena Hassan Hashem PHD Student, Lecturer soukaena_hassan@yahoocom
Data Mining is sometimes referred to as KDD and DM and KDD tend to be used as synonyms
Data Mining Techniques forcrm Data Mining The non-trivial extraction of novel, implicit, and actionable knowledge from large datasets. Extremely large datasets Discovery of the non-obvious Useful knowledge
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
Data Warehousing and elements of Data Mining
Data Warehousing and elements of Data Mining prof. e-mail: [email protected] Dipartimento di Matematica e Informatica Università di Udine - Italy Motivation: Necessity is the Mother of Invention
Data Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland
Data Mining and Knowledge Discovery in Databases (KDD) State of the Art Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland 1 Conference overview 1. Overview of KDD and data mining 2. Data
Chapter 2 Literature Review
Chapter 2 Literature Review 2.1 Data Mining The amount of data continues to grow at an enormous rate even though the data stores are already vast. The primary challenge is how to make the database a competitive
Big Data Analytics. What to Do with Big Data? V. CHRISTOPHIDES. Department of Computer Science University of Crete. Data contains value and knowledge
Big Data Analytics V. CHRISTOPHIDES Department of Computer Science University of Crete 1 What to Do with Big Data? Data contains value and knowledge But to extract the knowledge data needs to be Stored
What is Data Mining? Data Mining (Knowledge discovery in database) Data mining: Basic steps. Mining tasks. Classification: YES, NO
What is Data Mining? Data Mining (Knowledge discovery in database) Data Mining: "The non trivial extraction of implicit, previously unknown, and potentially useful information from data" William J Frawley,
Data Mining: An Introduction
Data Mining: An Introduction Michael J. A. Berry and Gordon A. Linoff. Data Mining Techniques for Marketing, Sales and Customer Support, 2nd Edition, 2004 Data mining What promotions should be targeted
Lluis Belanche + Alfredo Vellido. Intelligent Data Analysis and Data Mining
Lluis Belanche + Alfredo Vellido Intelligent Data Analysis and Data Mining a.k.a. Data Mining II Office 319, Omega, BCN EET, office 107, TR 2, Terrassa [email protected] skype, gtalk: avellido Tels.:
A STUDY OF DATA MINING ACTIVITIES FOR MARKET RESEARCH
205 A STUDY OF DATA MINING ACTIVITIES FOR MARKET RESEARCH ABSTRACT MR. HEMANT KUMAR*; DR. SARMISTHA SARMA** *Assistant Professor, Department of Information Technology (IT), Institute of Innovation in Technology
ECLT 5810 E-Commerce Data Mining Techniques - Introduction. Prof. Wai Lam
ECLT 5810 E-Commerce Data Mining Techniques - Introduction Prof. Wai Lam Data Opportunities Business infrastructure have improved the ability to collect data Virtually every aspect of business is now open
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 by Tan, Steinbach, Kumar 1 What is Cluster Analysis? Finding groups of objects such that the objects in a group will
Data Mining Analytics for Business Intelligence and Decision Support
Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing
Outline. What is Big data and where they come from? How we deal with Big data?
What is Big Data Outline What is Big data and where they come from? How we deal with Big data? Big Data Everywhere! As a human, we generate a lot of data during our everyday activity. When you buy something,
SPATIAL DATA CLASSIFICATION AND DATA MINING
, pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal
Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI
Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI Yudho Giri Sucahyo, Ph.D, CISA ([email protected]) Faculty of Computer Science, University of Indonesia Objectives
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Introduction to Data Mining
Introduction to Data Mining a.j.m.m. (ton) weijters (slides are partially based on an introduction of Gregory Piatetsky-Shapiro) Overview Why data mining (data cascade) Application examples Data Mining
Mobile Phone APP Software Browsing Behavior using Clustering Analysis
Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Mobile Phone APP Software Browsing Behavior using Clustering Analysis
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar
OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP
Data Warehousing and End-User Access Tools OLAP and Data Mining Accompanying growth in data warehouses is increasing demands for more powerful access tools providing advanced analytical capabilities. Key
Data Mining for Fun and Profit
Data Mining for Fun and Profit Data mining is the extraction of implicit, previously unknown, and potentially useful information from data. - Ian H. Witten, Data Mining: Practical Machine Learning Tools
IT and CRM A basic CRM model Data source & gathering system Database system Data warehouse Information delivery system Information users
1 IT and CRM A basic CRM model Data source & gathering Database Data warehouse Information delivery Information users 2 IT and CRM Markets have always recognized the importance of gathering detailed data
2.1. Data Mining for Biomedical and DNA data analysis
Applications of Data Mining Simmi Bagga Assistant Professor Sant Hira Dass Kanya Maha Vidyalaya, Kala Sanghian, Distt Kpt, India (Email: [email protected]) Dr. G.N. Singh Department of Physics and
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Data Mining: Concepts and Techniques
Data Mining: Concepts and Techniques Chapter 1 Introduction SURESH BABU M ASST PROF IT DEPT VJIT 1 Chapter 1. Introduction Motivation: Why data mining? What is data mining? Data Mining: On what kind of
Using Data Mining and Machine Learning in Retail
Using Data Mining and Machine Learning in Retail Omeid Seide Senior Manager, Big Data Solutions Sears Holdings Bharat Prasad Big Data Solution Architect Sears Holdings Over a Century of Innovation A Fortune
TOWARD A DISTRIBUTED DATA MINING SYSTEM FOR TOURISM INDUSTRY
TOWARD A DISTRIBUTED DATA MINING SYSTEM FOR TOURISM INDUSTRY Danubianu Mirela Stefan cel Mare University of Suceava Faculty of Electrical Engineering andcomputer Science 13 Universitatii Street, Suceava
from Larson Text By Susan Miertschin
Decision Tree Data Mining Example from Larson Text By Susan Miertschin 1 Problem The Maximum Miniatures Marketing Department wants to do a targeted mailing gpromoting the Mythic World line of figurines.
1. Introduction to Data Mining
1. Introduction to Data Mining Road Map What is data mining Steps in data mining process Data mining methods and subdomains Summary 2 Definition ([Liu 11]) Data mining is also called Knowledge Discovery
The Data Mining Process
Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
Data Mining: Overview. What is Data Mining?
Data Mining: Overview What is Data Mining? Recently * coined term for confluence of ideas from statistics and computer science (machine learning and database methods) applied to large databases in science,
Machine Learning and Data Mining. Fundamentals, robotics, recognition
Machine Learning and Data Mining Fundamentals, robotics, recognition Machine Learning, Data Mining, Knowledge Discovery in Data Bases Their mutual relations Data Mining, Knowledge Discovery in Databases,
Machine Learning, Data Mining, and Knowledge Discovery: An Introduction
Machine Learning, Data Mining, and Knowledge Discovery: An Introduction AHPCRC Workshop - 8/17/10 - Dr. Martin Based on slides by Gregory Piatetsky-Shapiro from Kdnuggets http://www.kdnuggets.com/data_mining_course/
Chapter 20: Data Analysis
Chapter 20: Data Analysis Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 20: Data Analysis Decision Support Systems Data Warehousing Data Mining Classification
Data Mining Classification: Decision Trees
Data Mining Classification: Decision Trees Classification Decision Trees: what they are and how they work Hunt s (TDIDT) algorithm How to select the best split How to handle Inconsistent data Continuous
Data Mining Introduction
Data Mining Introduction Organization Lectures Mondays and Thursdays from 10:30 to 12:30 Lecturer: Mouna Kacimi Office hours: appointment by email Labs Thursdays from 14:00 to 16:00 Teaching Assistant:
Data Warehousing and Data Mining
Data Warehousing and Data Mining Winter Semester 2010/2011 Free University of Bozen, Bolzano DW Lecturer: Johann Gamper [email protected] DM Lecturer: Mouna Kacimi [email protected] http://www.inf.unibz.it/dis/teaching/dwdm/index.html
A Review of Data Mining Techniques
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,
Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov
Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social
International Journal of World Research, Vol: I Issue XIII, December 2008, Print ISSN: 2347-937X DATA MINING TECHNIQUES AND STOCK MARKET
DATA MINING TECHNIQUES AND STOCK MARKET Mr. Rahul Thakkar, Lecturer and HOD, Naran Lala College of Professional & Applied Sciences, Navsari ABSTRACT Without trading in a stock market we can t understand
Session 10 : E-business models, Big Data, Data Mining, Cloud Computing
INFORMATION STRATEGY Session 10 : E-business models, Big Data, Data Mining, Cloud Computing Tharaka Tennekoon B.Sc (Hons) Computing, MBA (PIM - USJ) POST GRADUATE DIPLOMA IN BUSINESS AND FINANCE 2014 Internet
Use of Data Mining in the field of Library and Information Science : An Overview
512 Use of Data Mining in the field of Library and Information Science : An Overview Roopesh K Dwivedi R P Bajpai Abstract Data Mining refers to the extraction or Mining knowledge from large amount of
Data Warehousing and Data Mining. A.A. 04-05 Datawarehousing & Datamining 1
Data Warehousing and Data Mining A.A. 04-05 Datawarehousing & Datamining 1 Outline 1. Introduction and Terminology 2. Data Warehousing 3. Data Mining Association rules Sequential patterns Classification
Analyzing Customer Behavior using Data Mining Techniques: Optimizing Relationships with Customer
Analyzing Customer Behavior using Data Mining Techniques: Optimizing Relationships with Customer Aditya Kumar Gupta Lecturer, School of Management Sciences, Varanasi [email protected] Chakit Gupta
Data Mining: Motivations and Concepts
POLYTECHNIC UNIVERSITY Department of Computer Science / Finance and Risk Engineering Data Mining: Motivations and Concepts K. Ming Leung Abstract: We discuss here the need, the goals, and the primary tasks
Using multiple models: Bagging, Boosting, Ensembles, Forests
Using multiple models: Bagging, Boosting, Ensembles, Forests Bagging Combining predictions from multiple models Different models obtained from bootstrap samples of training data Average predictions or
An Overview of Database management System, Data warehousing and Data Mining
An Overview of Database management System, Data warehousing and Data Mining Ramandeep Kaur 1, Amanpreet Kaur 2, Sarabjeet Kaur 3, Amandeep Kaur 4, Ranbir Kaur 5 Assistant Prof., Deptt. Of Computer Science,
Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1
Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints
DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM
INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM M. Mayilvaganan 1, S. Aparna 2 1 Associate
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
Software Engineering for Big Data. CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo
Software Engineering for Big Data CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo Big Data Big data technologies describe a new generation of technologies that aim
Concept and Applications of Data Mining. Week 1
Concept and Applications of Data Mining Week 1 Topics Introduction Syllabus Data Mining Concepts Team Organization Introduction Session Your name and major The dfiiti definition of dt data mining i Your
Chapter ML:XI. XI. Cluster Analysis
Chapter ML:XI XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster
Healthcare Measurement Analysis Using Data mining Techniques
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik
Data Mining. Knowledge Discovery, Data Warehousing and Machine Learning Final remarks. Lecturer: JERZY STEFANOWSKI
Data Mining Knowledge Discovery, Data Warehousing and Machine Learning Final remarks Lecturer: JERZY STEFANOWSKI Email: [email protected] Data Mining a step in A KDD Process Data mining:
Sanjeev Kumar. contribute
RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
