A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data


 Aileen Rich
 1 years ago
 Views:
Transcription
1 A Comparative Study of the Pickup Method and its Variations Using a Simulated Hotel Reservation Data Athanasius Zakhary, Neamat El Gayar Faculty of Computers and Information Cairo University, Giza, Egypt Amir F. Atiya Dept Computer Engineering Cairo University, Giza, Egypt Abstract Detailed forecasts are major inputs to modern Hotel Revenue Management Systems. Accurate forecasts are crucial to improve rate and availability recommendations for rooms. The data used for hotel demand forecasting are based on current booking activities (Reservations), historical information regarding daily arrivals or rooms sold. Bookings are recent data that if used adequately can make the forecasting process more responsive to demand shifts. Very little work has been done on forecasting techniques using reservation data. In this paper, we examine in more details a popular forecasting model that uses reservation data, referred to in the literature as the pickup method. In particular, we present a new framework for the pickup technique with 8 different variations and compare the results of these variations using a variety of simulated hotel reservations data. Keywords: Pickup, Reservationbased Forecasting. 1 Introduction Hotel Revenue Management (RM) is commonly practiced in the hotel industry to help hotels decide on room rates and allocation. Detailed and accurate forecasts are crucial to good RM [1]. Inaccurate predictions lead to suboptimal decisions about the rate and availability recommendations produced by the RM system, that in turn have a negative effect on hotel revenue [2]. Accurate forecasting can also help hotels in better staffing, purchasing and budgeting decisions [3]. RM forecasting methods fall into one of three types: historical booking models, advanced booking models and 15 combined models. Historical booking models consider only the final number of rooms or arrivals on a particular stay night. Advanced booking models include only the buildup of reservations over time for a particular stay night. Combined models use either regression or a weighted average of historical models and advanced booking models to develop forecasts [1]. Bookings in hotels occur over an extended period of time. Hotels may take reservations for rooms days, weeks or even months in advance. This so called partial booking data, while incomplete, can be very useful in forecasting [4]. Particularly, partial booking data are recent data that can reflect demand shifts [5]. The Pickup forecasting model is a popular advanced booking model which exploits the unique characteristics of reservation data instead of relying only on complete arrival histories to make better forecasts. The main idea of using the pickup method is to estimate the increments of bookings (to come) and then aggregate these increments to obtain a forecast of total demand to come [4]. Pickup is defined as the number of reservations picked up from a given point of time to a different point of time over the booking process [1]. In spite of the fact that the pickup technique is widely applied in many Revenue Management applications, very little work has been found to discuss the pickup method in details. Besides, no detailed comparisons on hotel reservations data were reported using different variations of the pickup method. This work presents a new framework for the pickup technique with its different variations and compares the results of these variations using a variety of simulated hotel reservations data. The main goal of using the pickup method in this paper is to forecast the final number of arrivals for every day in the future within a given horizon. This future may mean the next month, or any certain period of time. This paper is organized as follows: In Section (2), the different variations of the pickup method are described. Section (3) presents the data used, experiments conducted
2 and the error measures used. In Section (4) results are summarized and discussed. Finally, concluding remarks are given in Section (5). 2 Variations of the Pickup Method In this section we present our view of how different pickup method variations can be implemented. Variations can be classified into three distinct groups that identify how data is preprocessed, what portion of the reservation data is used and finally what technique to use for forecasting the increments. Accordingly, we can group pickup method into: Additive or Multiplicative, Classical or Advanced and using or Weighted forecasting techniques. A single choice is to be selected from each of the above mentioned categories. Each group and its different alternatives are discussed in more details in the following subsections. Table (1) shows a typical Cumulative Booking Matrix that was captured during the May 5th. Question marks were placed in the cells of the bookings to come. Each row in this matrix represents the buildup of bookings for the corresponding arrival date. 2.1 Additive vs. Multiplicative Pickup Variation Additive pickup techniques assume the number of reservations on hand at a particular day before arrival is independent of the number of rooms sold and hence add the current bookings to average pickup to arrive at final bookings [6]. On the other hand, the multiplicative pickup techniques assume future bookings are proportional to current bookings and therefore to get the final forecast, current bookings are multiplied by the average pickup ratio [4].We outline the difference between the additive and multiplicative Pickup techniques in more details below The Additive Technique To implement the additive pickup technique, the cumulative reservation data (Table (1)) is processed as follows. Each column is subtracted from the column to the left. The result is called the incremental or net additive booking table C Add C Add i,j = C i,j C i,j+1,j = 0,1,...,h. (1) where: C i,j : the number in a cell in row i (arrival date) and column j (days before) in the Cumulative Booking Matrix. C i,h+1 is implicitly assumed to be 0. Table (2). shows the resulting incremental additive booking table C Add. The final number of arrivals in a certain day in the future can then be calculated by summing up the values of the corresponding row. where: A i = h j=0 C Add i,j. (2) 16 A i : the final number of arrivals in day i. Ci,j Add : the number in the cell in row i and column j of the net additive booking table. h: the length of the booking horizon The Multiplicative Technique For the multiplicative pickup technique, each column in the cumulative reservation data (Table (1)) is divided by the column to the right to obtain the incremental or net multiplicative booking table C Mult as shown in Table (3). Again this procedure can be described mathematically as follows: C Mult i,j = C i,j /C i,j+1,j = 0,1,...,h. (3) where: C i,j : the number in a cell in row i (arrival date) and column j (days before) in the Cumulative Booking Matrix. C i,h+1 is implicitly assumed to be 1. The obvious limitation of the multiplicative formula (3) is that it can not be used if one or more C i,j =0. This event is not uncommon. The final number of arrivals in a certain day in the future can be calculated by multiplying the values of the corresponding row. where: A i = h j=0 C Mult i,j. (4) A i : the final number of arrivals in day i. Ci,j Mult : the number in the cell in row i and column j of the net multiplicative booking table. h: the length of the booking horizon. 2.2 Classical vs. Advanced Pickup Method In the classical pickup method, only the booking data for completed booking curves are used in the forecasting process [1]. In the above tables, only booking data of days until day 4 is used in the forecasting phase. Incomplete booking data of days from May 5th and later will not be used in the forecasting phase. The Classical pickup method hence ignores available information of incomplete arrival dates that might be useful[6]. The Advanced pickup method, on the other hand, uses all the available complete and incomplete booking data [1] in the forecasting phase and hence uses reservation data of arrival dates that still did not occur. 2.3 vs. Weighted Pickup Method The goal of the pickup method is to ultimately estimate the increments of the bookings for all the days to come in
3 Table 1: Cumulative Booking Matrix Arrival date Number of days before the arrival date ? ?? ??? ???? ????? ?????? Table 2: Net Additive Booking Matrix Arrival date Number of days before the arrival date ? ?? ??? ???? ????? ?????? Table 3: Net multiplicative Booking Matrix Arrival date Number of days before the arrival date ? ? ?? ??? ???? ??? 17???
4 order to estimate the total arrivals in the future [4]. This corresponds to forecasting all the unknown values (indicated by question marks) in Table (1) for all the days in the forecasting period. The forecasting phase proceeds column by column according to the following equation: where: f j = e ω ij C ij,j = 0,1,...,h. (5) i=s s: is the index of the start value in the column to be used. It represents the date of the first day we have reservation data for. e: is the index of the end value. In the classical pickup, e is constant and it represents the index of the most recent completed arrival date. For the advanced pickup, e represents the index of the last known value in the current column. C ij : a value in a cell in Table (2) or Table (3) that corresponds to row (arrival date) i and column (days before) j. ω ij : is the weight that represents the degree of influence of C ij on the forecast. If the weights of all the elements C ij are set to be equal; then the forecasting technique would correspond to the simple average method. f j : the forecasted value used to estimate the unknown values in column j. It is only possible to fill the first unknown value, then use it with the previously known cells above it to forecast the next cell underneath it and so on. This will make no difference if the simple averaging is used. The pickup variations existing in the literature mainly use two types of forecasting techniques: and Weighted. We suggest the use of other forecasting techniques. Every column can be considered a onedimensional time series that contains some unknown values. smoothing, Holt s and Winters methods are good candidates as forecasting techniques. A thorough, state of the art survey on these methods can be found in[7]. Figure (1) illustrates the different proposed pickup method combinations. 3 Data and Experiments Reservation pattern in a certain hotel is affected by many components. A hotel reservation data simulator was built to model these components by different distributions and adds a random part to represent the uncertainty. Among these components: Trend, seasonality, booking curve, cancellation dynamics and length of stay. Trend is repre 18 sented by a randomized exponential distribution. Length of stay was modeled by a normal distribution with mean Classical Additive Pickup Methods Advanced Classical Multiplicative Advanced Figure 1: Proposed Pickup method variations equal to the typical most frequent length of stay which is 4 and 3 as variance. High season peaks are represented by weighted sums of Gaussian functions. The width of the Gaussian function represents the duration of the high season period, and the weight (or height) represents relative strength of arrivals during that period. A function consisting of a weighted sum of two gamma functions was used to model booking curves. This function, after being adjusted for seasonality, gives the rate of bookings as a function of time before arrival. The cancellation rate was modeled by an exponentially decreasing curve. Bernoulli drawings are used to draw actual bookings and cancellations according to the values of the booking curve (or rate) and the cancellation rate. Different hotel reservations datasets were generated by running the simulator with different parameters. Each dataset generated contains the cumulative booking matrix which holds the daily buildup of bookings for four consecutive years. The booking horizon was set to 60 days, i.e. guests can make reservations only during the 60 days period before the corresponding arrival date. The outputs were evaluated and reviewed by a domain expert who has accepted the output of three datasets based on the closeness of the outputs to actual hotels data. The three datasets were used to compare different variations of the pickup method explained above. The goal of the experiments conducted in this research is to compare the relative performance of the different pickup method variations along different step ahead forecasting. Experiments were conducted on every dataset separately and for different steps ahead (7, 15, 30, and 60). For each dataset, one year of booking data was assumed to be available. The current day was set to be the first day after the first year, then the final arrivals for a certain step ahead interval was forecasted. The current day was shifted a week and the next interval was forecasted and so on until the end of the dataset. Different error measures were calculated and tabulated. Details of the error measures calculated are described next. 3.1 Error Measures Our comparative study uses 6 different error measures to assess the performance of the different implemented pickup variations. Let
5 1. A t : The actual value in the time series at time t. 2. F t : The forecasted value in the time series at time t. 3. n : The length of the time series. The following error measures are calculated: Mean Absolute Error (MAE): Measures average absolute deviation of forecast from the actual. MAE = 1 n A t F t. (6) n Mean Absolute Percentage Error (MAPE): The average absolute percentage of errors to the actual values. Accuracy is expressed as a percentage. MAPE = 1 n A t F t n A t. (7) Mean Square Error (MSE): The average of the square of the difference between the actual and the forecast. MSE = 1 n (A t F t ) 2. (8) n Root Mean Square Error (RMSE): Expresses the variance plus the bias of the estimator Standard Squared Error: where RMSE = V + B 2 (9) B = 1 n n (A t F t ) (10) [ V = 1 n ] A t F t 2 nb 2. (11) n 1 Minimum Absolute Error Ratio (MAE Ratio): Calculates the number of times each variation had the lowest absolute error, along all the forecasted days, divided by the number of the whole forecasted arrival points. In case of a tie, the counters of all the variations with the minimum absolute error are incremented by one. Root Mean Square Error Ratio (RMSE Ratio): This is a customized error measure. It is calculated as follows: 1. For every variation, generate a RMSE buffer with a length equals the current step ahead. 2. Fill the first cell in that buffer with RMSE for the first numbers in all the forecasted steps ahead calculated in the current dataset. 3. Repeat until all the cells of the buffer are full Results and Discussion As mentioned before, we conducted our experiments on three datasets (Dataset1, Dataset2, Dataset3). For every dataset we calculated 6 different error measures for 8 different combination of the pickup method. We repeated the experiments for the different steps ahead (7, 15, 30, 60). Tables (4 7) list the results for Dataset1. Table (8), summarize the results obtained for all datasets. In this table we ordered the best 3 variations grouped by the Dataset and the step ahead. Choosing the best 3 variations was based on the corresponding values of the different error measures. Studying Table (8), we can conclude the following: Multiplicative variations seem to outperform Additive variations in taking the first place; while additive variations generally appeared to be more robust. Classical pickup variations outperform advanced variations. Advanced variations failed to appear at all in this table and have shown poor performance. Although exponential smoothing variations are mostly taking the lead and appear much more than simple average variations, error measures of simple average variations are apparently comparable with the exponential variations. 5 Conclusions and Future Work In this paper, we have presented 8 variations of the pickup method. Experiments were conducted on 3 simulated datasets for hotel reservations data. Each variation was evaluated with 6 different error measures and for different steps ahead forecasts. Our study shows that classical pickup variations have outperformed the advanced pickup methods. On the other hand the Multiplicative, classical, Smoothing variation has been identified as the best technique. In the future, we intend to use other forecasting techniques like Winters and Holt s method. We also plan to investigate other reservation based forecasting models and compare their performance to the pickup method. Combining the results of different pickup variations is to be investigated. It would also be valuable to compare the performance of the pickup method to models that rely on historical data only, not taking the reservation information into account. Above all, we intend to verify the pickup method variations with real data obtained from real reservations. Acknowledgements This work is part of the Data Mining for Improving Tourism Revenue in Egypt research project within the Egyptian Data Mining and Computer Modeling Center of Excellence. We also would like to acknowledge the useful discussions with Dr Hisham ElShishiny ( IBM Center for Advanced Studies in Cairo) and the continuous effort and suggestions of Professor Ali Hadi (American University of
6 Table 4: Error measures for Dataset: 1, step ahead: 7 days Additive, classical, simple Additive, classical, Smoothing Additive, Advanced, simple Additive, Advanced, smoothing Multiplicative, classical, simple Multiplicative, classical, Smoothing Multiplicative, Advanced, simple Multiplicative, Advanced, Smoothing Table 5: Error measures for Dataset: 1, step ahead: 15 days Additive, classical, simple Additive, classical, Smoothing Additive, Advanced, simple Additive, Advanced, smoothing Multiplicative, classical, simple Multiplicative, classical, Smoothing Multiplicative, Advanced, simple Multiplicative, Advanced, Smoothing Table 6: Error measures for Dataset: 1, step ahead: 30 days Additive, classical, simple Additive, classical, Smoothing Additive, Advanced, simple Additive, Advanced, smoothing Multiplicative, classical, simple Multiplicative, classical, Smoothing Multiplicative, Advanced, simple Multiplicative, Advanced, Smoothing Table 7: Error measures for Dataset: 1, step ahead: 60 days Additive, classical, simple Additive, classical, Smoothing Additive, Advanced, simple Additive, Advanced, smoothing Multiplicative, classical, simple Multiplicative, classical, Smoothing Multiplicative, Advanced, simple Multiplicative, Advanced, Smoothing
7 Table 8: Summary of the winning variations step ahead Dataset 1 Dataset 2 Dataset 3 7 Days Mul, Clas, Exp Mul, Clas, Exp Add, Clas, Sim Add, Clas, Exp Mul, Clas, Sim Add, Clas, Exp Add, Clas, Sim Add, Clas, Exp Mul, Clas,Exp 15 Days Add, Clas, Exp Mul, Clas, Exp Mul, Clas, Exp Add, Clas, Sim Add, Clas, Exp Mul, Clas, Sim Mul, Clas,Exp Add, Clas, Sim Add, Clas, Sim 30 Days Add, Clas, Exp Mul, Clas, Exp Mul, Clas, Exp Mul, Clas, Exp Add, Clas, Exp Mul, Clas, Sim Add, Clas, Sim Mul, Clas, Sim Add, Clas, Exp 60 Days Add, Clas, Exp Mul, Clas, Exp Add, Clas, Exp Add, Clas, Sim Add, Clas, Exp Mul, Clas,Exp Mul, Clas,Exp Add, Clas, Sim Add, Clas, Sim Cairo and Cornell University) to improve the work in this paper. References [1] L. R. Weatherford and S. E. Kimes, A comparison of forecasting methods for hotel revenue management, International Journal of Forecasting, vol. 99, pp , January [2] U. M.B. A. Ingold and I. Y. (Eds.), Yield Management. Continuum, 2nd ed., [3] M. B. Ghalia and P. Wang, Intelligent system to support judgmental business forecasting the case of estimating hotel room demand, IEEE Transaction on fuzzy systems, vol. 8, August [4] K. T. Talluri and G. J. V. Ryzin, The Theory and Practice of Revenue Management. Springer Science+Buisness Media, Inc [5] E. L Heureux, A new twist in forecasting shortterm passenger pickup, in Proceedings of the 26th Annual AGIFORS Symposium, [6] R. H. Zeni, Improved Forecast Accuracy in Airline Revenue Management by Unconstraining Demand Estimates from Censored Data. Ph.d. diss., Graduate SchoolNewark Rutgers, The State University of New Jersey, October [7] E. S. Gardner, smoothing: The state of the art Ű part II, June
A proposed Decision Support Model for Hotel Revenue Management
A proposed Decision Support Model for Hotel Revenue Management Neamat El Gayar *, Abdeltawab M.A. Hendawi ** Faculty of Computers and Information University of Cairo, Giza, Egypt * hmg@link.net, ** abdeltawab_fci@yahoo.com
More informationForecasting RevPAR in a Declining Market: An Application of Time Series Forecasting Techniques to U.S. Weekly RevPAR Data
Forecasting RevPAR in a Declining Market: An Application of Time Series Forecasting Techniques to U.S. Weekly RevPAR Data Barry A.N. Bloom Elsa Correa Sung Hun Shawn Kim Barbara Koukol Department of Apparel,
More informationCross Validation. Dr. Thomas Jensen Expedia.com
Cross Validation Dr. Thomas Jensen Expedia.com About Me PhD from ETH Used to be a statistician at Link, now Senior Business Analyst at Expedia Manage a database with 720,000 Hotels that are not on contract
More informationTime series Forecasting using HoltWinters Exponential Smoothing
Time series Forecasting using HoltWinters Exponential Smoothing Prajakta S. Kalekar(04329008) Kanwal Rekhi School of Information Technology Under the guidance of Prof. Bernard December 6, 2004 Abstract
More informationOBJECTIVE ASSESSMENT OF FORECASTING ASSIGNMENTS USING SOME FUNCTION OF PREDICTION ERRORS
OBJECTIVE ASSESSMENT OF FORECASTING ASSIGNMENTS USING SOME FUNCTION OF PREDICTION ERRORS CLARKE, Stephen R. Swinburne University of Technology Australia One way of examining forecasting methods via assignments
More informationImproved Forecast Accuracy in Airline Revenue Management by Unconstraining Demand Estimates from Censored Data by Richard H. Zeni
Improved Forecast Accuracy in Airline Revenue Management by Unconstraining Demand Estimates from Censored Data by Richard H. Zeni ISBN: 1581121415 DISSERTATION.COM USA 2001 Improved Forecast Accuracy
More informationDemand forecasting & Aggregate planning in a Supply chain. Session Speaker Prof.P.S.Satish
Demand forecasting & Aggregate planning in a Supply chain Session Speaker Prof.P.S.Satish 1 Introduction PEMPEMM2506 Forecasting provides an estimate of future demand Factors that influence demand and
More informationCh.3 Demand Forecasting.
Part 3 : Acquisition & Production Support. Ch.3 Demand Forecasting. Edited by Dr. Seung Hyun Lee (Ph.D., CPL) IEMS Research Center, Email : lkangsan@iems.co.kr Demand Forecasting. Definition. An estimate
More informationSINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND
SINGULAR SPECTRUM ANALYSIS HYBRID FORECASTING METHODS WITH APPLICATION TO AIR TRANSPORT DEMAND K. Adjenughwure, Delft University of Technology, Transport Institute, Ph.D. candidate V. Balopoulos, Democritus
More informationForecasting in supply chains
1 Forecasting in supply chains Role of demand forecasting Effective transportation system or supply chain design is predicated on the availability of accurate inputs to the modeling process. One of the
More informationIndustry Environment and Concepts for Forecasting 1
Table of Contents Industry Environment and Concepts for Forecasting 1 Forecasting Methods Overview...2 Multilevel Forecasting...3 Demand Forecasting...4 Integrating Information...5 Simplifying the Forecast...6
More informationKeywords: Dynamic pricing, Hotel room forecasting, Monte Carlo simulation, Price Elasticity, Revenue Management System
Volume 3, Issue 5, May 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Dynamic Pricing
More informationSection A. Index. Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1. Page 1 of 11. EduPristine CMA  Part I
Index Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1 EduPristine CMA  Part I Page 1 of 11 Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting
More informationAn Innovative Hotel Revenue Management System. Amir Atiya Dept Computer Engineering Cairo University
An Innovative Hotel Revenue Management System Amir Atiya Dept Computer Engineering Cairo University Project Collaborators This is an ARP project, started May 2010, under the supervision of: Dr. Mohamed
More informationUsing simulation to calculate the NPV of a project
Using simulation to calculate the NPV of a project Marius Holtan Onward Inc. 5/31/2002 Monte Carlo simulation is fast becoming the technology of choice for evaluating and analyzing assets, be it pure financial
More informationA DecisionSupport System for New Product Sales Forecasting
A DecisionSupport System for New Product Sales Forecasting ChingChin Chern, Ka Ieng Ao Ieong, LingLing Wu, and LingChieh Kung Department of Information Management, NTU, Taipei, Taiwan chern@im.ntu.edu.tw,
More informationWeb Site Visit Forecasting Using Data Mining Techniques
Web Site Visit Forecasting Using Data Mining Techniques Chandana Napagoda Abstract: Data mining is a technique which is used for identifying relationships between various large amounts of data in many
More informationAccurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios
Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios By: Michael Banasiak & By: Daniel Tantum, Ph.D. What Are Statistical Based Behavior Scoring Models And How Are
More informationA COMPARISON OF REGRESSION MODELS FOR FORECASTING A CUMULATIVE VARIABLE
A COMPARISON OF REGRESSION MODELS FOR FORECASTING A CUMULATIVE VARIABLE Joanne S. Utley, School of Business and Economics, North Carolina A&T State University, Greensboro, NC 27411, (336)3347656 (ext.
More informationShort Term Load Forecasting Using Time Series Analysis: A Case Study for Karnataka, India
ISO 91:28 Certified Volume 1, Issue 2, November 212 Short Term Load Forecasting Using Time Series Analysis: A Case Study for Karnataka, India Nataraja.C 1, M.B.Gorawar 2, Shilpa.G.N. 3, Shri Harsha.J.
More informationAdaptive DemandForecasting Approach based on Principal Components Timeseries an application of datamining technique to detection of market movement
Adaptive DemandForecasting Approach based on Principal Components Timeseries an application of datamining technique to detection of market movement Toshio Sugihara Abstract In this study, an adaptive
More informationForecasting Methods. What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes?
Forecasting Methods What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes? Prod  Forecasting Methods Contents. FRAMEWORK OF PLANNING DECISIONS....
More informationFOCUS FORECASTING IN SUPPLY CHAIN: THE CASE STUDY OF FAST MOVING CONSUMER GOODS COMPANY IN SERBIA
www.sjm06.com Serbian Journal of Management 10 (1) (2015) 317 Serbian Journal of Management FOCUS FORECASTING IN SUPPLY CHAIN: THE CASE STUDY OF FAST MOVING CONSUMER GOODS COMPANY IN SERBIA Abstract Zoran
More informationNTC Project: S01PH10 (formerly I01P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
More informationMGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal
MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims
More informationNCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
More informationDifferent Ranking of NHPP Software Reliability Growth Models with Generalised Measure and Predictability
Volume 7  No 11, November 214  wwwijaisorg Different Ranking of NHPP Software Reliability Growth Models with Generalised Measure and Predictability Nguyen HungCuong School of Information and Communication
More informationStudy & Development of Short Term Load Forecasting Models Using Stochastic Time Series Analysis
International Journal of Engineering Research and Development eissn: 2278067X, pissn: 2278800X, www.ijerd.com Volume 9, Issue 11 (February 2014), PP. 3136 Study & Development of Short Term Load Forecasting
More informationOutline: Demand Forecasting
Outline: Demand Forecasting Given the limited background from the surveys and that Chapter 7 in the book is complex, we will cover less material. The role of forecasting in the chain Characteristics of
More informationSummary. Chapter Five. Cost Volume Relations & Break Even Analysis
Summary Chapter Five Cost Volume Relations & Break Even Analysis 1. Introduction : The main aim of an undertaking is to earn profit. The cost volume profit (CVP) analysis helps management in finding out
More informationStandard Deviation Calculator
CSS.com Chapter 35 Standard Deviation Calculator Introduction The is a tool to calculate the standard deviation from the data, the standard error, the range, percentiles, the COV, confidence limits, or
More informationAnalyzing the Use of Advance Booking Curve in Forecasting Hotel Reservations
Analyzing the Use of Advance Booking Curve in Forecasting Hotel Reservations ABSTRACT. Although there is considerable interest in advance bookings model as a forecasting method in hotel industry, there
More informationA Forecasting Decision Support System
A Forecasting Decision Support System Hanaa E.Sayed a, *, Hossam A.Gabbar b, Soheir A. Fouad c, Khalil M. Ahmed c, Shigeji Miyazaki a a Department of Systems Engineering, Division of Industrial Innovation
More informationThe Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network
, pp.6776 http://dx.doi.org/10.14257/ijdta.2016.9.1.06 The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network Lihua Yang and Baolin Li* School of Economics and
More informationA Wavelet Based Prediction Method for Time Series
A Wavelet Based Prediction Method for Time Series Cristina Stolojescu 1,2 Ion Railean 1,3 Sorin Moga 1 Philippe Lenca 1 and Alexandru Isar 2 1 Institut TELECOM; TELECOM Bretagne, UMR CNRS 3192 LabSTICC;
More informationOutline. Role of Forecasting. Characteristics of Forecasts. Logistics and Supply Chain Management. Demand Forecasting
Logistics and Supply Chain Management Demand Forecasting 1 Outline The role of forecasting in a supply chain Characteristics ti of forecasts Components of forecasts and forecasting methods Basic approach
More information03 The full syllabus. 03 The full syllabus continued. For more information visit www.cimaglobal.com PAPER C03 FUNDAMENTALS OF BUSINESS MATHEMATICS
0 The full syllabus 0 The full syllabus continued PAPER C0 FUNDAMENTALS OF BUSINESS MATHEMATICS Syllabus overview This paper primarily deals with the tools and techniques to understand the mathematics
More informationJetBlue Airways Stock Price Analysis and Prediction
JetBlue Airways Stock Price Analysis and Prediction Team Member: Lulu Liu, Jiaojiao Liu DSO530 Final Project JETBLUE AIRWAYS STOCK PRICE ANALYSIS AND PREDICTION 1 Motivation Started in February 2000, JetBlue
More informationA Regression Approach for Forecasting Vendor Revenue in Telecommunication Industries
A Regression Approach for Forecasting Vendor Revenue in Telecommunication Industries Aida Mustapha *1, Farhana M. Fadzil #2 * Faculty of Computer Science and Information Technology, Universiti Tun Hussein
More informationForecaster comments to the ORTECH Report
Forecaster comments to the ORTECH Report The Alberta Forecasting Pilot Project was truly a pioneering and landmark effort in the assessment of wind power production forecast performance in North America.
More informationMICROSOFT EXCEL 20072010 FORECASTING AND DATA ANALYSIS
MICROSOFT EXCEL 20072010 FORECASTING AND DATA ANALYSIS Contents NOTE Unless otherwise stated, screenshots in this book were taken using Excel 2007 with a blue colour scheme and running on Windows Vista.
More informationComparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations
Volume 3, No. 8, August 2012 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations
More informationMean of Ratios or Ratio of Means: statistical uncertainty applied to estimate Multiperiod Probability of Default
Mean of Ratios or Ratio of Means: statistical uncertainty applied to estimate Multiperiod Probability of Default Matteo Formenti 1 Group Risk Management UniCredit Group Università Carlo Cattaneo September
More informationA LogRobust Optimization Approach to Portfolio Management
A LogRobust Optimization Approach to Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Ban Kawas Research partially supported by the National Science Foundation Grant CMMI0757983
More informationExponential Smoothing with Trend. As we move toward mediumrange forecasts, trend becomes more important.
Exponential Smoothing with Trend As we move toward mediumrange forecasts, trend becomes more important. Incorporating a trend component into exponentially smoothed forecasts is called double exponential
More informationA New Method for Electric Consumption Forecasting in a Semiconductor Plant
A New Method for Electric Consumption Forecasting in a Semiconductor Plant Prayad Boonkham 1, Somsak Surapatpichai 2 Spansion Thailand Limited 229 Moo 4, Changwattana Road, Pakkred, Nonthaburi 11120 Nonthaburi,
More informationIndian School of Business Forecasting Sales for Dairy Products
Indian School of Business Forecasting Sales for Dairy Products Contents EXECUTIVE SUMMARY... 3 Data Analysis... 3 Forecast Horizon:... 4 Forecasting Models:... 4 Fresh milk  AmulTaaza (500 ml)... 4 Dahi/
More informationForecasting methods applied to engineering management
Forecasting methods applied to engineering management Áron SzászGábor Abstract. This paper presents arguments for the usefulness of a simple forecasting application package for sustaining operational
More informationInternational Statistical Institute, 56th Session, 2007: Phil Everson
Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA Email: peverso1@swarthmore.edu 1. Introduction
More informationNTC Project: S01PH10 (formerly I01P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
More informationBaseline Forecasting With Exponential Smoothing Models
Baseline Forecasting With Exponential Smoothing Models By Hans Levenbach, PhD., Executive Director CPDF Training and Certification Program, URL: www.cpdftraining.org Prediction is very difficult, especially
More informationIBM SPSS Forecasting 22
IBM SPSS Forecasting 22 Note Before using this information and the product it supports, read the information in Notices on page 33. Product Information This edition applies to version 22, release 0, modification
More informationThe average hotel manager recognizes the criticality of forecasting. However, most
Introduction The average hotel manager recognizes the criticality of forecasting. However, most managers are either frustrated by complex models researchers constructed or appalled by the amount of time
More informationIDENTIFICATION OF DEMAND FORECASTING MODEL CONSIDERING KEY FACTORS IN THE CONTEXT OF HEALTHCARE PRODUCTS
IDENTIFICATION OF DEMAND FORECASTING MODEL CONSIDERING KEY FACTORS IN THE CONTEXT OF HEALTHCARE PRODUCTS Sushanta Sengupta 1, Ruma Datta 2 1 Tata Consultancy Services Limited, Kolkata 2 Netaji Subhash
More informationAlJo anee Company: support department cost allocations with matrices to improve decision making
AlJo anee Company: support department cost allocations with matrices to improve decision making ABSTRACT Saad S. Hussein University of Tikrit, Iraq Dennis F. Togo University of New Mexico, USA The direct,
More informationRevenue Management for Transportation Problems
Revenue Management for Transportation Problems Francesca Guerriero Giovanna Miglionico Filomena Olivito Department of Electronic Informatics and Systems, University of Calabria Via P. Bucci, 87036 Rende
More informationCOMPUTING DURATION, SLACK TIME, AND CRITICALITY UNCERTAINTIES IN PATHINDEPENDENT PROJECT NETWORKS
Proceedings from the 2004 ASEM National Conference pp. 453460, Alexandria, VA (October 2023, 2004 COMPUTING DURATION, SLACK TIME, AND CRITICALITY UNCERTAINTIES IN PATHINDEPENDENT PROJECT NETWORKS Ryan
More informationObjectives of Chapters 7,8
Objectives of Chapters 7,8 Planning Demand and Supply in a SC: (Ch7, 8, 9) Ch7 Describes methodologies that can be used to forecast future demand based on historical data. Ch8 Describes the aggregate planning
More informationbusiness statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
More informationChapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
More informationForecasting the first step in planning. Estimating the future demand for products and services and the necessary resources to produce these outputs
PRODUCTION PLANNING AND CONTROL CHAPTER 2: FORECASTING Forecasting the first step in planning. Estimating the future demand for products and services and the necessary resources to produce these outputs
More informationStandard Deviation Estimator
CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of
More informationA FUZZY LOGIC APPROACH FOR SALES FORECASTING
A FUZZY LOGIC APPROACH FOR SALES FORECASTING ABSTRACT Sales forecasting proved to be very important in marketing where managers need to learn from historical data. Many methods have become available for
More informationFTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver
FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver Question: How do you create a diversified stock portfolio? Advice given by most financial advisors
More informationA Study on the Comparison of Electricity Forecasting Models: Korea and China
Communications for Statistical Applications and Methods 2015, Vol. 22, No. 6, 675 683 DOI: http://dx.doi.org/10.5351/csam.2015.22.6.675 Print ISSN 22877843 / Online ISSN 23834757 A Study on the Comparison
More informationPrediction Model for Crude Oil Price Using Artificial Neural Networks
Applied Mathematical Sciences, Vol. 8, 2014, no. 80, 39533965 HIKARI Ltd, www.mhikari.com http://dx.doi.org/10.12988/ams.2014.43193 Prediction Model for Crude Oil Price Using Artificial Neural Networks
More informationDemand Forecasting When a product is produced for a market, the demand occurs in the future. The production planning cannot be accomplished unless
Demand Forecasting When a product is produced for a market, the demand occurs in the future. The production planning cannot be accomplished unless the volume of the demand known. The success of the business
More informationAn Evaluation Model for Determining Insurance Policy Using AHP and Fuzzy Logic: Case Studies of Life and Annuity Insurances
Proceedings of the 8th WSEAS International Conference on Fuzzy Systems, Vancouver, British Columbia, Canada, June 1921, 2007 126 An Evaluation Model for Determining Insurance Policy Using AHP and Fuzzy
More informationStatistics in Retail Finance. Chapter 6: Behavioural models
Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics: Behavioural
More informationChapter 6. The stacking ensemble approach
82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described
More informationseven Statistical Analysis with Excel chapter OVERVIEW CHAPTER
seven Statistical Analysis with Excel CHAPTER chapter OVERVIEW 7.1 Introduction 7.2 Understanding Data 7.3 Relationships in Data 7.4 Distributions 7.5 Summary 7.6 Exercises 147 148 CHAPTER 7 Statistical
More informationInformation Security and Risk Management
Information Security and Risk Management by Lawrence D. Bodin Professor Emeritus of Decision and Information Technology Robert H. Smith School of Business University of Maryland College Park, MD 20742
More informationMBA 611 STATISTICS AND QUANTITATIVE METHODS
MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 111) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain
More informationSoftware project cost estimation using AI techniques
Software project cost estimation using AI techniques Rodríguez Montequín, V.; Villanueva Balsera, J.; Alba González, C.; Martínez Huerta, G. Project Management Area University of Oviedo C/Independencia
More informationESTIMATING THE DISTRIBUTION OF DEMAND USING BOUNDED SALES DATA
ESTIMATING THE DISTRIBUTION OF DEMAND USING BOUNDED SALES DATA Michael R. Middleton, McLaren School of Business, University of San Francisco 0 Fulton Street, San Francisco, CA 00  middleton@usfca.edu
More information8. Time Series and Prediction
8. Time Series and Prediction Definition: A time series is given by a sequence of the values of a variable observed at sequential points in time. e.g. daily maximum temperature, end of day share prices,
More informationGamma Distribution Fitting
Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics
More informationSimple Methods and Procedures Used in Forecasting
Simple Methods and Procedures Used in Forecasting The project prepared by : Sven Gingelmaier Michael Richter Under direction of the Maria JadamusHacura What Is Forecasting? Prediction of future events
More informationAN ANALYSIS OF WORKING CAPITAL MANAGEMENT EFFICIENCY IN TELECOMMUNICATION EQUIPMENT INDUSTRY
RIVIER ACADEMIC JOURNAL, VOLUME 3, NUMBER 2, FALL 2007 AN ANALYSIS OF WORKING CAPITAL MANAGEMENT EFFICIENCY IN TELECOMMUNICATION EQUIPMENT INDUSTRY Vedavinayagam Ganesan * Graduate Student, EMBA Program,
More informationAnalysis of Bayesian Dynamic Linear Models
Analysis of Bayesian Dynamic Linear Models Emily M. Casleton December 17, 2010 1 Introduction The main purpose of this project is to explore the Bayesian analysis of Dynamic Linear Models (DLMs). The main
More informationMethodology For Illinois Electric Customers and Sales Forecasts: 20162025
Methodology For Illinois Electric Customers and Sales Forecasts: 20162025 In December 2014, an electric rate case was finalized in MEC s Illinois service territory. As a result of the implementation of
More informationThe Islamic University of Gaza Faculty of Commerce Quantitative Analysis  Prof. Dr. Samir Safi Midterm #11/12/2014
Name The Islamic University of Gaza Faculty of Commerce Quantitative Analysis  Prof. Dr. Samir Safi Midterm #11/12/2014 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or
More informationUsing Revenue Management in Multiproduct Production/Inventory Systems: A Survey Study
Using Revenue Management in Multiproduct Production/Inventory Systems: A Survey Study Master s Thesis Department of Production economics Linköping Institute of Technology Hadi Esmaeili Ahangarkolaei Mohammad
More informationSampling Distributions and the Central Limit Theorem
135 Part 2 / Basic Tools of Research: Sampling, Measurement, Distributions, and Descriptive Statistics Chapter 10 Sampling Distributions and the Central Limit Theorem In the previous chapter we explained
More informationOptimal Booking Limits in the Presence of Strategic Consumer Behavior
Cornell University School of Hotel Administration The Scholarly Commons Articles and Chapters School of Hotel Administration Collection 2006 Optimal Booking Limits in the Presence of Strategic Consumer
More informationForecasting Hospital Bed Availability Using Simulation and Neural Networks
Forecasting Hospital Bed Availability Using Simulation and Neural Networks Matthew J. Daniels Michael E. Kuhl Industrial & Systems Engineering Department Rochester Institute of Technology Rochester, NY
More informationRevenue Management with Correlated Demand Forecasting
Revenue Management with Correlated Demand Forecasting Catalina Stefanescu Victor DeMiguel Kristin Fridgeirsdottir Stefanos Zenios 1 Introduction Many airlines are struggling to survive in today's economy.
More informationPrice Prediction of Share Market using Artificial Neural Network (ANN)
Prediction of Share Market using Artificial Neural Network (ANN) Zabir Haider Khan Department of CSE, SUST, Sylhet, Bangladesh Tasnim Sharmin Alin Department of CSE, SUST, Sylhet, Bangladesh Md. Akter
More informationTOURISM DEMAND FORECASTING USING A NOVEL HIGHPRECISION FUZZY TIME SERIES MODEL. RueyChyn Tsaur and TingChun Kuo
International Journal of Innovative Computing, Information and Control ICIC International c 2014 ISSN 13494198 Volume 10, Number 2, April 2014 pp. 695 701 OURISM DEMAND FORECASING USING A NOVEL HIGHPRECISION
More information4. Forecasting Trends: Exponential Smoothing
4. Forecasting Trends: Exponential Smoothing Introduction...2 4.1 Method or Model?...4 4.2 Extrapolation Methods...6 4.2.1 Extrapolation of the mean value...8 4.2.2 Use of moving averages... 10 4.3 Simple
More informationAuxiliary Variables in Mixture Modeling: 3Step Approaches Using Mplus
Auxiliary Variables in Mixture Modeling: 3Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives
More informationModule 6: Introduction to Time Series Forecasting
Using Statistical Data to Make Decisions Module 6: Introduction to Time Series Forecasting Titus Awokuse and Tom Ilvento, University of Delaware, College of Agriculture and Natural Resources, Food and
More informationDemand Forecasting LEARNING OBJECTIVES IEEM 517. 1. Understand commonly used forecasting techniques. 2. Learn to evaluate forecasts
IEEM 57 Demand Forecasting LEARNING OBJECTIVES. Understand commonly used forecasting techniques. Learn to evaluate forecasts 3. Learn to choose appropriate forecasting techniques CONTENTS Motivation Forecast
More informationINCREASING FORECASTING ACCURACY OF TREND DEMAND BY NONLINEAR OPTIMIZATION OF THE SMOOTHING CONSTANT
58 INCREASING FORECASTING ACCURACY OF TREND DEMAND BY NONLINEAR OPTIMIZATION OF THE SMOOTHING CONSTANT Sudipa Sarker 1 * and Mahbub Hossain 2 1 Department of Industrial and Production Engineering Bangladesh
More informationAge to Age Factor Selection under Changing Development Chris G. Gross, ACAS, MAAA
Age to Age Factor Selection under Changing Development Chris G. Gross, ACAS, MAAA Introduction A common question faced by many actuaries when selecting loss development factors is whether to base the selected
More informationForecasting overview
Forecasting overview Rob J Hyndman November 8, 2009 1 What can be forecast? Forecasting is required in many situations: deciding whether to build another power generation plant in the next five years requires
More informationForecasting Analytics. Group members:  Arpita  Kapil  Kaushik  Ridhima  Ushhan
Forecasting Analytics Group members:  Arpita  Kapil  Kaushik  Ridhima  Ushhan Business Problem Forecast daily sales of dairy products (excluding milk) to make a good prediction of future demand, and
More informationCalculating Interval Forecasts
Calculating Chapter 7 (Chatfield) Monika Turyna & Thomas Hrdina Department of Economics, University of Vienna Summer Term 2009 Terminology An interval forecast consists of an upper and a lower limit between
More informationCHAPTER 6 FINANCIAL FORECASTING
TUTORIAL NOTES CHAPTER 6 FINANCIAL FORECASTING 6.1 INTRODUCTION Forecasting represents an integral part of any planning process that is undertaken by all firms. Firms must make decisions today that will
More information