Designing a neural network for forecasting financial time series
|
|
|
- Sherman Wilkinson
- 9 years ago
- Views:
Transcription
1 Designing a neural network for forecasting financial time series 29 février 2008
2 What a Neural Network is? Each neurone k is characterized by a transfer function f k : output k = f k ( i w ik x k )
3 From a mathematical point of view, a neural network is a function f : R N R M where the function f is defined as the composition of other function g i : f = i I g i = g n g n 1... g 1 Therefore a neural network define a function f w where w is the vector of weights. The idea is to find the best approximator of a function in the space defined by : C = {f w1,w 2,..,w n } w R n + Where n is the total number of weights.
4 What a Neural network is not? A neural network is not a magic system that takes inputs and find a way of making money by itself!!
5 Therefore it is highly important to choose the input data and to calibrate the Neural Net. Nelson and Illingworth outline 8 steps on designing a neural net. 1. Variable Selection 2. Data collection 3. Data processing 4. Training, testing and validation set 5. Neutal network paradigms : Number of hidden layers Number of hidden neurons Number of output neurons transfer functions 6. Evaluation Criteria 7. Neural Network training Number of training iteration learning rate and momentum 8. implementation
6 Succes in designing a neural net depends on the clear understanding of the problem. A neural network can find complex relations between variables, but it is more likely to find them it it is given various technical indicators that are likely to be corralated for economic reasons. For instance one could input : Returns of stocks and index. Bid/Ask and volumes traded Stock price of Microsoft and Apple Price of petrol and stock price of GE One may think to more complicated inputs taking already taking some correlation information into account.
7 The researcher would select the NN which performs the best over the testing set. The testing setś size is ranging from 10% to 30% of the training set. To prevent risk of overfitting, the size of the training set must be at least five times the number of weights.
8 Number of hidden layers The hidden layers provide the network with its ability to generalize. In theory one layer is enough to approximate any continuous function. Both theory and empirical work suggest that putting more four layers (one input, one output and two hidden) will not improve the results. Increasing the number of hidden layers, increases the risk of over-fitting and increases computation time.
9
10 Number of input and hidden neurons For a three-layers network it has be suggests that the hidden layer should have approximately : ninput m output If we use one minutes quotes we have per day : 7 60 = 560 values divided in 450 in the training set and 110 in the testing set. So we could at most have 90 weights. We can have approximately 20 hidden neurons...
11 Number of output Neurons Using multiple outputs will produce inferior results as compared to a network with single output.
12 Convergence : 3 Layers, 20 hidden neurons, 50 steps
13 Convergence : 3 Layers, 20 hidden neurons, 100 steps
14 Convergence : 3 Layers, 20 hidden neurons, 300 steps
15 Convergence : 3 Layers, 50 hidden neurons, 5 steps
16 Convergence : 3 Layers, 20 hidden neurons, 50 steps
A Prediction Model for Taiwan Tourism Industry Stock Index
A Prediction Model for Taiwan Tourism Industry Stock Index ABSTRACT Han-Chen Huang and Fang-Wei Chang Yu Da University of Science and Technology, Taiwan Investors and scholars pay continuous attention
Car Insurance. Havránek, Pokorný, Tomášek
Car Insurance Havránek, Pokorný, Tomášek Outline Data overview Horizontal approach + Decision tree/forests Vertical (column) approach + Neural networks SVM Data overview Customers Viewed policies Bought
Lecture 6. Artificial Neural Networks
Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm
Forecasting the U.S. Stock Market via Levenberg-Marquardt and Haken Artificial Neural Networks Using ICA&PCA Pre-Processing Techniques
Forecasting the U.S. Stock Market via Levenberg-Marquardt and Haken Artificial Neural Networks Using ICA&PCA Pre-Processing Techniques Golovachev Sergey National Research University, Higher School of Economics,
COMBINED NEURAL NETWORKS FOR TIME SERIES ANALYSIS
COMBINED NEURAL NETWORKS FOR TIME SERIES ANALYSIS Iris Ginzburg and David Horn School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Science Tel-Aviv University Tel-A viv 96678,
CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER
93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed
Neural Networks for Sentiment Detection in Financial Text
Neural Networks for Sentiment Detection in Financial Text Caslav Bozic* and Detlef Seese* With a rise of algorithmic trading volume in recent years, the need for automatic analysis of financial news emerged.
Neural Networks and Back Propagation Algorithm
Neural Networks and Back Propagation Algorithm Mirza Cilimkovic Institute of Technology Blanchardstown Blanchardstown Road North Dublin 15 Ireland [email protected] Abstract Neural Networks (NN) are important
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)
A simple application of Artificial Neural Network to cloud classification
A simple application of Artificial Neural Network to cloud classification Tianle Yuan For AOSC 630 (by Prof. Kalnay) Introduction to Pattern Recognition (PR) Example1: visual separation between the character
Data Mining Techniques Chapter 7: Artificial Neural Networks
Data Mining Techniques Chapter 7: Artificial Neural Networks Artificial Neural Networks.................................................. 2 Neural network example...................................................
Follow links Class Use and other Permissions. For more information, send email to: [email protected]
COPYRIGHT NOTICE: David A. Kendrick, P. Ruben Mercado, and Hans M. Amman: Computational Economics is published by Princeton University Press and copyrighted, 2006, by Princeton University Press. All rights
Neural Network Applications in Stock Market Predictions - A Methodology Analysis
Neural Network Applications in Stock Market Predictions - A Methodology Analysis Marijana Zekic, MS University of Josip Juraj Strossmayer in Osijek Faculty of Economics Osijek Gajev trg 7, 31000 Osijek
DATA SECURITY BASED ON NEURAL NETWORKS
TASKQUARTERLY9No4,409 414 DATA SECURITY BASED ON NEURAL NETWORKS KHALED M. G. NOAMAN AND HAMID ABDULLAH JALAB Faculty of Science, Computer Science Department, Sana a University, P.O. Box 13499, Sana a,
Modelling and Big Data. Leslie Smith ITNPBD4, October 10 2015. Updated 9 October 2015
Modelling and Big Data Leslie Smith ITNPBD4, October 10 2015. Updated 9 October 2015 Big data and Models: content What is a model in this context (and why the context matters) Explicit models Mathematical
Neural Network and Genetic Algorithm Based Trading Systems. Donn S. Fishbein, MD, PhD Neuroquant.com
Neural Network and Genetic Algorithm Based Trading Systems Donn S. Fishbein, MD, PhD Neuroquant.com Consider the challenge of constructing a financial market trading system using commonly available technical
An Introduction to Neural Networks
An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,
Prediction Model for Crude Oil Price Using Artificial Neural Networks
Applied Mathematical Sciences, Vol. 8, 2014, no. 80, 3953-3965 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.43193 Prediction Model for Crude Oil Price Using Artificial Neural Networks
Neural Computation - Assignment
Neural Computation - Assignment Analysing a Neural Network trained by Backpropagation AA SSt t aa t i iss i t i icc aa l l AA nn aa l lyy l ss i iss i oo f vv aa r i ioo i uu ss l lee l aa r nn i inn gg
Polynomial Neural Network Discovery Client User Guide
Polynomial Neural Network Discovery Client User Guide Version 1.3 Table of contents Table of contents...2 1. Introduction...3 1.1 Overview...3 1.2 PNN algorithm principles...3 1.3 Additional criteria...3
6.2.8 Neural networks for data mining
6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural
Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network
Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network Qian Wu, Yahui Wang, Long Zhang and Li Shen Abstract Building electrical system fault diagnosis is the
APPLICATION OF INTELLIGENT METHODS IN COMMERCIAL WEBSITE MARKETING STRATEGIES DEVELOPMENT
ISSN 1392 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.2 APPLICATION OF INTELLIGENT METHODS IN COMMERCIAL WEBSITE MARKETING STRATEGIES DEVELOPMENT Algirdas Noreika Department of Practical
Forecasting Trade Direction and Size of Future Contracts Using Deep Belief Network
Forecasting Trade Direction and Size of Future Contracts Using Deep Belief Network Anthony Lai (aslai), MK Li (lilemon), Foon Wang Pong (ppong) Abstract Algorithmic trading, high frequency trading (HFT)
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
Neural Network Add-in
Neural Network Add-in Version 1.5 Software User s Guide Contents Overview... 2 Getting Started... 2 Working with Datasets... 2 Open a Dataset... 3 Save a Dataset... 3 Data Pre-processing... 3 Lagging...
INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr.
INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. Meisenbach M. Hable G. Winkler P. Meier Technology, Laboratory
Chapter 4: Artificial Neural Networks
Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml-03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/
Optimum Design of Worm Gears with Multiple Computer Aided Techniques
Copyright c 2008 ICCES ICCES, vol.6, no.4, pp.221-227 Optimum Design of Worm Gears with Multiple Computer Aided Techniques Daizhong Su 1 and Wenjie Peng 2 Summary Finite element analysis (FEA) has proved
A New Approach For Estimating Software Effort Using RBFN Network
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 008 37 A New Approach For Estimating Software Using RBFN Network Ch. Satyananda Reddy, P. Sankara Rao, KVSVN Raju,
Real Stock Trading Using Soft Computing Models
Real Stock Trading Using Soft Computing Models Brent Doeksen 1, Ajith Abraham 2, Johnson Thomas 1 and Marcin Paprzycki 1 1 Computer Science Department, Oklahoma State University, OK 74106, USA, 2 School
Data Mining Techniques
15.564 Information Technology I Business Intelligence Outline Operational vs. Decision Support Systems What is Data Mining? Overview of Data Mining Techniques Overview of Data Mining Process Data Warehouses
SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS
UDC: 004.8 Original scientific paper SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS Tonimir Kišasondi, Alen Lovren i University of Zagreb, Faculty of Organization and Informatics,
FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS
FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS Breno C. Costa, Bruno. L. A. Alberto, André M. Portela, W. Maduro, Esdras O. Eler PDITec, Belo Horizonte,
Stock Market Prediction System with Modular Neural Networks
Stock Market Prediction System with Modular Neural Networks Takashi Kimoto and Kazuo Asakawa Computer-based Systems Laboratory FUJTSU LABORATORES LTD., KAWASAK 1015 Kamikodanaka, Nakahara-Ku, Kawasaki
Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin *
Send Orders for Reprints to [email protected] 766 The Open Electrical & Electronic Engineering Journal, 2014, 8, 766-771 Open Access Research on Application of Neural Network in Computer Network
How To Predict Stock Price With Mood Based Models
Twitter Mood Predicts the Stock Market Xiao-Jun Zeng School of Computer Science University of Manchester [email protected] Outline Introduction and Motivation Approach Framework Twitter mood model
A Stock Pattern Recognition Algorithm Based on Neural Networks
A Stock Pattern Recognition Algorithm Based on Neural Networks Xinyu Guo [email protected] Xun Liang [email protected] Xiang Li [email protected] Abstract pattern respectively. Recent
More Data Mining with Weka
More Data Mining with Weka Class 5 Lesson 1 Simple neural networks Ian H. Witten Department of Computer Science University of Waikato New Zealand weka.waikato.ac.nz Lesson 5.1: Simple neural networks Class
UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MS SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 1 EXAMINATION 2015/2016 INTELLIGENT SYSTEMS
TW72 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MS SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 1 EXAMINATION 2015/2016 INTELLIGENT SYSTEMS MODULE NO: EEM7010 Date: Monday 11 th January 2016
Bank Customers (Credit) Rating System Based On Expert System and ANN
Bank Customers (Credit) Rating System Based On Expert System and ANN Project Review Yingzhen Li Abstract The precise rating of customers has a decisive impact on loan business. We constructed the BP network,
Machine Learning and Data Mining -
Machine Learning and Data Mining - Perceptron Neural Networks Nuno Cavalheiro Marques ([email protected]) Spring Semester 2010/2011 MSc in Computer Science Multi Layer Perceptron Neurons and the Perceptron
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK N M Allinson and D Merritt 1 Introduction This contribution has two main sections. The first discusses some aspects of multilayer perceptrons,
NEURAL networks [5] are universal approximators [6]. It
Proceedings of the 2013 Federated Conference on Computer Science and Information Systems pp. 183 190 An Investment Strategy for the Stock Exchange Using Neural Networks Antoni Wysocki and Maciej Ławryńczuk
The relation between news events and stock price jump: an analysis based on neural network
20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 The relation between news events and stock price jump: an analysis based on
Cash Forecasting: An Application of Artificial Neural Networks in Finance
International Journal of Computer Science & Applications Vol. III, No. I, pp. 61-77 2006 Technomathematics Research Foundation Cash Forecasting: An Application of Artificial Neural Networks in Finance
Performance Evaluation of Artificial Neural. Networks for Spatial Data Analysis
Contemporary Engineering Sciences, Vol. 4, 2011, no. 4, 149-163 Performance Evaluation of Artificial Neural Networks for Spatial Data Analysis Akram A. Moustafa Department of Computer Science Al al-bayt
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
Combining GLM and datamining techniques for modelling accident compensation data. Peter Mulquiney
Combining GLM and datamining techniques for modelling accident compensation data Peter Mulquiney Introduction Accident compensation data exhibit features which complicate loss reserving and premium rate
Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network
Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network Prince Gupta 1, Satanand Mishra 2, S.K.Pandey 3 1,3 VNS Group, RGPV, Bhopal, 2 CSIR-AMPRI, BHOPAL [email protected]
Price Prediction of Share Market using Artificial Neural Network (ANN)
Prediction of Share Market using Artificial Neural Network (ANN) Zabir Haider Khan Department of CSE, SUST, Sylhet, Bangladesh Tasnim Sharmin Alin Department of CSE, SUST, Sylhet, Bangladesh Md. Akter
A New Approach to Neural Network based Stock Trading Strategy
A New Approach to Neural Network based Stock Trading Strategy Miroslaw Kordos, Andrzej Cwiok University of Bielsko-Biala, Department of Mathematics and Computer Science, Bielsko-Biala, Willowa 2, Poland:
Performance Evaluation and Prediction of IT-Outsourcing Service Supply Chain based on Improved SCOR Model
Performance Evaluation and Prediction of IT-Outsourcing Service Supply Chain based on Improved SCOR Model 1, 2 1 International School of Software, Wuhan University, Wuhan, China *2 School of Information
Impact of Feature Selection on the Performance of Wireless Intrusion Detection Systems
2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Impact of Feature Selection on the Performance of ireless Intrusion Detection Systems
Stock Prediction using Artificial Neural Networks
Stock Prediction using Artificial Neural Networks Abhishek Kar (Y8021), Dept. of Computer Science and Engineering, IIT Kanpur Abstract In this work we present an Artificial Neural Network approach to predict
Data Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka ([email protected]) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
Small Business Credit Scoring: A Comparison of Logistic Regression, Neural Network, and Decision Tree Models
Small Business Credit Scoring: A Comparison of Logistic Regression, Neural Network, and Decision Tree Models Marijana Zekic-Susac University of J.J. Strossmayer in Osijek, Faculty of Economics in Osijek
NTC Project: S01-PH10 (formerly I01-P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
BACK CALCULATION PROCEDURE FOR THE STIFFNESS MODULUS OF CEMENT TREATED BASE LAYERS USING COMPUTATIONAL INTELLIGENCE BASED MODELS
BACK CALCULATION PROCEDURE FOR THE STIFFNESS MODULUS OF CEMENT TREATED BASE LAYERS USING COMPUTATIONAL INTELLIGENCE BASED MODELS Maryam Miradi [email protected] André.A. A. Molenaar * [email protected]
Machine Learning: Multi Layer Perceptrons
Machine Learning: Multi Layer Perceptrons Prof. Dr. Martin Riedmiller Albert-Ludwigs-University Freiburg AG Maschinelles Lernen Machine Learning: Multi Layer Perceptrons p.1/61 Outline multi layer perceptrons
NEUROMATHEMATICS: DEVELOPMENT TENDENCIES. 1. Which tasks are adequate of neurocomputers?
Appl. Comput. Math. 2 (2003), no. 1, pp. 57-64 NEUROMATHEMATICS: DEVELOPMENT TENDENCIES GALUSHKIN A.I., KOROBKOVA. S.V., KAZANTSEV P.A. Abstract. This article is the summary of a set of Russian scientists
Flexible Neural Trees Ensemble for Stock Index Modeling
Flexible Neural Trees Ensemble for Stock Index Modeling Yuehui Chen 1, Ju Yang 1, Bo Yang 1 and Ajith Abraham 2 1 School of Information Science and Engineering Jinan University, Jinan 250022, P.R.China
3 An Illustrative Example
Objectives An Illustrative Example Objectives - Theory and Examples -2 Problem Statement -2 Perceptron - Two-Input Case -4 Pattern Recognition Example -5 Hamming Network -8 Feedforward Layer -8 Recurrent
Applications of improved grey prediction model for power demand forecasting
Energy Conversion and Management 44 (2003) 2241 2249 www.elsevier.com/locate/enconman Applications of improved grey prediction model for power demand forecasting Che-Chiang Hsu a, *, Chia-Yon Chen b a
Improving returns on stock investment through neural network selection
PERGAMON Expert Systems with Applications 17 (1999) 295 301 Expert Systems with Applications www.elsevier.com/locate/eswa Improving returns on stock investment through neural network selection Tong-Seng
Advanced analytics at your hands
2.3 Advanced analytics at your hands Neural Designer is the most powerful predictive analytics software. It uses innovative neural networks techniques to provide data scientists with results in a way previously
DEVELOPING AN ARTIFICIAL NEURAL NETWORK MODEL FOR LIFE CYCLE COSTING IN BUILDINGS
DEVELOPING AN ARTIFICIAL NEURAL NETWORK MODEL FOR LIFE CYCLE COSTING IN BUILDINGS Olufolahan Oduyemi 1, Michael Okoroh 2 and Angela Dean 3 1 and 3 College of Engineering and Technology, University of Derby,
Anupam Tarsauliya Shoureya Kant Rahul Kala Researcher Researcher Researcher IIITM IIITM IIITM Gwalior Gwalior Gwalior
Analysis of Artificial Neural Network for Financial Time Series Forecasting Anupam Tarsauliya Shoureya Kant Rahul Kala Researcher Researcher Researcher IIITM IIITM IIITM Gwalior Gwalior Gwalior Ritu Tiwari
DYNAMIC LOAD BALANCING OF FINE-GRAIN SERVICES USING PREDICTION BASED ON SERVICE INPUT JAN MIKSATKO. B.S., Charles University, 2003 A THESIS
DYNAMIC LOAD BALANCING OF FINE-GRAIN SERVICES USING PREDICTION BASED ON SERVICE INPUT by JAN MIKSATKO B.S., Charles University, 2003 A THESIS Submitted in partial fulfillment of the requirements for the
Forecasting Of Indian Stock Market Index Using Artificial Neural Network
Forecasting Of Indian Stock Market Index Using Artificial Neural Network Proposal Page 1 of 8 ABSTRACT The objective of the study is to present the use of artificial neural network as a forecasting tool
A Concise Neural Network Model for Estimating Software Effort
A Concise Neural Network Model for Estimating Software Effort Ch. Satyananda Reddy, KVSVN Raju DENSE Research Group Department of Computer Science and Systems Engineering, College of Engineering, Andhra
Performance Evaluation On Human Resource Management Of China S Commercial Banks Based On Improved Bp Neural Networks
Performance Evaluation On Human Resource Management Of China S *1 Honglei Zhang, 2 Wenshan Yuan, 1 Hua Jiang 1 School of Economics and Management, Hebei University of Engineering, Handan 056038, P. R.
Guidelines for Financial Forecasting with Neural Networks
Guidelines for Financial Forecasting with Neural Networks JingTao YAO Dept of Information Systems Massey University Private Bag 11222 Palmerston North New Zealand [email protected] Chew Lim TAN Dept
Application of Artificial Neural Networks To Predict Intraday Trading Signals
Application of Artificial Neural Networks To Predict Intraday Trading Signals EDDY F. PUTRA BINUS Business School BINUS University Hang Lekir 1 no.6, Senayan, Jakarta INDONESIA [email protected] RAYMONDUS
Iranian J Env Health Sci Eng, 2004, Vol.1, No.2, pp.51-57. Application of Intelligent System for Water Treatment Plant Operation.
Iranian J Env Health Sci Eng, 2004, Vol.1, No.2, pp.51-57 Application of Intelligent System for Water Treatment Plant Operation *A Mirsepassi Dept. of Environmental Health Engineering, School of Public
Ďě Ž ť č ď ť ď ú ď ť ě Ě ň Ě ě ú ň ž ú ú Ú ú ú Ě ň é é ž ú ž Ť Ť Ť ú ň Ď ú ň ď Ě ú É ž ř ú ě ň ý Ě ň ý ň ň Ť ř ď ř ň ú Ť ě ř ě ý Š Ú Ú ň ň ú Ó Ú ň Ň Ů ž ú ň Č ř ř ú É ě ň ú Ž ý ú ú Ú Ú ť ž ž ď ý ž ď ž
Stabilization by Conceptual Duplication in Adaptive Resonance Theory
Stabilization by Conceptual Duplication in Adaptive Resonance Theory Louis Massey Royal Military College of Canada Department of Mathematics and Computer Science PO Box 17000 Station Forces Kingston, Ontario,
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Trade-off between energy consumption and wiring cost Trade-off between energy consumption
U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 1, 2015 ISSN 2286 3540
U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 1, 2015 ISSN 2286 3540 ENTERPRISE FINANCIAL DISTRESS PREDICTION BASED ON BACKWARD PROPAGATION NEURAL NETWORK: AN EMPIRICAL STUDY ON THE CHINESE LISTED EQUIPMENT
HYBRID PROBABILITY BASED ENSEMBLES FOR BANKRUPTCY PREDICTION
HYBRID PROBABILITY BASED ENSEMBLES FOR BANKRUPTCY PREDICTION Chihli Hung 1, Jing Hong Chen 2, Stefan Wermter 3, 1,2 Department of Management Information Systems, Chung Yuan Christian University, Taiwan
Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification
Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification R. Sathya Professor, Dept. of MCA, Jyoti Nivas College (Autonomous), Professor and Head, Dept. of Mathematics, Bangalore,
The Security Evaluation of ATM Information System Based on Bayesian Regularization
JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1587 The Security Evaluation of ATM Information System Based on Bayesian Regularization Lan Ma School of Air Traffic Management, Civil Aviation University
Neural Networks algorithms and applications
Neural Networks algorithms and applications By Fiona Nielsen 4i 12/12-2001 Supervisor: Geert Rasmussen Niels Brock Business College 1 Introduction Neural Networks is a field of Artificial Intelligence
Predictive time series analysis of stock prices using neural network classifier
Predictive time series analysis of stock prices using neural network classifier Abhinav Pathak, National Institute of Technology, Karnataka, Surathkal, India [email protected] Abstract The work pertains
A Content based Spam Filtering Using Optical Back Propagation Technique
A Content based Spam Filtering Using Optical Back Propagation Technique Sarab M. Hameed 1, Noor Alhuda J. Mohammed 2 Department of Computer Science, College of Science, University of Baghdad - Iraq ABSTRACT
Horse Racing Prediction Using Artificial Neural Networks
Horse Racing Prediction Using Artificial Neural Networks ELNAZ DAVOODI, ALI REZA KHANTEYMOORI Mathematics and Computer science Department Institute for Advanced Studies in Basic Sciences (IASBS) Gavazang,
Effect of Using Neural Networks in GA-Based School Timetabling
Effect of Using Neural Networks in GA-Based School Timetabling JANIS ZUTERS Department of Computer Science University of Latvia Raina bulv. 19, Riga, LV-1050 LATVIA [email protected] Abstract: - The school
SEARCH AND CLASSIFICATION OF "INTERESTING" BUSINESS APPLICATIONS IN THE WORLD WIDE WEB USING A NEURAL NETWORK APPROACH
SEARCH AND CLASSIFICATION OF "INTERESTING" BUSINESS APPLICATIONS IN THE WORLD WIDE WEB USING A NEURAL NETWORK APPROACH Abstract Karl Kurbel, Kirti Singh, Frank Teuteberg Europe University Viadrina Frankfurt
APPLICATION OF DATA MINING TECHNIQUES FOR DIRECT MARKETING. Anatoli Nachev
86 ITHEA APPLICATION OF DATA MINING TECHNIQUES FOR DIRECT MARKETING Anatoli Nachev Abstract: This paper presents a case study of data mining modeling techniques for direct marketing. It focuses to three
Application of Event Based Decision Tree and Ensemble of Data Driven Methods for Maintenance Action Recommendation
Application of Event Based Decision Tree and Ensemble of Data Driven Methods for Maintenance Action Recommendation James K. Kimotho, Christoph Sondermann-Woelke, Tobias Meyer, and Walter Sextro Department
Neural Networks and Support Vector Machines
INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines
APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED VARIABLES TO PREDICT STOCK TREND DIRECTION
LJMS 2008, 2 Labuan e-journal of Muamalat and Society, Vol. 2, 2008, pp. 9-16 Labuan e-journal of Muamalat and Society APPLICATION OF ARTIFICIAL NEURAL NETWORKS USING HIJRI LUNAR TRANSACTION AS EXTRACTED
Computational Neural Network for Global Stock Indexes Prediction
Computational Neural Network for Global Stock Indexes Prediction Dr. Wilton.W.T. Fok, IAENG, Vincent.W.L. Tam, Hon Ng Abstract - In this paper, computational data mining methodology was used to predict
Multiple Layer Perceptron Training Using Genetic Algorithms
Multiple Layer Perceptron Training Using Genetic Algorithms Udo Seiffert University of South Australia, Adelaide Knowledge-Based Intelligent Engineering Systems Centre (KES) Mawson Lakes, 5095, Adelaide,
The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network
, pp.67-76 http://dx.doi.org/10.14257/ijdta.2016.9.1.06 The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network Lihua Yang and Baolin Li* School of Economics and
