Hiring a Science Specialist to Improve Elementary Science Instruction Is Just the Beginning:
|
|
- Jared Gilbert
- 2 years ago
- Views:
Transcription
1 Hiring a Science Specialist to Improve Elementary Science Instruction Is Just the Beginning: Supporting Schools to Maximize the Impact of Science Specialists Wendy M. Frazier 1, Donna R. Sterling 1, and Amy V. Bordeaux 2 1 George Mason University 2 Total Learning Research Institute
2 Abstract This study examined the effect of professional development on elementary teachers selfefficacy for science teaching, the quality of science instruction in participating teachers classrooms, elementary teachers content knowledge, the co-planning and co-teaching practices of science specialists and regular classroom teachers, and elementary student outcomes. Using a quasi-experimental design with matched comparison group measures, 28 elementary teachers in an urban school district were assigned to a treatment or control group. Treatment teachers were provided support for two summers and one academic year. Support included science methods instruction in the summers conducted collaboratively by science education and science content faculty, in-class coaching support by a science education faculty member, and instruction during the academic year outside regular school hours by a science education faculty member emphasizing continued science methods instruction and action research strategies to improve science instruction. Data were collected through surveys, content tests, interviews, observations, and state science achievement tests. Data highlight the positive impact of the project on teachers confidence for teaching science, the content knowledge of both teachers and students, and the quantity and quality of science instruction in the classroom while highlighting the importance of providing specific support to schools so that science specialists can be utilized effectively.
3 Hiring a Science Specialist to Improve Elementary Science Instruction Is Just the Beginning: Supporting Schools to Maximize the Impact of Science Specialists Subject/Problem There is an increasing shortage of high school and college students enrolling in advanced coursework in the STEM areas. The result is a growing deficit in the pool of qualified applicants for STEM area careers (CCAWMSETD, 2000). Compounding this problem is the current quality of students science classroom experiences. Research shows that science and mathematics teaching in the United States is failing to produce future generations with strong analytic skills (Martin, et. al, 1997, 2004; Mullis, et. al, 1997, 1998, 2004; NCMSTTC, 2000), indicating a need for stronger science teaching in the pre-collegiate years beginning with the pre-kindergarten through sixth grades (NSRC, 1997; NRC, 2007). Standards for science highlight the necessity for science instruction grounded in children s real world experiences and aligned with community needs and interests so science learning is consistent with the nature of science (AAAS, 1993; NRC, 1996; NRC, 2007) and addresses multicultural perspectives (Banks, 2001; NRC 2007) and social justice issues (Barton, et. al., 2003; Darling-Hammond, French, & Garcia-Lopez, 2002; NRC, 2007). Additionally, recent reports emphasize the need to create curricula that integrate creativity and analytical thinking if the United States is to remain competitive in the global economy (NCEE, 2007; NRC, 2007). Elementary teachers must be able to design creative science experiences that incorporate analytical thinking and are tailored to fit their particular students needs, interests, and abilities. Effectiveness studies indicate that instruction grounded in a real-world application, such as the environment, results in positive student outcomes (Athman & Monroe, 2003; Bartosh, 2003;
4 Coyle, 2005). In the true spirit of science, elementary teachers must be adept at providing science instruction that at times may be unpredictable, and requires creativity. Various studies highlight the importance of teacher training and its impact on children s achievement (Darling-Hammond, 2000, 2003; Ferguson, 1991; Wenglinsky, 2000) and the necessity for training to include preparation in both content and pedagogy (USDOE, 1999). It has been suggested that science specialists at the elementary level may be employed to improve the quality of children s science learning experiences (Abell, 1990; Jones & Edmunds, 2006; Rhoton, Field, & Prather, 1992; Schwartz, Abd-El-Khalick, & Lederman, 2000). This paper contributes to the literature on data-driven suggestions for how to effectively utilize elementary science specialists by providing information about the impact of professional development targeting regular classroom teachers utilization and integration of science specialists into their science teaching efforts. More specifically, this study examined the effect of professional development offered in partnership between a school district and university on elementary teachers self-efficacy for science teaching, the quality of science instruction in participating teachers classrooms, elementary teachers content knowledge, the practices of science specialists and regular classroom teachers with respect to co-planning and co-teaching behaviors, and elementary student outcomes. Design/Procedure As part of a larger city-wide emphasis on science, two urban elementary schools were selected for intensive study and support from a local university. One school was selected because of its poor student scores on state standardized science tests, while the other school was selected because of its students similar demographics and socio-economic status, while managing to perform somewhat better on the state s standardized science tests. Both schools needed to
5 improve, and the future was uncertain for at least one of these two schools. Teachers participated in sustained, intensive professional development for science content knowledge and teaching skills based on the state s standards in science and the students' lowest scoring science areas on the fifth grade science standardized test administered by the state. Special attention was given to how to best assist the participating schools in using their science specialists more effectively and in a more integrated fashion where co-planning and co-teaching were established as part of the school norm. To facilitate using science specialists for embedded professional development of teachers who teach science, the program focused on the following: 1. Science instruction to increase science content knowledge; 2. Observing, analyzing, and piloting active learning strategies which actively engage students in their own learning; 3. Mentoring from science education faculty and the science specialist to increase awareness of effective science teaching; and 4. Conducting collaborative action research in their own classroom to see what helps their students improve academically. For two summers, teachers (N=28) participated in two-week workshops conducted collaboratively by university science education faculty, university science content faculty, and the schools employed science specialists. During the academic year, teachers attended planning meetings with the science specialist and weekly 45-minute science sessions co-teaching science for their students with the science specialist. Teachers also attended sessions offered outside regular school hours to work in grade level teams to conduct collaborative action research on their students learning. There were a total of 156 contact hours per teacher (48 hours per summer for two summers and 40 sessions during the academic year for a total of 60 hours).
6 Throughout the program, university science teacher educators and university scientists mentored the teachers, including the schools science specialists. Designed in collaboration with the school district s science curriculum specialist, participating school principals, and science and science teacher education faculty from the partnering university, the goals of the project were to: 1. raise student achievement in science as well as their interests and attitudes toward science. 2. increase teachers understanding of science content knowledge and skills 3. increase teachers confidence for, and practices in, collaboratively planning and teaching hands-on, inquiry-based science that actively engages students 4. increase teachers understanding of assessing science learning and using data to drive instruction 5. build a network of support and learning community that will provide ongoing support throughout the school year for teachers of science in elementary schools To achieve these goals, the design of the inservice teacher development model utilized a literature base identified in collaboration with the participating school district and science teacher educators involved in the project. Literature spanned the areas of standards-based learning, creativity in teaching, teaching for understanding, use of technology to support teacher creativity, situated learning theory involving a diverse community of support, social cognitive theory to support self-motivation and self-regulation, research on effective professional development, and awareness of diverse perspectives and the culture of science (see Table 1). The evaluation plan utilized a quasi-experimental design with matched comparison group measures. Impact on teachers science content gains were based on pre- and post-tests for two
7 science content tests. To better assess impact, one science content test administered to treatment teachers was additionally administered to a set of matched control teachers. Measures of student impact included a quantitative analysis comparing students prior standardized test scores in science for third and fifth grade students. In addition to state standardized science test scores, teacher-made science tests were developed to measure students content knowledge gains, as well as on-site observations utilizing a standardized instrument. These teacher-made tests were administered to students of treatment teachers and their matched control counterparts. Similarly, impact on teachers self-efficacy for teaching science was measured via a likert-scale instrument (Riggs & Enochs, 1990) that was administered as a pre-post assessment to both treatment and matched control teachers. Impact on teacher practices were observed by completion of an observation sheet based on Constructivist Learning Environment Survey (; Taylor, Fraser, & Fisher, 1997). To gain further insight, open-ended questions for teachers and a case study protocol for science specialists were developed by a team of science teacher educators and the program evaluator to ensure reliability and validity of response. Quantitative data were analyzed using SPSS and Microsoft Excel. Qualitative data were analyzed using Microsoft Excel to assist with the constant comparative process of grounded theory (Glaser, 1978; Glaser & Strauss, 1967; Strauss & Corbin, 1998) and cross-case synthesis (Yin, 2003). As responses were examined, they were coded, tallied, ranked, and analyzed for emergent themes (Creswell, 2008). Findings and Analysis A summary of selected significant quantitative findings and relevant qualitative findings are reported in this paper.
8 Improved Science Content Knowledge Among Teachers and Students As evidenced by content test score results, teachers made significant gains in their science content knowledge in the science areas of focus during training. As compared to their matched control counterparts the difference in the content knowledge of teachers who participated in training was significantly greater than those who did not participate in training (M T = 86%, M C = 69%, t (16) = 2.22, p =.04). Additionally, students of treatment teachers experienced significantly higher gains on teacher-developed science content tests as compared to the students of matched control teachers (M T = 15.7%, M C = 9.1%, t (185) =, p =.03). Increased Teachers Confidence for Teaching Science Quantitative findings revealed that participation in the training corresponded with improvements in teachers confidence levels for teaching science (M T =3.23, M C =3.93, t (19) = 3.96, p =.001). Qualitative findings reveal that teachers who participated in the summer workshops and after school follow-up sessions felt more capable of teaching science, felt more knowledgeable in how to teach science via inquiry, and felt that they were more capable of impacting the science content knowledge of their students. Additionally, qualitative findings from observation of classroom instruction, a review of classroom artifacts, and teachers selfreport indicated that action research projects were an extended opportunity for teachers to apply their knowledge of science content and pedagogy to further advance their confidence for implementing effective science teaching. Formation of a Community of Learners Dedicated to Science Education The teachers increased their participation in two summer workshops and throughout the academic year, and qualitative findings revealed a community of support developing among the teachers and science specialists for science teaching. With the encouragement of university
9 faculty s weekly on-site presence and faculty s modeling of how to co-teach with a science specialist, regular classroom teachers began co-planning and co-teaching with their lead science laboratory teacher on a more regular basis. However, regular classroom teachers attention to these activities was dependent on the extent to which they viewed the science specialist as a leader in their school. As a result of the program, new science fieldtrips were planned and conducted. In addition, teachers ordered and received new supplies and materials that they otherwise would not have had. With the guidance of university faculty, action research projects were conducted during the academic year by teachers on their students performance in science. Workshops and Saturday sessions also gave participating teachers an opportunity to share and reflect on their science teaching practices and learn from each other. Qualitative findings indicated that there was a need across teachers in the project for more structure and support for how the science specialist and elementary generalists would share responsibility for students learning. This need was communicated by both the science laboratory teachers as well as the elementary generalists. Consequently, an organizational framework for curriculum and lesson planning was developed by the participating teachers with support and guidance from university faculty with expertise in elementary science teacher education and research (see Table 2). Qualitative results highlighted teachers reliance on this framework to define their roles in the science planning and teaching process. Contribution to Teaching and Learning Science This study provided evidence of positive impact of professional development efforts on teachers and students content knowledge, teachers science teaching efficacy, and quality of science instruction with respect to co-planning and co-teaching behaviors. Additionally, the
10 study s findings resulted in a series of data-driven suggestions for how school leaders can support the effective use and integration of science specialists to improve the quality and impact of elementary science instruction. These suggestions included: 1. Prepare teachers, staff, and parents for the new program. 2. Establish the role of science laboratory teacher as a leader in the school who will co-plan and co-teach with elementary generalists. 3. Utilize experienced and academically-prepared teachers as the science laboratory teacher. 4. Consider the addition of a paraprofessional as a science laboratory co-teacher. 5. Form an alliance with a local university. 6. Assign a mentor early that fits the specialized needs of science laboratory teachers. 7. Designate adequate space for the science lab room. 8. Provide an adequate budget for supplies and plan for reimbursement of consumables used during instruction. 9. Provide access to curriculum and lesson plans as well as time for curriculum development. 10. Provide latitude to modify and create new programs based on action research findings. Relevance to Science Education Research Community Within the science education research community, members at the intersection of science teacher educators and research struggle to develop, implement, and assess effectiveness of programs designed to support quality science instruction at the elementary level. This study illustrated that quality science instruction does not merely happen once a science specialist has been hired. Teaching science can be a daunting task for elementary teachers, especially those with weak science background experiences. However, the presence of a science specialist in the
11 school does not mean that regular classroom teachers no longer have to teach science. Instead, a community of support is needed to ensure that the resources of a science specialist are effectively utilized. As school districts and school leaders consider the employment of science specialists, clearly there is a need for a more thorough understanding of how effective support programs targeting this special population of teachers function so that their potential can be realized. Using a quasi-experimental matched treatment-control group design, this study examined the mechanism of effectively supporting elementary schools to improve the quality of science instruction in their schools. With more schools turning to science specialists as the answer and continuing emphasis on university-school partnerships to provide professional development support, it is imperative that the science education research community consider what is needed to create professional development programs that support positive, productive interactions at the elementary level among regular classroom teachers, science specialists, and university faculty. This material is based upon work that was supported by No Child Left Behind Act of 2001, Title II, Part B, Mathematics and Science Partnerships P.L Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the state charged with administration of the award or the U.S. Department of Education. References Abell, S. K. (1990). A case for the elementary school science specialist. School Science and Mathematics, 90(4), American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press. Andersson, S. B. (2006). Newly qualified teachers learning related to their use of information and communication technology: A Swedish perspective. British Journal of Educational Technology, 37,
12 Athman, J., & Monroe, M. C. (2003). Environment-based education in Florida high schools: The effects on student critical thinking and achievement motivation. (Paper developed for participating schools only and at this printing is not available for distribution). Gainesville, FL: University of Florida. Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W. H. Freeman and Company. Banks, J. A. (2001). Multicultural education: Historical development, dimensions, and practice. In J. A. Banks & C. A. M. Banks (Eds.), Handbook of research on multicultural education (pp. 3-24). San Francisco: Jossey-Bass. Barton, A. C. (2000). The culture of power and science education: Learning from Miguel. Journal of Research in Science Teaching, 8, Barton, A. C., Ermer, J. L., Burkett, T. A., & Osborne, M. D. (2003). Teaching science for social justice. New York: Teachers College Press. Bartosh, O. (2003). Environmental education as a tool for improving student achievement. Master s thesis, Evergreen State College. Olympia, WA. Bereiter, C., & Scardamalia, M. (2003). Learning to work creatively with knowledge. In E. De Corte, L. Verschaffel, N. Entwistle, & J. van Merriënboer (Eds.), Powerful learning environments: Unravelling basic components and dimensions (pp ). Oxford: Elsevier Science. Bereiter, C., & Scardamalia, M. (2006). Education for the knowledge age: Design-centered models of teaching and instruction. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (pp ). Mahwah, NJ: Erlbaum.
13 Biological Sciences Curriculum Study (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, CO: Author. Available: FILE/Appendix%20D.pdf Brown, B. A. (2004). Discursive identity: Assimilation into the culture of science and its implications for minority students. Journal of Research in Science Teaching, 44, Congressional Commission on the Advancement of Women and Minorities in Science, Engineering and Technology Development (2000). Land of plenty: Diversity as America s competitive edge in science, engineering, and technology. Available: Coyle, K. (2005). Environmental literacy in America: What ten years of NEETF/Roper research and related studies say about environmental literacy in the U.S. Washington, DC: The National Environmental Education & Training Foundation (NEETF). Darling-Hammond, L. (2000). Teacher quality and student achievement: A review of state policy evidence. Educational Policy Analysis Archives, 8(1). Available: Darling-Hammond, L. (2003). Keeping good teachers: Why it matters, what leaders can do. Educational Leadership, 60(8), Darling-Hammond, L., French, J., & Garcia-Lopez, S. P. (Eds.) (2002). Learning to teach for social justice. New York: Teachers College Press. Feldman, D., Csikszentmihalyi, M., & Gardner, H. (1994). Changing the world: A framework for the study of creativity. Westport, CT: Praeger Publishers.
14 Ferguson, R. F. (1991). Paying for public education: New evidence on how and why money matters. Harvard Journal on Legislation, 28, Frazier, W. M., & Sterling, D. R. (2008). Motor mania: Revving up for technological design. The Technology Teacher, 67(5), Guilford, J. P. (1950). Creativity. American Psychologist, 5, Guskey, T. R. (1995). Professional development in education: In search of the optimal mix. In T. R. Guskey & M. Huberman (Eds.), Professional development in education: New paradigms and practices (pp ). New York: Teachers College Press. Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K. C. Wearne, D., Murray, H., Olivier, A., & Human, P. (1997). Making sense. Portsmouth, NH: Heinemann. Jones, M. G., & Edmunds, J. (2006). Models of elementary science instruction: Roles of specialist teachers. In K. Appleton (Ed.), Elementary science teacher education: International perspectives on contemporary issues and practice (pp ). Mahwah, NJ: Lawrence Erlbaum Associates. Kaufman, J. C., & Baer, J. (Eds.) (2006). Creativity and reason in cognitive development. New York: Cambridge University Press. Lave, J. (1988). Cognition in practice: Mind, mathematics, and culture in everyday life. Cambridge, UK: Cambridge University Press. Lave, J., & Wenger, E. (1990). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press. Lemke, J. L. (2001). Articulating communities: Sociocultural perspectives on science education. Journal of Research in Science Teaching, 38,
15 Lubart, T. I. (1994). Creativity. In R. J. Sternberg (Ed.), Thinking and problem solving (pp ). San Diego, CA: Academic Press. Martin, M. O., Mullis, I. V. S., Beaton, A. E., Gonzalez, E. J., Smith, T. A., & Kelly, D. L. (1997). Science achievement in the primary school years: IEA s third international mathematics and science study. Chestnut Hill, MA: Boston College Center for the Study of Testing, Evaluation, and Educational Policy [Online]. Available: Martin, M. O., Mullis, I. V. S., Gonzalez, E. J., & Chrostowski, S. J. (2004). Findings from IEA s trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College. Morgan, T. (1993). Technology: An essential tool for gifted and talented education. Journal for the Education of the Gifted, 16, Mullis, I. V. S., Martin, M. O., Beaton, A. E., Gonzalez, E. J., Kelly, D. L., & Smith, T. A. (1997). Mathematics achievement in the primary school years: IEA s third international mathematics and science study. Chestnut Hill, MA: Boston College Center for the Study of Testing, Evaluation, and Educational Policy [Online]. Available: Mullis, I. V. S., Martin, M. O., Beaton, A. E., Gonzalez, E. J., Kelly, D. L., & Smith, T. A. (1998). Mathematics and science achievement in the final year of secondary school: IEA s third international mathematics and science study. Chestnut Hill, MA: Boston College Center for the Study of Testing, Evaluation, and Educational Policy [Online]. Available:
16 Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., & Chrostowski, S. J. (2004). Findings from IEA s trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College. National Center on Education and the Economy (2007). Touch choices or tough times: The report of the new commission on the skills of the American workforce. Available: National Commission on Mathematics and Science Teaching for the 21 st Century. (2000). Before it s too late. U.S. Department of Education [Online]. Available: National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author. National Research Council. (1996). National science education standards. Washington, DC: National Academy Press. National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Committee on Science Learning, Kindergarten Through Eighth Grade. Richard A. Duschl, Heidi A. Schweingruber, and Andrew W. Shouse, Editors. Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press. National Science Research Center (1997). Science for all children: A guide to improving elementary science in your district. Washington, DC: National Academy Press. Rhoton, J., Field, M. H., & Prather, J. P. (1992). An alternative to the elementary school science specialist. Journal of Elementary Science Education, 4(1),
17 Riggs, I., & Enochs, L. (1990). Towards the development of an elementary teacher s science teaching efficacy belief statement. Science Education, 74, Schwartz, R. S., Abd-El-Khalick, F., & Lederman, N. G. (2000). Achieving the reforms vision: The effectiveness of a specialists-led elementary science program. School Science and Mathematics, 100(4), Simonton, D. K. (2006). Creative genius, knowledge, and reason. In J. C. Kaufman & J. Bauer (Eds.), Creativity and Reason in Cognitive Development (pp ). New York: Cambridge University Press. Sterling, D. R. (1997, March). Stages of conceptual change that enable teachers to adopt a student-centered approach to hands-on, inquiry-based teaching. Paper presented at the annual conference of the National Association for Research in Science Teaching, Oak Brook, IL. Sterling, D. R. (2000, April). Strategies enabling interdisciplinary teacher teams to develop and implement standards-based teaching plans. Paper presented at the annual conference of the National Association for Research in Science Teaching, New Orleans, LA. Sterling, D. R. (2001, March). Strategies enabling collaborative teacher teams to assess student understanding of science. Paper presented at the annual conference of the National Association for Research in Science Teaching, St. Louis, MO. Sterling, D. R. (2008). Assessing student presentations from three perspectives. Science Scope 31(5) Sterling, D. R., & Frazier, W. M. (2006). Collaboration with community partners. The Science Teacher 73(4), Sternberg, R. J. (1999). Handbook of creativity. New York: Cambridge University Press.
18 Sternberg, R. J., & Lubart, T. I. (1991). An investment theory of creativity and its development. Human Development, 34(1), Sternberg, R. J., & Lubart, T. I. (1995). Defying the crowd. New York: Free Press. Taylor, P. C., Fraser, B. J., & Fisher, D. L. (1997). Monitoring constructivist classroom learning environments. International Journal of Educational Research, 27(4), Torrance, E. P. (1962). Guiding creative talent. Englewood Cliffs, NJ: Prentice-Hall. U.S. Department of Education, Office of the Under Secretary (1999). Designing effective professional development: Lessons from the Eisenhower program (No. 99-3). Washington, DC: U.S. Government Printing Office. Wenglinsky, H. (2000). How teaching matters: Bringing the classroom back into discussions of teacher quality. Princeton, NJ: Educational Testing Service. Available: Wiggins, G., & McTighe, J. (1998). Understanding by design. Alexandria, VA: Association for Supervision and Curriculum Development. Wiggins, G., & McTighe, J. (2007). Schooling by design: Mission, action, and achievement. Alexandria, VA: Association for Supervision and Curriculum Development. Vygotsky, L. S. (1962). Thought and language. Cambridge, MA: MIT Press. Zimmerman, B. J. (2001). Theories of self-regulated learning and academic achievement: An overview and analysis. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and academic achievement: Theoretical perspectives (pp. 1-65). Mahwah, NJ: Lawrence Erlbaum Associates.
19 Table 1 Literature base for the inservice teacher professional development model Theme Resources used Standards-based learning AAAS, 1993; NCTM, 2000; NRC, 1996 Creativity in teaching Bereiter & Scardamalia, 2003, 2006; Feldman, Csikszentmihalyi, & Gardner, 1994; Guilford, 1950; Kaufman & Baer, 2006; Lubart, 1994; Simonton, 2006; Sternberg, 1999; Sternberg & Lubart, 1991, 1995; Torrance, 1962 Teaching for understanding Hiebert, et. al., 1997; Sterling, 2001, 2008; Wiggins & McTighe, 1998; 2007 Use of technology to support teacher creativity Andersson, 2006; Frazier & Sterling, 2008; Morgan, 1993 Situated learning theory involving a collaborative, productive community of participants with a wide range of expertise Social cognitive theory to develop selfmotivated and self-regulated teachers Best practices research on effective teaching and professional development programs, which indicates the importance of a collective sense of commitment and responsibility for serving children Awareness of diverse perspectives and the culture of science Lave, 1988; Lave & Wenger, 1990; Sterling & Frazier, 2006 Bandura, 1997; Zimmerman, 2001 Guskey, 1995; Sterling, 1997, 2000; USDOE, 1999 Barton, 2000; Brown, 2004; Lemke, 2001; Vygotsky, 1962
20 Table 2 Model for an Effective Elementary Science Program Instructional Phase and Purpose (5-E Model, BSCS, 2006) Engage Introduce and spark children s interest in topic through asking a question, presenting a problem, or sharing a discrepant event Planning Implementation Location Regular classroom teacher and science laboratory teacher Regular classroom teacher Regular classroom Explore Use hands-on materials to concretely observe and experience key aspects of topic Regular classroom teacher and science laboratory teacher Regular classroom teacher Regular classroom Explain Generate and provide explanations of science concepts based on experiences in previous phases through input from teacher, fellow students, textbook, and/or technology Science laboratory teacher(s) Science laboratory teacher(s) Laboratory Elaborate Apply and refine new knowledge to new situations via continuing observations, design of experiments, and interactions with fellow students Science laboratory teacher(s) with classroom teacher Science laboratory teacher(s) with classroom teacher Begin in laboratory, finish in classroom Evaluate Illustrate new understandings and skills through teacher and student-directed performance Classroom teacher with input from science laboratory teacher(s) Classroom teacher Regular classroom
PROSPECTIVE MIDDLE SCHOOL TEACHERS KNOWLEDGE IN MATHEMATICS AND PEDAGOGY FOR TEACHING - THE CASE OF FRACTION DIVISION
PROSPECTIVE MIDDLE SCHOOL TEACHERS KNOWLEDGE IN MATHEMATICS AND PEDAGOGY FOR TEACHING - THE CASE OF FRACTION DIVISION Yeping Li and Dennie Smith Texas A&M University, U.S.A. In this paper, we investigated
Designing a Discussion: Teacher as Designer
Designing a Discussion: Teacher as Designer Margret A. Hjalmarson Purdue University For whole-class discussions, teachers need methods for orchestrating them with their students. This
MSP Project Name: Partnership to Improve Student Achievement in Physical Science: Integrating STEM Approaches (PISA 2 )
Abstract Name Teacher Professional Development Programs in Grades 3-8: Promoting Teachers and Students Content Knowledge in Science and Engineering MSP Project Name: Partnership to Improve Student Achievement
THE FRAMEWORK FOR INSTRUCTIONAL COACH ENDORSEMENT GUIDELINES PENNSYLVANIA DEPARTMENT OF EDUCATION
THE FRAMEWORK FOR INSTRUCTIONAL COACH ENDORSEMENT GUIDELINES PENNSYLVANIA DEPARTMENT OF EDUCATION TABLE OF CONTENTS Definition of an Endorsement Certificate... 3 Introduction to Instructional Coach Endorsement
Equity for all Students Economic Development
The New Illinois Learning Standards Incorporating the Next Generation Science Standards (NILS-Science) Illinois Vision of K-12 Science Education All Illinois K-12 students will be better prepared for entrance
Evaluation Framework for Engineering Education Curriculum: a Review of Engineering
Evaluation Framework for Engineering Education Curriculum: a Review of Engineering is Elementary Meagan Ross 11/6/2010 HOW TO CITE THIS ARTICLE Ross, Meagan. (2010) Evaluation Framework for Engineering
Striving for Success: Teacher Perspectives of a Vertical Team Initiative
VOLUME 16 NUMBER 3, 2006 Striving for Success: Teacher Perspectives of a Vertical Team Initiative Dr. Lisa Bertrand Educational Administration and Counseling Southeast Missouri State University Dr. Ruth
William Michael Dwyer 3900 Parkwood St Nacogdoches, TX 75965 (760) 218-9422 cell wdwyerw@suddenlink.net. Education
Education University of Wyoming, Laramie Course Work toward MS, Astronomy Teaching, 2009 University of Florida, Gainesville Ed.D., Instruction & Curriculum, 1998 Specialization in Science and Technology
Section on Statistical Education JSM 2009. 1. Literature Review
On the Importance and Measurement of Pre-Service Teachers' Efficacy to Teach Statistics: Results and Lessons Learned from the Development and Testing of a GAISE- Based Instrument Leigh M. Harrell 1, Rebecca
GEORGIA STANDARDS FOR THE APPROVAL OF PROFESSIONAL EDUCATION UNITS AND EDUCATOR PREPARATION PROGRAMS
GEORGIA STANDARDS FOR THE APPROVAL OF PROFESSIONAL EDUCATION UNITS AND EDUCATOR PREPARATION PROGRAMS (Effective 9/01/08) Kelly Henson Executive Secretary Table of Contents Standard 1: Candidate Knowledge,
Teachers as Learners: Elements of Effective Professional Development
Teachers as Learners: Elements of Effective Professional Development Kathy A. Dunne In this age of standards, a primary focus in education has become establishing benchmarks for knowledge and skills for
professional development design
professional development design The ArtsLiteracy Project professional development design ArtsLiteracy offers a range of professional development possibilities for your school or organization from presentations,
Leadership and Learning: The Journey to National Accreditation and Recognition
VOLUME 31, NUMBER 4, 2013 Leadership and Learning: The Journey to National Accreditation and Recognition Lisa Bertrand, EdD Professor and Program Coordinator Department of Educational Leadership and Counseling
Darling-Hammond, L. Reframing the School Reform Agenda: Developing Capacity for School Transformation. Phi Delta Kappan, 74(10), 752-761: 1993.
Research Bibliography for Measuring Up to the Florida Sunshine State Standards Research on Leadership / Administration / Child Development / Assessment Allington, R. L. & Walmsley, S. A. Eds. No Quick
Jennifer Durham, Ph.D.
Jennifer Durham, Ph.D. 2318 North Quantico Street Arlington, VA 22205 703.869.2140 durhams@mac.com EDUCATION Ph.D. Education 2010 George Mason University Fairfax, Virginia Major: Special Education, Minor:
HR 2272 Conference Report STEM Education Provisions Summary
HR 2272 Conference Report STEM Education Provisions Summary Title I Office of Science and Technology Policy (OSTP) Directs the President to convene a National Science and Technology Summit not more than
Self-Reflection Teaching. Susan M. Blunck, Ph.D. Assistant Clinical Professor Department of Education UMBC
Self-Reflection Teaching Susan M. Blunck, Ph.D. Assistant Clinical Professor Department of Education UMBC 2 Self Reflection Teaching Effective teaching is not about what we give or do to our students.
Titles in the NCETE Library Last Update September 21, 2009
Titles in the NCETE Library Last Update September 21, 2009 American Society for Engineering Education. (2007) Proceedings, First International Conference on Research in Engineering Education. Honolulu,
Curriculum and Instruction: A 21st Century Skills Implementation Guide
Curriculum and Instruction: A 21st Century Skills Implementation Guide Produced by To succeed in college, career and life in the 21st century, students must be supported in mastering both content and skills.
College Laboratory Schools Planning Grants
College Laboratory Schools Planning Grants Lawrence D. Wilder, Jr. Assistant Secretary of Education January 9, 2014 Planning Grant Awards GRANT AMOUNTS George Mason University ($145,500) James Madison
to encourage, support, monitor, publicize, raise funds for, and administer current and future initiatives in pre-college education;
CIPCE Center for Initiatives in Pre-College Education Rensselaer Polytechnic Institute Lester Rubenfeld, Director (518) 276-6906; (email) cipce@rpi.edu; (FAX) 276-2113 110 8th Street, CII 9217, Troy, NY
PROFESSIONAL DEVELOPMENT: A VISION FOR SAUDI SCIENCE TEACHERS
PROFESSIONAL DEVELOPMENT: A VISION FOR SAUDI SCIENCE TEACHERS Hiya Almazroa Pringcess Noura Bint Abdulrahman University, Saudi Arabia Abstract: Professional development is a significant mechanism for maintaining
AND LEARNING 21st Century Teaching and Learning
21ST CENTURY TEACHING AND LEARNING 21st Century Teaching and Learning Dr. Grace Surdovel, Director of Master's Programs/Faculty of Practice The Master of Science in Education with a major in 21st Century
EDUC 605 Curriculum Development and Assessment.. 3 cr
MASTER OF ARTS IN EDUCATION The Master of Arts in Education degree program combines online learning with practical and applied learning in the classroom. The master s candidate must earn and successfully
Partners in. Preparation. A Survey
Partners in : A Survey of Educators & Education Programs Teacher training and school systems must join together to fully prepare aspiring for their first day on the job. Louisiana students are just as
School District of Janesville
School District of Janesville Background The American Recovery and Reinvestment Act of 2009 (ARRA) included a $650 million allocation in ESEA Title II, Part D, commonly referred to as the Enhancing Education
Engineering our Future New Jersey: Partnerships, the Critical Element
Engineering our Future New Jersey: Partnerships, the Critical Element Elisabeth McGrath, Stevens Institute of Technology Dawna Schultz, Stevens Institute of Technology Abstract: Engineering Our Future
The Effective Mathematics Classroom
What does the research say about teaching and learning mathematics? Structure teaching of mathematical concepts and skills around problems to be solved (Checkly, 1997; Wood & Sellars, 1996; Wood & Sellars,
Communities of Practice
Southwest Minnesota State University Teacher Education Conceptual Framework Communities of Practice Investigating Learning and Teaching Marshall, Minnesota 56258 The Vision: Communities of practice investigating
M.A. in School Counseling / 2015 2016
M.A. in School Counseling / 2015 2016 Course of Study for the Master of Arts in School Counseling Initial License (Pre K 8 or 5 12) Candidates for the degree of Master of Arts in School Counseling are
A Sustained Professional Development Partnership in an Urban Middle School Abstract Introduction Purpose
A Sustained Professional Development Partnership in an Urban Middle School Cathy Liebars, The College of New Jersey liebars@tcnj.edu Abstract This paper describes a sustained professional development project,
PROJECT DESCRIPTION PROJECT GOALS
Endeavor Science Teaching Certificate Project Administered by U.S. Satellite Laboratory, Inc. Cooperative Agreement Year III Report Katherine Bender, Project Manager NASA Goddard Space Flight Center PROJECT
Chapter 6: Hiring and placing coaches
Tool 6.1 Teacher on special assignment/ elementary instructional coach job description 6.2 High school language arts instructional coach job description and responsibilities Purpose Use this sample job
Pre-Requisites EDAM-5001 Early Literacy Guiding Principles and Language
. EDAM EDAM-5001. EARLY LITERACY: GUIDING PRINCIPLES AND LANGUAGE DEVELOPMENT This course is the prerequisite for all other courses in the Early Childhood Literacy program. It outlines the philosophical
READING WITH. Reading with Pennsylvania Reading Specialist Certificate
READING WITH PENNSYLVANIA READING SPECIALIST CERTIFICATE Reading with Pennsylvania Reading Specialist Certificate Program Coordinator: Ms. Anne Butler The Master of Science degree in Education with a concentration
EXPLORING ATTITUDES AND ACHIEVEMENT OF WEB-BASED HOMEWORK IN DEVELOPMENTAL ALGEBRA
EXPLORING ATTITUDES AND ACHIEVEMENT OF WEB-BASED HOMEWORK IN DEVELOPMENTAL ALGEBRA Kwan Eu Leong Faculty of Education, University of Malaya, Malaysia rkleong@um.edu.my Nathan Alexander Columbia University
JENNIFER FOX. Jennifer Fox EDUCATION TEACHER DEVELOPMENT EXPERIENCE
JENNIFER FOX EDUCATION Masters of Education George Mason University May 2009 Emphasis: Special Education Bachelor of Arts Susquehanna University May 2007 Major(s): Journalism and Political Science; Minor:
GOGOT SUHARWOTO AND MAGGIE NIESS Oregon State University Corvallis, OR USA suharwog@onid.orst.edu and niessm@onid.orst.edu
How Do Subject Specific Teacher Preparation Program that Integrate Technology Throughout the Courses Support the Development of Mathematics Preservice Teachers' TPCK (Technology Pedagogical Content Knowledge)?
MARZANO SCHOOL LEADERSHIP EVALUATION MODEL
TEACHER & LEADERSHIP EVALUATION MARZANO SCHOOL LEADERSHIP EVALUATION MODEL Prepared by Learning Sciences Marzano Center Center for Teacher and Leadership Evaluation April 2012 1 TEACHER & LEADERSHIP EVALUATION
Expanding Distance Learning Through Videoconferencing. Joan Hanor, Ph.D. Professor California State University San Marcos
Expanding Distance Learning Through Videoconferencing Joan Hanor, Ph.D. Professor California State University San Marcos Katherine Hayden, Ed.D. Associate Professor California State University San Marcos
leaders Master of Education Leadership in Reading UNIVERSITY OF SIOUX FALLS RAPID CITY AREA SCHOOLS
leaders UNIVERSITY OF SIOUX FALLS RAPID CITY AREA SCHOOLS Master of Education Leadership in Reading BECOME AN INSTRUCTIONAL LEADER IN YOUR CLASSROOM AND SCHOOL. l e a r n Desire to learn. At the University
St. Charles School District. Counselor Growth Guide and. Evaluation Documents
St. Charles School District Growth Guide and Evaluation Documents 2014-2015 City of St. Charles School District MISSION The City of St. Charles School District will REACH, TEACH, and EMPOWER all students
Job-Embedded Graduate Education for Teachers: Working Intensively in High Needs Schools
130 Job-Embedded Graduate Education for Teachers: Working Intensively in High Needs Schools Raquel Munarriz-Diaz, Magdalena Castañeda, and Phillip Poekert University of Florida, USA Abstract: The researchers
A STUDY ON MATHEMATICS TEACHERS USE OF TEXBOOKS IN INSTRUCTIONAL PROCESS
A STUDY ON MATHEMATICS TEACHERS USE OF TEXBOOKS IN INSTRUCTIONAL PROCESS Meriç Özgeldi 1, Erdinç Çakıroğlu 2 1 Mersin University, 2 Middle East Technical University This paper provides an analysis of mathematics
Students Track Their Own Learning with SAS Data Notebook
Students Track Their Own Learning with SAS Data Notebook Lucy Kosturko SAS Institute, Inc. Lucy.Kosturko@sas.com Jennifer Sabourin SAS Institute, Inc. Jennifer.Sabourin@sas.com Scott McQuiggan SAS Institute,
Elementary and Secondary Teacher Leadership. Technology Applications in Education
Elementary and Secondary Teacher Leadership Technology Applications in Education Master's in Curriculum & Instruction Information and Learning Technologies Program Advising Handbook Academic Advisor Jannette
Using a Practice-based Hiring Process Supports Coaches to Support Teachers
Using a Practice-based Hiring Process Supports Coaches to Support Teachers by Kathleen Ann McCarthy Donna DiPrima Bickel Nancy Artz institute for learning learning research and development center university
Elementary and Secondary Teacher Leadership. Technology Applications in Education
Elementary and Secondary Teacher Leadership Technology Applications in Education Master's in Curriculum & Instruction Information and Learning Technologies Program Advising Handbook Academic Advisor Jannette
Requirements EDAM-5002. WORD STUDY K-3: PRINT AWARENESS, LETTER KNOWLEDGE, PHONICS, AND HIGH FREQUENCY WORDS
LETTER OF ENDORSEMENT: TEACHER LEADERSHIP AND INSTRUCTIONAL COACHING Requirements Dr. Grace Surdovel, Director of Master's Programs/Faculty of Practice The Letter of Endorsement in Teacher Leadership and
Position Statement on English Language Arts Education Connecticut State Board of Education December 3, 2008
Position Statement on English Language Arts Education Connecticut State Board of Education December 3, 2008 The Connecticut State Board of Education believes a high-quality, comprehensive prekindergarten-12
School of Education MASTER OF ARTS IN TEACHING. Master of Arts in Teaching
School of Education MASTER OF ARTS IN TEACHING Master of Arts in Teaching 2012-2014 The Master of Arts in Teaching Program The Master of Arts in Teaching program is designed for: 1. A person with an appropriate
A SURVEY TO ASSESS THE IMPACT OF TABLET PC-BASED ACTIVE LEARNING: PRELIMINARY REPORT AND LESSONS LEARNED
A SURVEY TO ASSESS THE IMPACT OF TABLET PC-BASED ACTIVE LEARNING: PRELIMINARY REPORT AND LESSONS LEARNED Edward Price Department of Physics California State University San Marcos San Marcos, CA, USA eprice@csusm.edu
Name and address of University: College of Education University of Central Florida 4000 Central Florida Boulevard Orlando, FL 32816-1250
Name of Program: Lockheed Martin/ UCF Academy for Mathematics and Science Name and address of University: College of Education University of Central Florida 4000 Central Florida Boulevard Orlando, FL 32816-1250
Editorial: Continuing the Dialogue on Technology and Mathematics Teacher Education
Thompson, D., & Kersaint, G. (2002). Editorial: Continuing the Dialogue on Technology and Mathematics Teacher Education. Contemporary Issues in Technology and Teacher Education [Online serial], 2(2), 136-143.
AN INNOVATIVE INTEGRATED MATHEMATICS, SCIENCE, AND TECHNOLOGY EDUCATION TEACHER CERTIFICATION PROGRAM: CHARACTERISTICS AND FORMATIVE EVALUATION
AN INNOVATIVE INTEGRATED MATHEMATICS, SCIENCE, AND TECHNOLOGY EDUCATION TEACHER CERTIFICATION PROGRAM: CHARACTERISTICS AND FORMATIVE EVALUATION Donna F. Berlin and Arthur L. White The Ohio State University,
Position Statement on Science Education
Connecticut State Board of Education Hartford Position Statement on Science Education Adopted September 3, 2008 The Connecticut State Board of Education regards scientific literacy as evidence of a high-quality
Engaging Students for Optimum Learning Online. Informing the Design of Online Learning By the Principles of How People Learn
Engaging Students for Optimum Learning Online Informing the Design of Online Learning By the Principles of How People Learn What Is Engagement? As early as 1995, student engagement was "the latest buzzword
21 st Century Curriculum and Instruction
21 st Century Curriculum and Instruction The relationship between curriculum and instruction is obviously a very close one. Curriculum is essentially a design, or roadmap for learning, and as such focuses
The University of Arizona
The University of Arizona FORMAT AND GUIDELINES FOR GRADUATE CERTIFICATE APPROVAL Directions: 1. Provide information regarding the proposed graduate certificate in the format requested on the attached
To expand teachers use of a variety of resources to improve instruction
Tool 5.1 Coaching roles Role Purpose Example Resource provider To expand teachers use of a variety of resources to improve instruction Gathers information and/or resources (articles, materials, etc.) for
A Self and Peer Assessment Intervention in Mathematics Content Courses for Pre-Service Elementary School Teachers Xin Ma, Richard Millman, Matt Wells
A Self and Peer Assessment Intervention in Mathematics Content Courses for Pre-Service Elementary School Teachers Xin Ma, Richard Millman, Matt Wells University of Kentucky Introduction We explored in
Educational Leadership and Policy Studies Ritchie Program for School Leaders & Executive Leadership for Successful Schools (ELSS)
Contact: Susan Korach susan.korach@du.edu Morgridge Office of Admissions edinfo@du.edu Lead in Denver www.leadindenver.com Educational Leadership and Policy Studies Ritchie Program for School Leaders &
A LONGITUDINAL ANALYSIS OF STATE MATHEMATICS SCORES FOR OKLAHOMA SCHOOLS USING SAXON MATH
A LONGITUDINAL ANALYSIS OF STATE MATHEMATICS SCORES FOR OKLAHOMA SCHOOLS USING SAXON MATH Report Number 363 March 2009 Advisory Board: Michael Beck, President Beck Evaluation & Testing Associates, Inc.
Math TLC. MSP LNC Conference Handout. The Mathematics Teacher Leadership Center. MSP LNC Conference Handout. !!! Math TLC
The Mathematics Teacher Leadership Center The Mathematics Teacher Leadership Center () A Mathematics and Science Partnership Serving Northern Colorado and Wyoming! 1! Vision The Mathematics Teacher Leadership
Principal Practice Observation Tool
Principal Performance Review Office of School Quality Division of Teaching and Learning Principal Practice Observation Tool 2014-15 The was created as an evidence gathering tool to be used by evaluators
Revisioning Graduate Teacher Education in North Carolina Master of Arts in Elementary Education Appalachian State University
Revisioning Graduate Teacher Education in North Carolina Master of Arts in Elementary Education Appalachian State University A. A description of how the proposed program has been revisioned to reflect
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
Master of Science in Early Childhood Education Singapore, 2004 2005
Master of Science in Early Childhood Education Singapore, 2004 2005 Sponsored by Wheelock College s Center for International Education, Leadership, and Innovation and RTRC Asia in Singapore Background
Resource Guide for High School Transitions:
Resource Guide for High School Transitions: Annotated Bibliography Harvard Family Research Project June 2011 For questions or comments about this paper, email hfrp_pubs@gse.harvard.edu 2011 President and
Department of. Curriculum, Foundations, and Reading. Curriculum, Foundations, and Reading. Degrees. Endorsement. Doctoral Degrees
Georgia Southern University 1 Department of Curriculum, Foundations, and Reading The Department of Curriculum, Foundations, and Reading provides a service function to all other programs in the College.
STUDENT HANDBOOK. Master of Education in Early Childhood Education, PreK-4 and Early Childhood Education Certification Programs
Master of Education in Early Childhood Education, PreK-4 and Early Childhood Education Certification Programs STUDENT HANDBOOK Lincoln University Graduate Education Program 3020 Market Street Philadelphia,
GRADUATE PROGRAM CURRICULUM
GRADUATE PROGRAM CURRICULUM COLLEGE OF EDUCATION & HUMAN SERVICES Dr. Hank Weddington, Dean Dr. Kim Matthews, Chair SCHOOL OF EDUCATION MASTER OF ARTS IN COMMUNITY COLLEGE ADMINISTRATION OFFERED IN ASHEVILLE
Master of Arts Curriculum & Instruction
COE Vision The College of Education is a premier learning community of teachers, leaders, and counselors who contribute positively to a global society. COE Mission The College of Education prepares skilled
ASU College of Education Course Syllabus ED 4972, ED 4973, ED 4974, ED 4975 or EDG 5660 Clinical Teaching
ASU College of Education Course Syllabus ED 4972, ED 4973, ED 4974, ED 4975 or EDG 5660 Clinical Teaching Course: ED 4972, ED 4973, ED 4974, ED 4975 or EDG 5660 Credit: 9 Semester Credit Hours (Undergraduate),
Abstract Title Page. Authors and Affiliations: Maria Mendiburo The Carnegie Foundation
Abstract Title Page Title: Designing Technology to Impact Classroom Practice: How Technology Design for Learning Can Support Both Students and Teachers Authors and Affiliations: Maria Mendiburo The Carnegie
Professional Development for General Education Teachers of English Language Learners
Professional Development for General Education Teachers of English Language Learners We have to give teachers strong, consistent support in the best strategies and methods to reach, inspire, and teach
Extended School Year Fast Facts
Extended School Year Fast Facts Prepared by Rebekah Bickford Research Assistant David L. Silvernail Director Center for Education Policy, Applied Research and Evaluation University of Southern Maine March
Master of Arts in Educational Administration, Principal Endorsement Program Course Sequence and Descriptions
Master of Arts in Educational Administration, Principal Endorsement Program Course Sequence and Descriptions EDU 615 Principal as School Leader (3 credit hours) In this course, candidates will develop
Contact Information and Section 1 References APPENDIX
Contact Information and Section 1 References APPENDIX 117 SERA Schools Florida Osceola County Schools Contact: Craig Carr Science Resource Specialist 817 Beck Blvd. Kissimmee, FL 34744-4495 407-870-4954
Restructuring a Masters Teaching Program
Restructuring a Masters Teaching Program Marilyn Koeller National University This article will explain the process that Course Leads used to restructure the Masters in the Arts of Teaching program by working
Department of Secondary Education Kutztown University of Pennsylvania. Master s Degree Portfolio Project
Department of Secondary Education Kutztown University of Pennsylvania Master s Degree Portfolio Project Introduction The portfolio project serves as the capstone activity for the master s degree program
Key Components of Literacy Instruction
Key Components of Literacy Instruction The longer I write and read, the more I learn; writing and reading are lifelong apprenticeships --Donald M. Murray W e, in MPS, believe that effort creates ability.
SYSTEMIC REFORM OF SECONDARY SCHOOL SCIENCE. A Review of an Urban U.S. School District: San Diego City Schools
SYSTEMIC REFORM OF SECONDARY SCHOOL SCIENCE A Review of an Urban U.S. School District: San Diego City Schools By Kim Bess, Director of Science and Educational Technology San Diego City Schools Rodger Bybee,
CHEMISTRY TEACHERS PROFESSIONAL DEVELOPMENT FOR THE IMPLEMENTATION OF NEW CONTENT AND PEDAGOGICAL STANDARDS
Chemical Education International, Vol. 6, No. 1, 2005 www.iupac.org/publications/cei Paper based on the lecture presented at the 18th ICCE, Istanbul, Turkey, 3-8 August 2004 CHEMISTRY TEACHERS PROFESSIONAL
Shrewsbury Public Schools
The mission of the Shrewsbury Public Schools is: The Shrewsbury Public Schools, in partnership with the community, will provide students with the skills and knowledge for the 21 st century, an appreciation
Boston Pilot Schools Experiential Education Demonstration Project Rubric Tool
Boston Pilot Schools Experiential Education Demonstration Project Rubric Tool Center for Collaborative Education Transforming Schools For Student Success Pilot Schools Experiential Education Rubric Tool
EILEEN M. MCGOWAN, Ed.D.
EILEEN M. MCGOWAN, Ed.D. EDUCATION 20 Cushing Road, Wellesley Hills, MA 02481 781.235.3579 emcgowan@mentoringstrategies.net Harvard University Graduate School of Education June 2004 Ed.D. Administration,
High School STEM Full Implementation
High School STEM Full Implementation Full Implementation Whole school or district STEM initiatives. This is a non-traditional model of education in which the classroom resembles a work environment and
Abstract Title Page Not included in page count.
Abstract Title Page Not included in page count. Title: The Impact of The Stock Market Game on Financial Literacy and Mathematics Achievement: Results from a National Randomized Controlled Trial. Author(s):
Exploring Philosophy During a Time of Reform in Mathematics Education
Georgia Southern University Digital Commons@Georgia Southern Georgia Educational Research Association Conference Oct 17th, 10:30 AM - 11:45 AM Exploring Philosophy During a Time of Reform in Mathematics
Addressing Technology Standards: An Analysis of STEM Lesson Plans
Addressing Technology Standards: An Analysis of STEM Lesson Plans Bettie HALL, M.Ed. Michelle L. DANIEL, M.Ed. College of Education, Criminal Justice, and Human Services, University of Cincinnati Cincinnati,
College of Education GUIDE TO GRADUATE PROGRAMS
College of Education GUIDE TO GRADUATE PROGRAMS http://education.msu.edu/academics/ Graduate Programs OVERVIEW Graduate programs in the Michigan State University College of Education both on-campus and
Master of Science in Early Childhood Education Singapore, 2005 2006
Master of Science in Early Childhood Education Singapore, 2005 2006 Offered by RTRC Asia in Collaboration with Wheelock College s Center for International Education, Leadership, and Innovation Background
THEORY OF CHANGE College and Career Readiness
Helios Education Foundation believes education changes lives and strengthens communities. As a result, we strategically partner and invest our knowledge, expertise and resources to create opportunities
Next Generation Science Standards
The Next Generation Science Standards and the Life Sciences The important features of life science standards for elementary, middle, and high school levels Rodger W. Bybee Publication of the Next Generation
The STEM Immersion Matrix for Schools and Districts
The Exploratory Model describes a regular school experience, with STEM- related EXTRA CURRICULAR opportunities offered to students in addition to the regular school day. These experiences may include,
DRAFT * Statewide Strategic Plan for Science * DRAFT DRAFT * For Board of Regents Discussion * DRAFT. Mission
Preamble The Statewide Strategic Plan for Science serves as a planning and implementation guide to support newly adopted P-12 science learning standards. The strategic plan begins with mission and vision
OUR MISSION. The mission of the USC Rossier School of Education is to improve learning in urban education locally, nationally and globally.
STRATEGIC PLAN 2012-2017 OUR MISSION The mission of the USC Rossier School of Education is to improve learning in urban education locally, nationally and globally. Urban education takes place within many
Is the Market Saturated for Graduates in Online Educational Leadership Programs? Holly Kathleen Hall, Thillainatarajan Sivakumaran, Annette Hux
IS THE MARKET SATURATED? 1 Is the Market Saturated for Graduates in Online Educational Leadership Programs? Holly Kathleen Hall, Thillainatarajan Sivakumaran, Annette Hux IS THE MARKET SATURATED? 2 Abstract
OFF-CAMPUS MASTER S PROGRAMS M.Ed. in Educational Leadership. The Head, Hand, and Heart of School Leadership. Degree Requirements:
M.Ed. in Educational Leadership This program is for experienced classroom teachers who have an inner passion for facilitating student achievement and school improvement. These educators will find the graduate