A Comparative Study of Scheduling Algorithms for Real Time Task

Size: px
Start display at page:

Download "A Comparative Study of Scheduling Algorithms for Real Time Task"

Transcription

1 , Vol. 1, No. 4, 2010 A Comparative Study of Scheduling Algorithms for Real Time Task M.Kaladevi, M.C.A.,M.Phil., 1 and Dr.S.Sathiyabama, M.Sc.,M.Phil.,Ph.D, 2 1 Assistant Professor, Department of M.C.A, Vivekanandha College of Arts and Sciences for Women, Elayampalayam, Tiruchengode Tamil Nadu, India. kalalect@gmail.com 2 Professor, Department of M.C.A, K.S.Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India. sathyaaksrct@yahoo.com Abstract The Real Time Operating System (RTOS) supports applications that meet deadlines in addition to providing logically correct results. In multitasking operating system for the applications need to meeting of time deadlines and functioning in real time constraints. To meet the real-time constraints in Real time system for scheduling the task, different scheduling algorithms were used. Most of the real-time systems are designed using priority based preemptive scheduling and worst case execution time estimates to guarantee the execution of high priority tasks. Workstation and personal computers are increasingly used for applications with real time characteristics such us speech understanding and synthesis, media computations and I/O and often concurrently executed with traditional non-real-time workstation. The main objective of this paper is to compare two important task schedulers such as Earliest DeadLine First (EDF) scheduler and Ant Colony Optimization Based (ACO) scheduler. It also presents a system that can be schedule multiple independent tasks. Tasks can obtain minimum guaranteed execution time with its performances. Keywords: Real-Time Operating Systems, Scheduling Algorithm, Deadline, Scheduler, Earliest Deadline First(EDF), Ant Colony Optimization (ACO) 1. Introduction 1.1. Real-time systems and Scheduling techniques Real time system are defined as those systems in which the correctness of the system does not depend only on the logical results of computations but also on the time at which the results are produced [1]. Real-time systems have well defined, fixed time constraints i.e., processing must be completed within the defined constraints otherwise the system will fail. There are two main types of real-time systems: Hard Real-Time System, Firm or Soft Real-Time System. In Hard Real-Time System requires that fixed deadlines must be met otherwise disastrous situation may arise whereas in Soft Real-Time System, missing an occasional deadline is undesirable, but nevertheless tolerable. System in which performance is degraded but not destroyed by failure to meet response time constraints is called soft real time systems. The objective of a real-time task scheduler is to guarantee the deadline of tasks in the system as much as possible when we consider soft real-time system. Mostly all the real-time systems in existence use preemption and multitasking. We observe that the choice of an operating system is important in designing a real time system. Designing a real time systems involves choice for proper language, task portioning and merging and assigning priorities using a real time scheduler to manage response time. The depending upon scheduling objectives parallelism and communication may be balanced. The designer of scheduling policy must be determine critical tasks and assign them high priorities. however, care must be taken avoid starvation, which occurs when high priority tasks are always ready to run. November Issue Page 8 of 64 ISSN

2 Real-time scheduling techniques can be largely divided into two categories: Static and Dynamic. Static algorithms assign priorities at design time. All assigned priorities remain constant for the lifetime of a task. Dynamic algorithms assign priorities at runtime, based on execution parameters of tasks. Real Time Scheduling Techniques Dynamic Static Static Priority Dynamic Priority Rate Monolithic Monolithic Deadline Monolithic Earliest Deadline First Least Slack Time First Figure 1. Types of Real Time Task Scheduling Techniques Dynamic scheduling (see figure 1) can be either with static priority or dynamic priority. RM(Rate Monolithic) and DM(Deadline Monolithic) are examples of dynamic scheduling with static priority[2]. EDF(Earliest Deadline First) and LST (Least Slack Time First) are examples of dynamic scheduling with dynamic priority[3]. EDF and LST algorithms are optimal under the condition that the jobs are preemptive, there is only one processor and the processor is not overloaded [2][3]. But the limitation of these algorithms is, their performance decreases exponentially if the system becomes slightly overloaded [4]. 1.2 Ant Colony Optimization (ACO) ACO is a branch of Swarm Intelligence. The advantages of ant-based systems are inherent parallelism, robustness & scalability along with simplicity of individual agent[5][6]. In the early 1990s, ant colony optimization (ACO) was introduced by M. Dorigo and colleagues as a novel nature-inspired metaheuristic for the solution of hard combinatorial optimization (CO) problems. ACO belongs to the class of metaheuristics, which are approximate algorithms used to obtain good enough solutions to hard CO problems in a reasonable amount of computation time. The inspiring source of ACO is the foraging behavior of real ants. When searching for food, ants initially explore the area surrounding their nest in a random manner. As soon as an ant finds a food source, it evaluates the quantity and the quality of the food and carries some of it back to the nest. During the return trip, the ant deposits a chemical pheromone trail on the ground. The quantity of pheromone deposited, which may depend on the quantity and quality of the food, will guide other ants to the food source. As it has been shown in indirect communication between the ants via pheromone trails enables them to find shortest paths between their nest and food sources. This characteristic of real ant colonies is exploited in artificial ant colonies in order to solve CO problems Biological Inspiration of Natural Ants: Ant Colony Optimization was originally inspired by the behaviour of natural ants[7]. In the real world, ants release a certain amount of pheromone while walking, and each ant probabilistically prefers to follow a direction which is rich in pheromone. The famous bridge experiment (Deneubourg and Goss, 1989) shows that ants always can find the shortest path between the colony and food source. In the following illustration, we explain why ants are able to adjust to changes in the environment, such as new obstacles interrupting the shortest path. November Issue Page 9 of 64 ISSN

3 Figure. 2: Ants' food path between their nest and the food source without obstacles first, as shown in figure.2, ants follow the shortest path to carry food back to their colony. If there is an obstacle obstructs the path the ants will randomly choose another way around the obstruction (right, left, over or under). If we assume that the ants cannot go wider or over the obstruction, we can safely assume that approximately half of the ants will go right and the other half left when ants reach points A and B, as illustrated in figure.3. The ants that happen to pick the shorter path will obviously create a strong trail of pheromone a lot faster than the ants choosing the longer path. This will cause more and more ants to choose the shorter path until eventually all ants have found the shortest path as shown in figure.4. Figure. 3: Ants explore new paths after encountering obstacle Figure. 4: Ants find the new shortest path between the food and their nest Ant Colony Optimization attempts to apply similar techniques in order to solve much more complex problems in real life. The main idea is to repeatedly use simulations of artificial ants as agents to generate new solutions to the problem at hand. In general, the ACO approach attempts to solve an optimization problem by repeating the following two steps: Candidate solutions are constructed using a pheromone model, that is, a parameterized probability distribution over the solution space; The candidate solutions are used to modify the pheromone values in a way that is deemed to bias future sampling toward high quality solutions. That the ACO based scheduling algorithm performs well during overloaded condition[8]. This algorithm to be optimal when the system is under loaded. But the limitation of this algorithm is that it takes more time for execution compared to EDF algorithm. The whole paper is organized as follows: In Section 2, the system and task model is explained. In Section 3 describes the basic requirements of RTOS scheduler, Section 4 the EDF, ACO based scheduling algorithm is discussed. In Section 5 contains the comparison and analysis of EDF and ACO based scheduling and ends with a conclusion in Section 5. November Issue Page 10 of 64 ISSN

4 2. System And Task Model Each unit of work that is scheduled and executed by the system as a job and a set of related jobs, which jointly provide some system function, is a task[9]. All the tasks are assumed to be periodic. The system knows about arrival time, period, required execution time and deadline of the task in priori. There are no precedence constraints on the task; they can run in any order relative to each other as long as their deadlines are met. A task is ready to execute as it arrives in the system. We have assumed that the system is not having resource contention problem. The task set is assumed to be preemptive. We have also assumed that preemption and the scheduling algorithm incurs no overhead. In soft real-time systems, each task has a positive value. The goal of the system is to obtain as much value as possible. If a task succeeds, then the system acquires its value. If a task fails, then the system gains less value from the task. In a special case of soft real-time systems, called a firm real-time system, there is no value for a task that has missed its deadline, but there is no tragedy moreover [9]. Here, we propose an algorithm that applies to firm realtime system. The value of the task has been taken same as its execution time required. 3. Basic Requirements of Scheduler in RTOS The following are the basic requirements of Scheduler in RTOS. Multitasking and Preemptable Dynamic Deadline Identification Predictable Synchronization Sufficient Priority levels Predefined latencies a) Multitasking and Preemptable: To support multitasks in real time applications an RTOS should be multitasking and preemptable. The Scheduler should be able to preempt any task in the system and give resource to the task that needs it. b) Dynamic Deadline Identification: In regulate to achieve preemption; an RTOS should be able to dynamically identify the task with the earliest deadline. To handle deadlines, deadline information may be converted to priority levels that are used for resource allocation. It is also employed for lack of a better solution and error less. c) Predictable Synchronization: Multiple threads to communicate among themselves in a timely fashion, predictable inter-task communication and synchronization mechanisms are required. Predictable synchronization requires compromise. Ability to lock or unlock resources is the ways to achieve data integrity. d) Sufficient Priority levels: When using prioritized task scheduling, the RTOS must have a sufficient number of priority levels, for effective implementation. Priority inversion occurs when a higher priority task must wait on a lower priority task to release a resource and turn the lower priority task is waiting upon a medium priority task. Two workarounds in dealing with priority inversion, namely priority inheritance and priority ceiling protocol, need sufficient priority levels. e) Predefined latencies: The timing of system calls must be defined using the following specifications: Task switching latency or time to save the context of a currently executing task and switch to another. Interrupt latency or the time elapsed between the execution of the last instruction of the interrupted task and first instruction of the interrupt handler. Interrupt dispatch latency or the time to switch from the last instruction in the interrupt handler to the next task scheduled to run 4. Dynamic Scheduling Algorithms Dynamic algorithms assign priorities at runtime, based on execution parameters of tasks. Dynamic scheduling can be either with static priority or dynamic priority. November Issue Page 11 of 64 ISSN

5 The most important dynamic scheduling with dynamic priority algorithms are: 1. Earliest Deadline First (EDF) algorithm 2. Ant Colony Optimization (ACO) based Scheduling algorithm. EDF Algorithm: The priority of each task is decided based on the value of its deadline. The task with nearest deadline is given highest priority and it is selected for execution. This algorithm is simple and proved to be optimal when the system is preemptive, under loaded and there is only one processor. ACO Based Scheduling Algorithm: The ACO based algorithms are computational models motivated by the collective foraging behavior of ants [3]. Each ant is an autonomous agent that constructs a path. There might be one or more ants concurrently active at the same time. Ants do not need synchronization. Forward ant moves to the good-looking neighbor from the current node, probabilistically. A probabilistic choice is biased by Pheromone trails previously deposited and heuristic function. Without heuristics information, the algorithm tends to converge towards initial random solution. In backward mode, ants lay down the pheromone. Pheromone intensity of all the paths decreases with time, called pheromone evaporation. It helps in unlearning poor quality solution [1]. Pseudo-code of the ACO based scheduling algorithm is given as per following [8]: ACO based Scheduling algorithm Construct the tour of different ants Analyze the results of ants journeys Update the value of Pheromone Find probability of each task and select the task for execution In ACO based scheduling algorithm, each schedulable task is considered as a node and all the ants will start their journey from different nodes. Number of ants are taken same as number of schedulable tasks at that time. The ants will traverse depending on the value of pheromone and some heuristic function. Pheromone value will be updated on each node depending on the performance of the journey and finally the task is selected with maximum probability of the best performance. 5. Comparison and Analysis The periodic tasks load (L) of the system can be determined using the following equation: m L = Ei / Qi i = 1 where, m Number of tasks E - Execution time required by the task P - Period of the task D Deadline of the task Q = P if P >= D = D if P < D The three main performance measuring criteria are 1. Successive Ratio 2. Effective CPU Utilization 3. Execution Time In real-time systems, deadline meeting is the most important. The most important performance metric is the Successive Ratio and it is defined as, SR = Number of jobs successfully scheduled Total number of jobs arrived Effective CPU Utilization gives information about how efficiently the processor is used and it is defined as, ECU = Ei / T i R Ei Execution time = Value of the job, if the job completes with in its deadline. = 0, if the job fails to meet the deadline November Issue Page 12 of 64 ISSN

6 Time (Micro Seconds) International Journal of Advances in Science and Technology R Set of all the jobs which are executed by the CPU T Total time of scheduling The execution time required by each scheduling algorithm is very important especially when working with real time systems. Table 1 shows the load successive ratio and effective CPU utilization when Load 1 using EDF algorithm, ACO based scheduling algorithm. It proves that both algorithms are equally optimal for single processor and preemptive environment. Figure 5 shows the comparison of the execution time taken by each algorithm. From the results, can observe EDF algorithm performs well in under loaded condition and it takes less time than ACO based algorithm during under loaded conditions. ACO gives better result during overloaded conditions with more execution time. Table 1: The Successive Ratio and Effective CPU Utilization WITH LOAD 1 Load % Successive Ratio % ECU EDF ACO EDF ACO Comparison of Execution Time % ECU EDF % ECU ACO Load Figure 5. Comparison of the Execution time 6. Conclusions This comparison is based on scheduling periodic task on single processor environment and the tasks are pre emptive. EDF algorithm does not perform well when the system is overloaded and ACO based scheduling algorithm takes more execution time in that type of condition- These are the main limitations of both algorithms. During under loaded condition, the execution time taken by the EDF algorithm (i.e. less time) and during overloaded condition, it gives performance of ACO based scheduling algorithm (i.e. more efficiency). In future a new algorithm should be developed to switch automatically between EDF algorithm and ACO based scheduling algorithm to deal overloaded and under loaded conditions. The new algorithm will be very useful when future workload of the system is changeable. November Issue Page 13 of 64 ISSN

7 References [1] Jane W.S. Liu, Real-Time Systems, Pearson Education, India,pp. 121 & 26, [2] J. Liu, Real-Time Systems, Pearson Education, [3] K. Kotecha and A. Shah, ACO based dynamic scheduling algorithm for real-time operating system, Sent to AIPR-08, Florida, [4] G.Saini, Application of fuzzy logic to real-time scheduling, Real TimeConference, 14th IEEE- NPSS, [5] Bank, M., Honig, U., and Schiffmann, W.: An ACO-based approach for scheduling task graphs with communication costs. Proc. Int. Conf. on Parallel Processing (ICPP 05), 2005, pp [6] M. Dorigo and T.Stutzle, Ant Colony Optimization, The MIT Press, Cambridge, 2004 [7] Omolbani Mohamad Rezapour, Amirahmad dehghani and Lee Teang Shui Australian Journal of Basic and Applied Sciences, 4(7): , 2010, INSInet Publication [8] Hyeonjoong Cho, Binoy Ravindran & E. Douglas Jensen Optimal Real-Time Scheduling Algorithm for Multiprocessors Proceedings of the 27th IEEE International Real-Time Systems Symposium (RTSS'06) [9] V. Ramos, F. Muge and P. Pina, Self-organized data and image retrieval as a consequence of interdynamic synergistic relationships in artificial ant colonies, IOS Press, vol. 87, [10] N. Fisher et al., The Non-preemptive Scheduling of Periodic Tasks upon Multiprocessors, Journal of Real-Time Systems, vol. 32, n. 1-2, pp. 9-20, Authors Profile Mrs.M.Kaladevi obtained her Master Degree in Computer Applications from University of Madras, Chennai in And Completed her M.Phil degree in Computer Science from Bharathidasan University. Trichirapalli. At present she is working as Assistant Professor in Master of Computer Applications Department at Vivekanandha College of Arts and Sciences for Women,Elayampalayam,Tiruchengode.. Also attended both national level and international level conferences. Area of interest is Real Time Embedded System. Dr. S. Sathiyabama obtained her M.Sc. Degree in Computer Science from Avinashilingam Deemed University, Coimbatore in She completed her M.Phil. Degree in Computer science from Bharathiyar University, Coimbatore in She obtained her Ph.D.degree from Periyar University in November 2007 in the area of Data Mining. Now she is working as a Professor in Master of Computer Applications Department at K.S.Rangasamy College of Technology, Tiruchengode. Dr. S. Sathiyabama has published more than 30 Research Papers in the various National and International Conferences and Journal in the area of Data Mining. The Periyar, Bharathiar and Bharathidasan Universities recognized her as a research guide for M.Phil. and Ph.D. degree and she is guiding 10 Ph.D. scholars She got the Life Membership in Indian society for Technical Education. Her area of interest includes Classification in Data Mining, Object Oriented databases, Web technology etc. November Issue Page 14 of 64 ISSN

On-line scheduling algorithm for real-time multiprocessor systems with ACO

On-line scheduling algorithm for real-time multiprocessor systems with ACO International Journal of Intelligent Information Systems 2015; 4(2-1): 13-17 Published online January 28, 2015 (http://www.sciencepublishinggroup.com/j/ijiis) doi: 10.11648/j.ijiis.s.2015040201.13 ISSN:

More information

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print), ISSN 0976 6367(Print) ISSN 0976 6375(Online)

More information

Journal of Theoretical and Applied Information Technology 20 th July 2015. Vol.77. No.2 2005-2015 JATIT & LLS. All rights reserved.

Journal of Theoretical and Applied Information Technology 20 th July 2015. Vol.77. No.2 2005-2015 JATIT & LLS. All rights reserved. EFFICIENT LOAD BALANCING USING ANT COLONY OPTIMIZATION MOHAMMAD H. NADIMI-SHAHRAKI, ELNAZ SHAFIGH FARD, FARAMARZ SAFI Department of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad,

More information

An ACO Approach to Solve a Variant of TSP

An ACO Approach to Solve a Variant of TSP An ACO Approach to Solve a Variant of TSP Bharat V. Chawda, Nitesh M. Sureja Abstract This study is an investigation on the application of Ant Colony Optimization to a variant of TSP. This paper presents

More information

AN EFFICIENT LOAD BALANCING APPROACH IN CLOUD SERVER USING ANT COLONY OPTIMIZATION

AN EFFICIENT LOAD BALANCING APPROACH IN CLOUD SERVER USING ANT COLONY OPTIMIZATION AN EFFICIENT LOAD BALANCING APPROACH IN CLOUD SERVER USING ANT COLONY OPTIMIZATION Shanmuga Priya.J 1, Sridevi.A 2 1 PG Scholar, Department of Information Technology, J.J College of Engineering and Technology

More information

Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses

Lecture Outline Overview of real-time scheduling algorithms Outline relative strengths, weaknesses Overview of Real-Time Scheduling Embedded Real-Time Software Lecture 3 Lecture Outline Overview of real-time scheduling algorithms Clock-driven Weighted round-robin Priority-driven Dynamic vs. static Deadline

More information

Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration

Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration 1 Harish H G, 2 Dr. R Girisha 1 PG Student, 2 Professor, Department of CSE, PESCE Mandya (An Autonomous Institution under

More information

Predictable response times in event-driven real-time systems

Predictable response times in event-driven real-time systems Predictable response times in event-driven real-time systems Automotive 2006 - Security and Reliability in Automotive Systems Stuttgart, October 2006. Presented by: Michael González Harbour mgh@unican.es

More information

ANALYSIS OF WORKFLOW SCHEDULING PROCESS USING ENHANCED SUPERIOR ELEMENT MULTITUDE OPTIMIZATION IN CLOUD

ANALYSIS OF WORKFLOW SCHEDULING PROCESS USING ENHANCED SUPERIOR ELEMENT MULTITUDE OPTIMIZATION IN CLOUD ANALYSIS OF WORKFLOW SCHEDULING PROCESS USING ENHANCED SUPERIOR ELEMENT MULTITUDE OPTIMIZATION IN CLOUD Mrs. D.PONNISELVI, M.Sc., M.Phil., 1 E.SEETHA, 2 ASSISTANT PROFESSOR, M.PHIL FULL-TIME RESEARCH SCHOLAR,

More information

Real-Time Scheduling (Part 1) (Working Draft) Real-Time System Example

Real-Time Scheduling (Part 1) (Working Draft) Real-Time System Example Real-Time Scheduling (Part 1) (Working Draft) Insup Lee Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania www.cis.upenn.edu/~lee/ CIS 41,

More information

ISSN: 2321-7782 (Online) Volume 2, Issue 4, April 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: 2321-7782 (Online) Volume 2, Issue 4, April 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 4, April 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at: www.ijarcsms.com

More information

Using Ant Colony Optimization for Infrastructure Maintenance Scheduling

Using Ant Colony Optimization for Infrastructure Maintenance Scheduling Using Ant Colony Optimization for Infrastructure Maintenance Scheduling K. Lukas, A. Borrmann & E. Rank Chair for Computation in Engineering, Technische Universität München ABSTRACT: For the optimal planning

More information

How To Compare Load Sharing And Job Scheduling In A Network Of Workstations

How To Compare Load Sharing And Job Scheduling In A Network Of Workstations A COMPARISON OF LOAD SHARING AND JOB SCHEDULING IN A NETWORK OF WORKSTATIONS HELEN D. KARATZA Department of Informatics Aristotle University of Thessaloniki 546 Thessaloniki, GREECE Email: karatza@csd.auth.gr

More information

CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS

CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS CPU SCHEDULING CPU SCHEDULING (CONT D) Aims to assign processes to be executed by the CPU in a way that meets system objectives such as response time, throughput, and processor efficiency Broken down into

More information

ICS 143 - Principles of Operating Systems

ICS 143 - Principles of Operating Systems ICS 143 - Principles of Operating Systems Lecture 5 - CPU Scheduling Prof. Nalini Venkatasubramanian nalini@ics.uci.edu Note that some slides are adapted from course text slides 2008 Silberschatz. Some

More information

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run

More information

STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1

STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1 STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1 Prajakta Joglekar, 2 Pallavi Jaiswal, 3 Vandana Jagtap Maharashtra Institute of Technology, Pune Email: 1 somanprajakta@gmail.com,

More information

AN APPROACH FOR OBJECT FINDING USING MOBILE ROBOTS BASED ON ACO

AN APPROACH FOR OBJECT FINDING USING MOBILE ROBOTS BASED ON ACO AN APPROACH FOR OBJECT FINDING USING MOBILE ROBOTS BASED ON ACO Mrs. Amita.P. Meshram 1 and Mrs. Smita.R. Kapse 2 1 Department of Computer Technology, Y.C.C.E Hingna Road,Nagpur.16 India. amitameshram@gmail.com

More information

An ACO-based Approach for Scheduling Task Graphs with Communication Costs

An ACO-based Approach for Scheduling Task Graphs with Communication Costs An ACO-based Approach for Scheduling Task Graphs with Communication Costs Markus Bank Udo Hönig Wolfram Schiffmann FernUniversität Hagen Lehrgebiet Rechnerarchitektur 58084 Hagen, Germany {Markus.Bank,

More information

A DISTRIBUTED APPROACH TO ANT COLONY OPTIMIZATION

A DISTRIBUTED APPROACH TO ANT COLONY OPTIMIZATION A DISTRIBUTED APPROACH TO ANT COLONY OPTIMIZATION Eng. Sorin Ilie 1 Ph. D Student University of Craiova Software Engineering Department Craiova, Romania Prof. Costin Bădică Ph. D University of Craiova

More information

A Review on Load Balancing In Cloud Computing 1

A Review on Load Balancing In Cloud Computing 1 www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 4 Issue 6 June 2015, Page No. 12333-12339 A Review on Load Balancing In Cloud Computing 1 Peenaz Pathak, 2 Er.Kamna

More information

A SURVEY ON LOAD BALANCING ALGORITHMS IN CLOUD COMPUTING

A SURVEY ON LOAD BALANCING ALGORITHMS IN CLOUD COMPUTING A SURVEY ON LOAD BALANCING ALGORITHMS IN CLOUD COMPUTING Harshada Raut 1, Kumud Wasnik 2 1 M.Tech. Student, Dept. of Computer Science and Tech., UMIT, S.N.D.T. Women s University, (India) 2 Professor,

More information

Real-Time Software. Basic Scheduling and Response-Time Analysis. René Rydhof Hansen. 21. september 2010

Real-Time Software. Basic Scheduling and Response-Time Analysis. René Rydhof Hansen. 21. september 2010 Real-Time Software Basic Scheduling and Response-Time Analysis René Rydhof Hansen 21. september 2010 TSW (2010e) (Lecture 05) Real-Time Software 21. september 2010 1 / 28 Last Time Time in a real-time

More information

A Survey on Load Balancing Techniques Using ACO Algorithm

A Survey on Load Balancing Techniques Using ACO Algorithm A Survey on Load Balancing Techniques Using ACO Algorithm Preeti Kushwah Department of Computer Science & Engineering, Acropolis Institute of Technology and Research Indore bypass road Mangliya square

More information

Web Mining using Artificial Ant Colonies : A Survey

Web Mining using Artificial Ant Colonies : A Survey Web Mining using Artificial Ant Colonies : A Survey Richa Gupta Department of Computer Science University of Delhi ABSTRACT : Web mining has been very crucial to any organization as it provides useful

More information

W4118 Operating Systems. Instructor: Junfeng Yang

W4118 Operating Systems. Instructor: Junfeng Yang W4118 Operating Systems Instructor: Junfeng Yang Outline Introduction to scheduling Scheduling algorithms 1 Direction within course Until now: interrupts, processes, threads, synchronization Mostly mechanisms

More information

MRI Brain Tumor Segmentation Using Improved ACO

MRI Brain Tumor Segmentation Using Improved ACO International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 1 (2014), pp. 85-90 International Research Publication House http://www.irphouse.com MRI Brain Tumor Segmentation

More information

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput Import Settings: Base Settings: Brownstone Default Highest Answer Letter: D Multiple Keywords in Same Paragraph: No Chapter: Chapter 5 Multiple Choice 1. Which of the following is true of cooperative scheduling?

More information

An Improved Ant Colony Optimization Algorithm for Software Project Planning and Scheduling

An Improved Ant Colony Optimization Algorithm for Software Project Planning and Scheduling An Improved Ant Colony Optimization Algorithm for Software Project Planning and Scheduling Avinash Mahadik Department Of Computer Engineering Alard College Of Engineering And Management,Marunje, Pune Email-avinash.mahadik5@gmail.com

More information

An Efficient Non-Preemptive Real-Time Scheduling

An Efficient Non-Preemptive Real-Time Scheduling An Efficient Non-Preemptive Real-Time Scheduling Wenming Li, Krishna Kavi and Robert Akl Department of Computer Science and Engineering The University of North Texas Denton, Texas 7623, USA {wenming, kavi,

More information

HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS

HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS R. Angel Preethima 1, Margret Johnson 2 1 Student, Computer Science and Engineering, Karunya

More information

Priority-Driven Scheduling

Priority-Driven Scheduling Priority-Driven Scheduling Advantages of Priority-Driven Scheduling Priority-driven scheduling is easy to implement. It does not require the information on the release times and execution times of the

More information

Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum

Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum Scheduling Yücel Saygın These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum 1 Scheduling Introduction to Scheduling (1) Bursts of CPU usage alternate with periods

More information

Real Time Scheduling Basic Concepts. Radek Pelánek

Real Time Scheduling Basic Concepts. Radek Pelánek Real Time Scheduling Basic Concepts Radek Pelánek Basic Elements Model of RT System abstraction focus only on timing constraints idealization (e.g., zero switching time) Basic Elements Basic Notions task

More information

Modified Ant Colony Optimization for Solving Traveling Salesman Problem

Modified Ant Colony Optimization for Solving Traveling Salesman Problem International Journal of Engineering & Computer Science IJECS-IJENS Vol:3 No:0 Modified Ant Colony Optimization for Solving Traveling Salesman Problem Abstract-- This paper presents a new algorithm for

More information

Operating System Aspects. Real-Time Systems. Resource Management Tasks

Operating System Aspects. Real-Time Systems. Resource Management Tasks Operating System Aspects Chapter 2: Basics Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Multimedia Transfer and Control Protocols Quality of

More information

Effective Load Balancing for Cloud Computing using Hybrid AB Algorithm

Effective Load Balancing for Cloud Computing using Hybrid AB Algorithm Effective Load Balancing for Cloud Computing using Hybrid AB Algorithm 1 N. Sasikala and 2 Dr. D. Ramesh PG Scholar, Department of CSE, University College of Engineering (BIT Campus), Tiruchirappalli,

More information

D A T A M I N I N G C L A S S I F I C A T I O N

D A T A M I N I N G C L A S S I F I C A T I O N D A T A M I N I N G C L A S S I F I C A T I O N FABRICIO VOZNIKA LEO NARDO VIA NA INTRODUCTION Nowadays there is huge amount of data being collected and stored in databases everywhere across the globe.

More information

Aperiodic Task Scheduling

Aperiodic Task Scheduling Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2014 年 11 月 19 日 These slides use Microsoft clip arts. Microsoft copyright

More information

Hybrid Algorithm using the advantage of ACO and Cuckoo Search for Job Scheduling

Hybrid Algorithm using the advantage of ACO and Cuckoo Search for Job Scheduling Hybrid Algorithm using the advantage of ACO and Cuckoo Search for Job Scheduling R.G. Babukartik 1, P. Dhavachelvan 1 1 Department of Computer Science, Pondicherry University, Pondicherry, India {r.g.babukarthik,

More information

Optimization and Ranking in Web Service Composition using Performance Index

Optimization and Ranking in Web Service Composition using Performance Index Optimization and Ranking in Web Service Composition using Performance Index Pramodh N #1, Srinath V #2, Sri Krishna A #3 # Department of Computer Science and Engineering, SSN College of Engineering, Kalavakkam-

More information

159.735. Final Report. Cluster Scheduling. Submitted by: Priti Lohani 04244354

159.735. Final Report. Cluster Scheduling. Submitted by: Priti Lohani 04244354 159.735 Final Report Cluster Scheduling Submitted by: Priti Lohani 04244354 1 Table of contents: 159.735... 1 Final Report... 1 Cluster Scheduling... 1 Table of contents:... 2 1. Introduction:... 3 1.1

More information

TEST CASE SELECTION & PRIORITIZATION USING ANT COLONY OPTIMIZATION

TEST CASE SELECTION & PRIORITIZATION USING ANT COLONY OPTIMIZATION TEST CASE SELECTION & PRIORITIZATION USING ANT COLONY OPTIMIZATION Bharti Suri Computer Science Department Assistant Professor, USIT, GGSIPU New Delhi, India bhartisuri@gmail.com Shweta Singhal Information

More information

Optimization of ACO for Congested Networks by Adopting Mechanisms of Flock CC

Optimization of ACO for Congested Networks by Adopting Mechanisms of Flock CC Optimization of ACO for Congested Networks by Adopting Mechanisms of Flock CC M. S. Sneha 1,J.P.Ashwini, 2, H. A. Sanjay 3 and K. Chandra Sekaran 4 1 Department of ISE, Student, NMIT, Bengaluru, 5560 024,

More information

3. Scheduling issues. Common approaches /1. Common approaches /2. Common approaches /3. 2012/13 UniPD / T. Vardanega 23/01/2013. Real-Time Systems 1

3. Scheduling issues. Common approaches /1. Common approaches /2. Common approaches /3. 2012/13 UniPD / T. Vardanega 23/01/2013. Real-Time Systems 1 Common approaches /1 3. Scheduling issues Clock-driven (time-driven) scheduling Scheduling decisions are made beforehand (off line) and carried out at predefined time instants The time instants normally

More information

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Lecture Outline Scheduling periodic tasks The rate monotonic algorithm Definition Non-optimality Time-demand analysis...

More information

Obtaining Optimal Software Effort Estimation Data Using Feature Subset Selection

Obtaining Optimal Software Effort Estimation Data Using Feature Subset Selection Obtaining Optimal Software Effort Estimation Data Using Feature Subset Selection Abirami.R 1, Sujithra.S 2, Sathishkumar.P 3, Geethanjali.N 4 1, 2, 3 Student, Department of Computer Science and Engineering,

More information

Module 6. Embedded System Software. Version 2 EE IIT, Kharagpur 1

Module 6. Embedded System Software. Version 2 EE IIT, Kharagpur 1 Module 6 Embedded System Software Version 2 EE IIT, Kharagpur 1 Lesson 30 Real-Time Task Scheduling Part 2 Version 2 EE IIT, Kharagpur 2 Specific Instructional Objectives At the end of this lesson, the

More information

Real-time scheduling algorithms, task visualization

Real-time scheduling algorithms, task visualization Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2006 Real-time scheduling algorithms, task visualization Kevin Churnetski Follow this and additional works at:

More information

An Ant Colony Optimization Approach to the Software Release Planning Problem

An Ant Colony Optimization Approach to the Software Release Planning Problem SBSE for Early Lifecyle Software Engineering 23 rd February 2011 London, UK An Ant Colony Optimization Approach to the Software Release Planning Problem with Dependent Requirements Jerffeson Teixeira de

More information

OPERATING SYSTEMS SCHEDULING

OPERATING SYSTEMS SCHEDULING OPERATING SYSTEMS SCHEDULING Jerry Breecher 5: CPU- 1 CPU What Is In This Chapter? This chapter is about how to get a process attached to a processor. It centers around efficient algorithms that perform

More information

Real- Time Scheduling

Real- Time Scheduling Real- Time Scheduling Chenyang Lu CSE 467S Embedded Compu5ng Systems Readings Ø Single-Processor Scheduling: Hard Real-Time Computing Systems, by G. Buttazzo. q Chapter 4 Periodic Task Scheduling q Chapter

More information

CPU Scheduling 101. The CPU scheduler makes a sequence of moves that determines the interleaving of threads.

CPU Scheduling 101. The CPU scheduler makes a sequence of moves that determines the interleaving of threads. CPU Scheduling CPU Scheduling 101 The CPU scheduler makes a sequence of moves that determines the interleaving of threads. Programs use synchronization to prevent bad moves. but otherwise scheduling choices

More information

An ant colony optimization for single-machine weighted tardiness scheduling with sequence-dependent setups

An ant colony optimization for single-machine weighted tardiness scheduling with sequence-dependent setups Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 19 An ant colony optimization for single-machine weighted tardiness

More information

Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm

Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm www.ijcsi.org 54 Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm Linan Zhu 1, Qingshui Li 2, and Lingna He 3 1 College of Mechanical Engineering, Zhejiang

More information

CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM

CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM *Shabnam Ghasemi 1 and Mohammad Kalantari 2 1 Deparment of Computer Engineering, Islamic Azad University,

More information

Lecture 3 Theoretical Foundations of RTOS

Lecture 3 Theoretical Foundations of RTOS CENG 383 Real-Time Systems Lecture 3 Theoretical Foundations of RTOS Asst. Prof. Tolga Ayav, Ph.D. Department of Computer Engineering Task States Executing Ready Suspended (or blocked) Dormant (or sleeping)

More information

Real Time Network Server Monitoring using Smartphone with Dynamic Load Balancing

Real Time Network Server Monitoring using Smartphone with Dynamic Load Balancing www.ijcsi.org 227 Real Time Network Server Monitoring using Smartphone with Dynamic Load Balancing Dhuha Basheer Abdullah 1, Zeena Abdulgafar Thanoon 2, 1 Computer Science Department, Mosul University,

More information

Praktikum Wissenschaftliches Rechnen (Performance-optimized optimized Programming)

Praktikum Wissenschaftliches Rechnen (Performance-optimized optimized Programming) Praktikum Wissenschaftliches Rechnen (Performance-optimized optimized Programming) Dynamic Load Balancing Dr. Ralf-Peter Mundani Center for Simulation Technology in Engineering Technische Universität München

More information

Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) Ant Colony Optimization (ACO) Exploits foraging behavior of ants Path optimization Problems mapping onto foraging are ACO-like TSP, ATSP QAP Travelling Salesman Problem (TSP) Why? Hard, shortest path problem

More information

ACO ALGORITHM FOR LOAD BALANCING IN SIMPLE NETWORK

ACO ALGORITHM FOR LOAD BALANCING IN SIMPLE NETWORK ACO ALGORITHM FOR LOAD BALANCING IN SIMPLE NETWORK Mrs Minal.Nerkar Faculty of Dept of Computer Engineering. Bhagyashree Kale,Shivani Bhutada,Chetan Darshale,Poonam Patil Dept of Computer Engineering.

More information

A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN PSO ALGORITHM

A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN PSO ALGORITHM International Journal of Research in Computer Science eissn 2249-8265 Volume 2 Issue 3 (212) pp. 17-23 White Globe Publications A RANDOMIZED LOAD BALANCING ALGORITHM IN GRID USING MAX MIN ALGORITHM C.Kalpana

More information

An Application of Ant Colony Optimization for Software Project Scheduling with Algorithm In Artificial Intelligence

An Application of Ant Colony Optimization for Software Project Scheduling with Algorithm In Artificial Intelligence An Application of Ant Colony Optimization for Software Project Scheduling with Algorithm In Artificial Intelligence 1 Ms.Minal C.Toley, 2 Prof.V.B.Bhagat 1 M.E.First Year CSE P.R.Pote COET, Amravati, Maharashtra,

More information

Module 8. Industrial Embedded and Communication Systems. Version 2 EE IIT, Kharagpur 1

Module 8. Industrial Embedded and Communication Systems. Version 2 EE IIT, Kharagpur 1 Module 8 Industrial Embedded and Communication Systems Version 2 EE IIT, Kharagpur 1 Lesson 37 Real-Time Operating Systems: Introduction and Process Management Version 2 EE IIT, Kharagpur 2 Instructional

More information

Announcements. Basic Concepts. Histogram of Typical CPU- Burst Times. Dispatcher. CPU Scheduler. Burst Cycle. Reading

Announcements. Basic Concepts. Histogram of Typical CPU- Burst Times. Dispatcher. CPU Scheduler. Burst Cycle. Reading Announcements Reading Chapter 5 Chapter 7 (Monday or Wednesday) Basic Concepts CPU I/O burst cycle Process execution consists of a cycle of CPU execution and I/O wait. CPU burst distribution What are the

More information

CPU Scheduling. CPU Scheduling

CPU Scheduling. CPU Scheduling CPU Scheduling Electrical and Computer Engineering Stephen Kim (dskim@iupui.edu) ECE/IUPUI RTOS & APPS 1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling

More information

Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 26 Real - Time POSIX. (Contd.) Ok Good morning, so let us get

More information

Comparison of WCA with AODV and WCA with ACO using clustering algorithm

Comparison of WCA with AODV and WCA with ACO using clustering algorithm Comparison of WCA with AODV and WCA with ACO using clustering algorithm Deepthi Hudedagaddi, Pallavi Ravishankar, Rakesh T M, Shashikanth Dengi ABSTRACT The rapidly changing topology of Mobile Ad hoc networks

More information

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operatin g Systems: Internals and Design Principle s Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles Bear in mind,

More information

CPU Scheduling Outline

CPU Scheduling Outline CPU Scheduling Outline What is scheduling in the OS? What are common scheduling criteria? How to evaluate scheduling algorithms? What are common scheduling algorithms? How is thread scheduling different

More information

On-line Scheduling of Real-time Services for Cloud Computing

On-line Scheduling of Real-time Services for Cloud Computing On-line Scheduling of Real-time Services for Cloud Computing Shuo Liu Gang Quan Electrical and Computer Engineering Department Florida International University Miami, FL, 33174 {sliu5, gang.quan}@fiu.edu

More information

Research on the Performance Optimization of Hadoop in Big Data Environment

Research on the Performance Optimization of Hadoop in Big Data Environment Vol.8, No.5 (015), pp.93-304 http://dx.doi.org/10.1457/idta.015.8.5.6 Research on the Performance Optimization of Hadoop in Big Data Environment Jia Min-Zheng Department of Information Engineering, Beiing

More information

Commonly Used Approaches to Real-Time Scheduling

Commonly Used Approaches to Real-Time Scheduling Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 60 C H A P T E R 4 Commonly Used Approaches to Real-Time Scheduling This chapter provides a brief overview of three commonly

More information

Performance Evaluation of Mobile Agent-based Dynamic Load Balancing Algorithm

Performance Evaluation of Mobile Agent-based Dynamic Load Balancing Algorithm Performance Evaluation of Mobile -based Dynamic Load Balancing Algorithm MAGDY SAEB, CHERINE FATHY Computer Engineering Department Arab Academy for Science, Technology & Maritime Transport Alexandria,

More information

A Bio-inspired Adaptive Job Scheduling Mechanism on a. Computational Grid

A Bio-inspired Adaptive Job Scheduling Mechanism on a. Computational Grid 1IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 26 1 A Adaptive Job Scheduling Mechanism on a Computational Grid Yaohang Li Department of Computer Science, North

More information

ACO Based Dynamic Resource Scheduling for Improving Cloud Performance

ACO Based Dynamic Resource Scheduling for Improving Cloud Performance ACO Based Dynamic Resource Scheduling for Improving Cloud Performance Priyanka Mod 1, Prof. Mayank Bhatt 2 Computer Science Engineering Rishiraj Institute of Technology 1 Computer Science Engineering Rishiraj

More information

A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems

A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems RUPAM MUKHOPADHYAY, DIBYAJYOTI GHOSH AND NANDINI MUKHERJEE Department of Computer

More information

174: Scheduling Systems. Emil Michta University of Zielona Gora, Zielona Gora, Poland 1 TIMING ANALYSIS IN NETWORKED MEASUREMENT CONTROL SYSTEMS

174: Scheduling Systems. Emil Michta University of Zielona Gora, Zielona Gora, Poland 1 TIMING ANALYSIS IN NETWORKED MEASUREMENT CONTROL SYSTEMS 174: Scheduling Systems Emil Michta University of Zielona Gora, Zielona Gora, Poland 1 Timing Analysis in Networked Measurement Control Systems 1 2 Introduction to Scheduling Systems 2 3 Scheduling Theory

More information

An Improved ACO Algorithm for Multicast Routing

An Improved ACO Algorithm for Multicast Routing An Improved ACO Algorithm for Multicast Routing Ziqiang Wang and Dexian Zhang School of Information Science and Engineering, Henan University of Technology, Zheng Zhou 450052,China wzqagent@xinhuanet.com

More information

Network Load Balancing Using Ant Colony Optimization

Network Load Balancing Using Ant Colony Optimization Network Load Balancing Using Ant Colony Optimization Mr. Ujwal Namdeo Abhonkar 1, Mr. Swapnil Mohan Phalak 2, Mrs. Pooja Ujwal Abhonkar 3 1,3 Lecturer in Computer Engineering Department 2 Lecturer in Information

More information

CPU Scheduling. Basic Concepts. Basic Concepts (2) Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems

CPU Scheduling. Basic Concepts. Basic Concepts (2) Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems Basic Concepts Scheduling Criteria Scheduling Algorithms Batch systems Interactive systems Based on original slides by Silberschatz, Galvin and Gagne 1 Basic Concepts CPU I/O Burst Cycle Process execution

More information

Common Approaches to Real-Time Scheduling

Common Approaches to Real-Time Scheduling Common Approaches to Real-Time Scheduling Clock-driven time-driven schedulers Priority-driven schedulers Examples of priority driven schedulers Effective timing constraints The Earliest-Deadline-First

More information

Software Project Planning and Resource Allocation Using Ant Colony Optimization with Uncertainty Handling

Software Project Planning and Resource Allocation Using Ant Colony Optimization with Uncertainty Handling Software Project Planning and Resource Allocation Using Ant Colony Optimization with Uncertainty Handling Vivek Kurien1, Rashmi S Nair2 PG Student, Dept of Computer Science, MCET, Anad, Tvm, Kerala, India

More information

Processor Scheduling. Queues Recall OS maintains various queues

Processor Scheduling. Queues Recall OS maintains various queues Processor Scheduling Chapters 9 and 10 of [OS4e], Chapter 6 of [OSC]: Queues Scheduling Criteria Cooperative versus Preemptive Scheduling Scheduling Algorithms Multi-level Queues Multiprocessor and Real-Time

More information

A SURVEY ON WORKFLOW SCHEDULING IN CLOUD USING ANT COLONY OPTIMIZATION

A SURVEY ON WORKFLOW SCHEDULING IN CLOUD USING ANT COLONY OPTIMIZATION Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 2, February 2014,

More information

Evaluation of Test Cases Using ACO and TSP Gulwatanpreet Singh, Sarabjit Kaur, Geetika Mannan CTITR&PTU India

Evaluation of Test Cases Using ACO and TSP Gulwatanpreet Singh, Sarabjit Kaur, Geetika Mannan CTITR&PTU India Evaluation of Test Cases Using ACO and TSP Gulwatanpreet Singh, Sarabjit Kaur, Geetika Mannan CTITR&PTU India Abstract: A test case, in software engineering is a set of conditions or variables under which

More information

Biological inspired algorithm for Storage Area Networks (ACOSAN)

Biological inspired algorithm for Storage Area Networks (ACOSAN) Biological inspired algorithm for Storage Area Networks (ACOSAN) Anabel Fraga Vázquez 1 1 Universidad Carlos III de Madrid Av. Universidad, 30, Leganés, Madrid, SPAIN afraga@inf.uc3m.es Abstract. The routing

More information

4003-440/4003-713 Operating Systems I. Process Scheduling. Warren R. Carithers (wrc@cs.rit.edu) Rob Duncan (rwd@cs.rit.edu)

4003-440/4003-713 Operating Systems I. Process Scheduling. Warren R. Carithers (wrc@cs.rit.edu) Rob Duncan (rwd@cs.rit.edu) 4003-440/4003-713 Operating Systems I Process Scheduling Warren R. Carithers (wrc@cs.rit.edu) Rob Duncan (rwd@cs.rit.edu) Review: Scheduling Policy Ideally, a scheduling policy should: Be: fair, predictable

More information

Weighted Total Mark. Weighted Exam Mark

Weighted Total Mark. Weighted Exam Mark CMP2204 Operating System Technologies Period per Week Contact Hour per Semester Total Mark Exam Mark Continuous Assessment Mark Credit Units LH PH TH CH WTM WEM WCM CU 45 30 00 60 100 40 100 4 Rationale

More information

Scheduling Allowance Adaptability in Load Balancing technique for Distributed Systems

Scheduling Allowance Adaptability in Load Balancing technique for Distributed Systems Scheduling Allowance Adaptability in Load Balancing technique for Distributed Systems G.Rajina #1, P.Nagaraju #2 #1 M.Tech, Computer Science Engineering, TallaPadmavathi Engineering College, Warangal,

More information

In Proceedings of the First IEEE Workshop on Real-Time Applications, New York, NY, May 1993.

In Proceedings of the First IEEE Workshop on Real-Time Applications, New York, NY, May 1993. In Proceedings of the First IEEE Workshop on Real-Time Applications, New York, NY, May 1993. Probabilistic Job Scheduling for Distributed Real-time Applications Azer Bestavros Dimitrios Spartiotis Computer

More information

A Proposed Scheme for Software Project Scheduling and Allocation with Event Based Scheduler using Ant Colony Optimization

A Proposed Scheme for Software Project Scheduling and Allocation with Event Based Scheduler using Ant Colony Optimization A Proposed Scheme for Software Project Scheduling and Allocation with Event Based Scheduler using Ant Colony Optimization Arjita sharma 1, Niyati R Bhele 2, Snehal S Dhamale 3, Bharati Parkhe 4 NMIET,

More information

Today. Intro to real-time scheduling Cyclic executives. Scheduling tables Frames Frame size constraints. Non-independent tasks Pros and cons

Today. Intro to real-time scheduling Cyclic executives. Scheduling tables Frames Frame size constraints. Non-independent tasks Pros and cons Today Intro to real-time scheduling Cyclic executives Scheduling tables Frames Frame size constraints Generating schedules Non-independent tasks Pros and cons Real-Time Systems The correctness of a real-time

More information

Keywords Load balancing, Dispatcher, Distributed Cluster Server, Static Load balancing, Dynamic Load balancing.

Keywords Load balancing, Dispatcher, Distributed Cluster Server, Static Load balancing, Dynamic Load balancing. Volume 5, Issue 7, July 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Hybrid Algorithm

More information

International Journal of Emerging Technology & Research

International Journal of Emerging Technology & Research International Journal of Emerging Technology & Research An Implementation Scheme For Software Project Management With Event-Based Scheduler Using Ant Colony Optimization Roshni Jain 1, Monali Kankariya

More information

A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing

A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing Liang-Teh Lee, Kang-Yuan Liu, Hui-Yang Huang and Chia-Ying Tseng Department of Computer Science and Engineering,

More information

Objectives. Chapter 5: CPU Scheduling. CPU Scheduler. Non-preemptive and preemptive. Dispatcher. Alternating Sequence of CPU And I/O Bursts

Objectives. Chapter 5: CPU Scheduling. CPU Scheduler. Non-preemptive and preemptive. Dispatcher. Alternating Sequence of CPU And I/O Bursts Objectives Chapter 5: CPU Scheduling Introduce CPU scheduling, which is the basis for multiprogrammed operating systems Describe various CPU-scheduling algorithms Discuss evaluation criteria for selecting

More information

Tasks Schedule Analysis in RTAI/Linux-GPL

Tasks Schedule Analysis in RTAI/Linux-GPL Tasks Schedule Analysis in RTAI/Linux-GPL Claudio Aciti and Nelson Acosta INTIA - Depto de Computación y Sistemas - Facultad de Ciencias Exactas Universidad Nacional del Centro de la Provincia de Buenos

More information

How To Compare Real Time Scheduling To A Scheduled Scheduler On Linux On A Computer System With A Visualization System

How To Compare Real Time Scheduling To A Scheduled Scheduler On Linux On A Computer System With A Visualization System MS project proposal: A comparison of real-time scheduling algorithms using visualization of tasks and evaluation of real-time extensions to Linux Kevin Churnetski Computer Science-RIT 8/21/2003 Abstract:

More information

Operating Systems. III. Scheduling. http://soc.eurecom.fr/os/

Operating Systems. III. Scheduling. http://soc.eurecom.fr/os/ Operating Systems Institut Mines-Telecom III. Scheduling Ludovic Apvrille ludovic.apvrille@telecom-paristech.fr Eurecom, office 470 http://soc.eurecom.fr/os/ Outline Basics of Scheduling Definitions Switching

More information