Fibonacci Backoff Algorithm for Mobile Ad Hoc Networks

Size: px
Start display at page:

Download "Fibonacci Backoff Algorithm for Mobile Ad Hoc Networks"

Transcription

1 Fibonacci Backoff Algorithm for Mobile Ad Hoc Networks Saher S Manaseer Mohamed Ould-Khaoua Lewis M Mackenzie Department of Computing Science University of Glasgow, Glasgow G 8RZ, UK {saher, mohamed, Abstract- The collision probability in the MAC layer could become very high when a poor backoff algorithm is used, especially in dense networks. The Binary Exponential Backoff () used in the IEEE 8. MAC protocol uses a uniform random distribution to choose the backoff value. This often leads to reducing the effect of window size increment. This paper proposes a new backoff algorithm called Fibonacci Increment Backoff () in which the differences between consecutive contention window sizes are reduced. Results from simulation experiments reveal that the proposed algorithm achieves higher throughput than the when used in a mobile ad hoc environment. Keywords IEEE 8., Ad hoc networks, Medium access control, Backoff algorithm, Throughput analysis. I. INTRODUCTION Since their emergence, wireless networks have become increasingly popular in the computing industry. This is particularly true within the past decade, which has seen wireless networks being widely adopted to enable mobility. Over the development process of computer networks, two main variations of mobile wireless networks have been introduced, infrastructure and ad hoc wireless networks []. Recently, a significant number of researchers have moved towards studying Mobile Ad Hoc Networks (MANETs). Interest in MANETs is due to many new characteristics provided only by this type of networks. Firstly, MANETs are easily deployed allowing a plug-and-communicate method of networking. Secondly, MANETs need no infrastructure [7], eliminating the need for an infrastructure reduces the cost of establishing the network. Moreover, such networks can be useful in disaster recovery where there is not enough time or resources to install and configure an infrastructure. Thirdly, MANETs also do not need central management. Hence, they are used in military operations where units are moving around the battlefield and a central unit cannot be used for synchronization [7]. Nodes forming an ad hoc network are required to have the ability to double up as a client, a server, and a router simultaneously [7]. Moreover, these nodes should also have the ability to connect to and automatically configure to start transmitting data over the network. As a result of having the characteristics mentioned so far,, protocols used for ad hoc networks generally function in a distributed manner []. The distributed Coordination Function (DCF) is used for synchronous, contention-based, distributed access to the channel []. MANETs use a shared medium to transfer data between its nodes. It is impractical to expect a MANET to be fully connected, where a node can directly communicate with every other node in the network. Typically, nodes are obliged to use a multihop path for transmission, and a packet may pass through multiple nodes before being delivered to its intended destination. The wireless medium used by MANETs has a number of problems. Bandwidth sharing, signal fading, noise, interference, etc. with such a public medium, a well-organized and effective Medium Access Control (MAC) is indispensable to organize sharing the scarce bandwidth resource [] [7]. Based on the features mentioned, the design of the medium access control (MAC) protocol is a significant factor affecting the performance of MANETs. Many researchers have proposed the mechanism of channel sensing, or packet sensing to avoid collision. The sensing mechanisms typically rely on the transmitter and receiver performing a handshake prior to the transmission of the data packet []. More specifically, The Medium Access Collision Avoidance (MACA) method proposed by Karn [] implements the handshake via a pair of Request-To-Send (RTS) and Clear-To-Send (CTS) messages. When a node has to send data to another, it first sends a short RTS to the destination. The receiver responds with a CTS packet []. On receipt of the CTS, the sender

2 sends its queued data packet(s). All other nodes overhearing the CTS message will defer from sending out any packet until the predicted transmission period indicated in the CTS packet, is passed. Any node that overhears the RTS signal but not CTS is allowed to send out packets in a certain time period as either the RTS/CTS handshake is not completed or it is out of range of the receiver. As a part of an efficient MAC protocol, a backoff algorithm is used to avoid collisions when many nodes try to access the medium []. Only one of the nodes is granted access to the channel, while other contending nodes are suspended into a backoff state for some period (BO) [8]. Many backoff algorithms have been developed in the literature [, 8]. One example is the Multiplicative Increase Linear Decrease (MILD) algorithm []. This algorithm improves the total throughput of the network, but the cost of this improvement is the need of a perfect knowledge regarding collisions happening over the network, which is high cost and hardto-acquire knowledge [7]. In a wired LAN the total number of nodes of the network is easily obtained. However, as nodes in MANETs are mobile, knowing the number of nodes may incur a high cost, since this knowledge needs to be updated due to the frequent change in the MANET topology. One approach to update and keep the knowledge consistent is by exchanging packets between neighboring nodes [].these packets form extra load, consume a part of the network resources, and cause a longer delay. Moreover, neighbor discovery requires more control processing, and even incurs more work to the backoff algorithm itself. Other backoff algorithms have tried to find a fixed optimum backoff value to use. Even though, the distributed functionality was incomplete []. In the IEEE 8. standard MAC protocol, the truncated Binary Exponential Backoff () is used [9]. In this algorithm, when a node over the network has a packet to send, it first senses the channel using a carrier sensing technique. If the channel is found to be idle and not being used by any other node, the node is granted access to start transmitting. Otherwise, the node waits for an inter-frame space and the backoff mechanism is invoked. A random backoff time is chosen in the range [, CW-]. A uniform random distribution is used here, where CW is the current contention window size. The following equation is used to calculate the backoff time (BO): BO = (Rand () MOD CW) * aslottime () The backoff procedure is preformed then, by putting the node on a waiting period of length BO. Using carrier sense mechanism, the activity of the medium is sensed at every time slot. If the medium is found to be idle then the backoff period is decremented by one time slot. Backoff time (BO) new = (BO) old - aslottime () If the medium is busy during backoff, then the backoff timer is suspended. That is, the backoff period is counted in term of idle time slots. Whenever the medium is found idle for longer than an inter-frame space, backoff is resumed. When the backoff period is finished with a BO value of zero, a transmission should take place. If the node succeeds to send a packet and receive an acknowledgment for that packet, then the CW for this node is reset to the minimum, which is equal to in the case of. The 'truncated' simply means that after a certain number of increases, the exponentiation stops; i.e. the retransmission timeout increases to a ceiling value, and thereafter does not increase any more. The ceiling is set at i = transmission failures, assuring that the maximum delay is slot times. Since these delays cause other nodes to collide as well, there is a possibility that on a busy network, many nodes may be caught in a single collision set. To overcome the possibility of starvation, the transmission process is aborted after failing attempts of transmission [] has a number of disadvantages []. One major disadvantage is the problem of fairness. tends to have a preference for most recent contention winner and new contending nodes over other nodes when allocating channel access. Determining backoff period is accomplished by choosing a random backoff value from a contention window (CW) which has smaller size for new contending nodes and contention winners. This behavior causes what is known as Channel capture effect in the network. Another problem of is stability. has been designed to be stable for large number of nodes [7]. However, a number of studies have shown that could suffer from instability [7]. In this paper, we present a new backoff algorithm, referred to as Fibonacci Increment Backoff () that can overcome the

3 limitation of the existing MAC solutions in. In the algorithm the difference between consecutive contention window sizes are reduced according to a Fibonacci sequence. Results from simulation experiments reveal that the proposed algorithm achieves higher throughput than the when used in a mobile ad hoc environment. The rest of the paper is organized as follows. Section presents the new algorithm. Section presents the simulation model. Section then analyses the performance results. Finally, Section concludes this study. II. THE PROPOSED ALGORITHM Most backoff algorithms suffer from the following shortcoming due to their inherent operations. Increasing the contention window in case of failure to transmit tends to rapidly increase large contention windows to even larger sizes. Reaching such large window sizes dangerously decrease the possibility of gaining access to the channel. Moreover, a large window size tends to contribute to increasing channel idle times, leading to a major waste the shared limited communication channel. Motivated by this above observation, we propose a new backoff algorithm to improve the performance of the backoff algorithm. One of the most famous series in math is the Fibonacci series defined by the following rule []: F (n) = F (n -) + F (n - ). F () =, F () =, n >=. The Fibonacci series has a number of useful characteristics. One specific property is a special value, closely related to the Fibonacci series, is called the golden section. This value is obtained by taking the ratio of successive terms in the Fibonacci series. Figure illustrates this property. After a certain number of terms, the ratio tends to converge into a limit of. []. In our proposed algorithm, we used the F (n) as the new contention window size, leading to a smaller increment on large window sizes as shown in figure. Figure Ratio of successive Fibonacci terms. Figure Pseudo code of Algorithm

4 III. SIMULATION The proposed algorithm has been evaluated using the Network Simulator NS.9 []. The original standard MAC protocol has been modified to implement our proposed backoff algorithm. Modifications have mainly targeted the mac8_.h and mac8_.cc files. Several topologies and mobility scenarios have been created to test the algorithm as intensively as possible. Firstly, we have varied the total number of nodes in the network. Changing the number of nodes is our method of predicting the performance of our algorithm for all sizes of networks. Simulations have been carried out for networks having total number of node varying between and mobile nodes. Secondly, in order to address the main drawback of MANETs, we have used different values for mobility speed. Testing for speed values, ranging from ms - to ms - has given us useful information concerning the efficiency of our algorithm for static and highly mobile MANETs as well. Other simulation parameters are the area of m m, simulation time is 9 seconds, nodes transmission range is m and the traffic generated is CBR traffic. Table summarizes simulation parameters. Table Simulation Parameters Parameter Nodes Speeds (ms - ) Area Simulation time Transmission range Value,,,,,, m X m 9 s m IV.RESULTS As shown in the following figures, the new has improved the total throughput of the network simulated in our work. When the number of nodes is increased, the contention is higher to gain access to the channel. Because of the reduced amount of increment on the window size, a larger size of data was successfully received by nodes over the network. The same enhancement is noticed even while increasing mobility speed. One of the major obstacles in the way of developing a MAC protocol for MANETs is mobility. Having a long backoff value allows the node to move outside the transmission range before being allowed to retry accessing the channel. With, the ceiling of backoff periods is controlled to prevent extremely long backoff periods. One more factor participating in increasing throughput is reducing idle times. With smooth increments of contention window size, idle time is reduced. Total received data for speed m /s 7 Data receievd MB 8 Number of nodes Figure Received Data at speed m/s

5 Total data received at m/s Number of nodes Figure Received Data at speed m/s Total Data Received for Nodes.. Data MB... speed m/s Figure Received Data at nodes Total Data Received for Nodes 8 7 Data (MB) 8 Speed m /s Figure Received Data at nodes V. CONCLUSION The Binary Exponential Backoff () is used by the IEEE 8. Medium Access Control (MAC) protocol. uses uniform random distribution to choose the backoff value. In this paper, we have proposed a new backoff algorithm to reduce the increment factor for large contention window sizes. Results from simulations have demonstrated that the proposed algorithm increased the total throughput of mobile ad hoc networks especially when the system size is large. The total throughput has been increased for highly mobile networks.

6 VI. REFERENCES [] L. Bao and J. J. Garcia-Luna-Aceces, A New Approach to Channel Access Scheduling for Ad Hoc Networks, in ACM MOBICOM, pp.,. [] V. Bharghavan, et al., "MACAW: a media access protocol for wireless LAN's", Proceedings of the conference on Communications architectures, protocols and applications, 99, pp.. [] L. Bononi, et al., "A differentiated distributed coordination function MAC protocol for cluster-based wireless ad hoc networks", Proceedings of the st ACM international workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp. 77-8,. [] F. Cali', et al.., IEEE 8. Wireless LAN: Capacity Analysis and Protocol Enhancement, Proc. INFOCOM'98, San Francisco, CA, March 9 - April, 998, pp. -9. [] B. Ensaou, et al., Fair Media Access in 8. based Wireless Ad-Hoc Networks. In IEEE/ACM MobiHOC (Boston, MA., August ). [] K. Fall and K. Varadhaa. editors. NS notes and Documentation. The V l N l Project UC Berkeley. LBL. USC/ISI. and Xeros PARC.. [7] Z.Fang, et al., Performance evaluation of a fair backoff algorithm for IEEE 8. DFWMAC. International Symposium on Mobile Ad Hoc Networking & Computing [8] J. Goodman et al., Stability of Binary Exponential Backoff, app. In the Proc. of the 7-th Annual ACM Symp. Theory of Comp., Providence, May 98. [9] J. Hastad, et al., Analysis of Backoff Protocols for Multiple Access Channels, Siam J. Computing vol., No., 8/99, pp. 7. [] IEEE, ANSI/IEEE std 8., 999 Edition (R), Part : Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. [] P. Karn, "MACA - A new channel access method for packet radio", ARRL/CRRL Amateur Radio 9th computer Networking Conference, 99, pp. - [] S. Manaseer and M. Ould-kauoa, "A New Backoff Algorithm for MAC Protocol in MANETs," st Annual UK Performance Engineering Workshop, pp 9-,. [] K. Sakakibara, et al., "Backoff Algorithm with Release Stages for Slotted ALOHA Systems." ECTI Transactions On Electrical Eng., Electronics, And Communications vol., no. pp 9-7,. [] K. Sundaresan and R. Sivakumar, "A unified MAC layer framework for ad-hoc networks with smart antennas", Proceedings of the th ACM international symposium on Mobile ad hoc networking and computing, pp. -,. [] C. Sauer, E. MacNair, "Simulation of Computer Communication Systems", Prentice-Hall, INC., 98 [] F. Tobagi and L. Kleinrock, "Packet Switching in Radio Channels: Part I--Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics", IEEE Transactions on Communications, 97, Vol., No., pp.. [7] F. Tobagi and L. Kleinrock, "Packet Switching in Radio Channels: Part II--The Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution", IEEE Transactions on Communications, 97, Vol., No., pp. 7. [8] Cheng-shong Wu and Victor O.K. Li, "Receiver-initiated busy-tone multiple access in packet radio networks", Proceedings of the ACM workshop on Frontiers in computer communications technology, 987, pp. -. [9] K. Xu, et al., "How effective is the IEEE 8. RTS/CTS handshake in ad hoc networks", IEEE Global Telecommunications Conference,, Vol., pp [] H. Zhai and Y. Fang, Performance of Wireless LANs Based on IEEE 8. protocols. th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication Proceedings, pp 8-9,. [] Finch, S. R. "The Golden Mean." Mathematical Constants. Cambridge University Press, pp. -,.

On Backoff Mechanisms for Wireless. Mobile Ad Hoc Networks

On Backoff Mechanisms for Wireless. Mobile Ad Hoc Networks On Backoff Mechanisms for Wireless Mobile Ad Hoc Networks A Thesis Submitted By Saher S. Manaseer For The Degree of Doctor of Philosophy To The Faculty of Information and Mathematical Sciences University

More information

Collision of wireless signals. The MAC layer in wireless networks. Wireless MAC protocols classification. Evolutionary perspective of distributed MAC

Collision of wireless signals. The MAC layer in wireless networks. Wireless MAC protocols classification. Evolutionary perspective of distributed MAC The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

Performance Evaluation of Priority based Contention- MAC in Mobile Ad-Hoc Networks

Performance Evaluation of Priority based Contention- MAC in Mobile Ad-Hoc Networks International Journal of Computer Applications (975 7) Volume 5 No.1, June 11 Performance Evaluation of Priority based Contention- MAC in Mobile Ad-Hoc Networks Soni Sweta Arun Nahar Sanjeev Sharma ABSTRACT

More information

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III CS: 647 Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 2/11/2015. IEEE 802.11 Wireless Local Area Networks (WLANs)

CS6956: Wireless and Mobile Networks Lecture Notes: 2/11/2015. IEEE 802.11 Wireless Local Area Networks (WLANs) CS6956: Wireless and Mobile Networks Lecture Notes: //05 IEEE 80. Wireless Local Area Networks (WLANs) CSMA/CD Carrier Sense Multi Access/Collision Detection detects collision and retransmits, no acknowledgement,

More information

MAC Algorithms in Wireless Networks

MAC Algorithms in Wireless Networks Department of Computing Science Master Thesis MAC Algorithms in Wireless Networks Applications, Issues and Comparisons Shoaib Tariq Supervisor: Dr. Jerry Eriksson Examiner: Dr. Per Lindström Dedicated

More information

Enhanced Power Saving for IEEE 802.11 WLAN with Dynamic Slot Allocation

Enhanced Power Saving for IEEE 802.11 WLAN with Dynamic Slot Allocation Enhanced Power Saving for IEEE 802.11 WLAN with Dynamic Slot Allocation Changsu Suh, Young-Bae Ko, and Jai-Hoon Kim Graduate School of Information and Communication, Ajou University, Republic of Korea

More information

A research perspective on the adaptive protocols' architectures and system infrastructures to support QoS in wireless communication systems

A research perspective on the adaptive protocols' architectures and system infrastructures to support QoS in wireless communication systems Workshop on Quality of Service in Geographically Distributed Systems A research perspective on the adaptive protocols' architectures and system infrastructures to support QoS in wireless communication

More information

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks 1 Mr. Praveen S Patil, 2 Mr. Rabinarayan Panda, 3 Mr. Sunil Kumar R D 1,2,3 Asst. Professor, Department of MCA, The Oxford College of Engineering,

More information

CSMA/CA. Information Networks p. 1

CSMA/CA. Information Networks p. 1 Information Networks p. 1 CSMA/CA IEEE 802.11 standard for WLAN defines a distributed coordination function (DCF) for sharing access to the medium based on the CSMA/CA protocol Collision detection is not

More information

Lecture 17: 802.11 Wireless Networking"

Lecture 17: 802.11 Wireless Networking Lecture 17: 802.11 Wireless Networking" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Lili Qiu, Nitin Vaidya Lecture 17 Overview" Project discussion Intro to 802.11 WiFi Jigsaw discussion

More information

Performance Evaluation of Wired and Wireless Local Area Networks

Performance Evaluation of Wired and Wireless Local Area Networks International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 11 (July 2012), PP.43-48 www.ijerd.com Performance Evaluation of Wired and Wireless Local Area Networks Prof.

More information

An Analysis of the Optimum Node Density for Ad hoc Mobile Networks

An Analysis of the Optimum Node Density for Ad hoc Mobile Networks An Analysis of the Optimum Node Density for Ad hoc Mobile Networks Elizabeth M. Royer, P. Michael Melliar-Smith y, and Louise E. Moser y Department of Computer Science y Department of Electrical and Computer

More information

Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India

Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A New Protocol

More information

SJBIT, Bangalore, KARNATAKA

SJBIT, Bangalore, KARNATAKA A Comparison of the TCP Variants Performance over different Routing Protocols on Mobile Ad Hoc Networks S. R. Biradar 1, Subir Kumar Sarkar 2, Puttamadappa C 3 1 Sikkim Manipal Institute of Technology,

More information

... neither PCF nor CA used in practice

... neither PCF nor CA used in practice IEEE 802.11 MAC CSMA/CA with exponential backoff almost like CSMA/CD drop CD CSMA with explicit ACK frame added optional feature: CA (collision avoidance) Two modes for MAC operation: Distributed coordination

More information

Medium Access Control Protocols in Mobile Ad Hoc Networks: Problems and Solutions 1

Medium Access Control Protocols in Mobile Ad Hoc Networks: Problems and Solutions 1 1 Medium Access Control Protocols in Mobile Ad Hoc Networks: Problems and Solutions 1 Hongqiang Zhai and Yuguang Fang Department of Electrical and Computer Engineering University of Florida, Gainesville,

More information

A MAC Protocol for Mobile Ad Hoc Networks Using Directional Antennas

A MAC Protocol for Mobile Ad Hoc Networks Using Directional Antennas A MAC Protocol for Mobile Ad Hoc Networks Using Directional Antennas A. Nasipuri, S. Ye, J. You, and R. E. Hiromoto Division of Computer Science The University of Texas at San Antonio San Antonio, TX 78249-0667

More information

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 5, September

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 5, September Analysis and Implementation of IEEE 802.11 MAC Protocol for Wireless Sensor Networks Urmila A. Patil, Smita V. Modi, Suma B.J. Associate Professor, Student, Student Abstract: Energy Consumption in Wireless

More information

ADV-MAC: Advertisement-based MAC Protocol for Wireless Sensor Networks

ADV-MAC: Advertisement-based MAC Protocol for Wireless Sensor Networks ADV-MAC: Advertisement-based MAC Protocol for Wireless Sensor Networks Surjya Ray, Ilker Demirkol and Wendi Heinzelman Department of Electrical and Computer Engineering University of Rochester, Rochester,

More information

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM 152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented

More information

Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh

Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh, Ph.D. benveniste@ieee.org Mesh 2008, Cap Esterel, France 1 Abstract Abundant hidden node collisions and correlated channel access

More information

A Slow-sTart Exponential and Linear Algorithm for Energy Saving in Wireless Networks

A Slow-sTart Exponential and Linear Algorithm for Energy Saving in Wireless Networks 1 A Slow-sTart Exponential and Linear Algorithm for Energy Saving in Wireless Networks Yang Song, Bogdan Ciubotaru, Member, IEEE, and Gabriel-Miro Muntean, Member, IEEE Abstract Limited battery capacity

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers EECS 122: Introduction to Computer Networks Multiaccess Protocols Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776

More information

Denial of Service Attacks at the MAC Layer in Wireless Ad Hoc Networks

Denial of Service Attacks at the MAC Layer in Wireless Ad Hoc Networks Denial of Service Attacks at the MAC Layer in Wireless Ad Hoc Networks Vikram Gupta +, Srikanth Krishnamurthy, and Michalis Faloutsos Abstract Department of Computer Science and Engineering, UC Riverside,

More information

A TCP-like Adaptive Contention Window Scheme for WLAN

A TCP-like Adaptive Contention Window Scheme for WLAN A TCP-like Adaptive Contention Window Scheme for WLAN Qixiang Pang, Soung Chang Liew, Jack Y. B. Lee, Department of Information Engineering The Chinese University of Hong Kong Hong Kong S.-H. Gary Chan

More information

A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks

A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks T.Chandrasekhar 1, J.S.Chakravarthi 2, K.Sravya 3 Professor, Dept. of Electronics and Communication Engg., GIET Engg.

More information

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006 CSE331: Introduction to Networks and Security Lecture 6 Fall 2006 Open Systems Interconnection (OSI) End Host Application Reference model not actual implementation. Transmits messages (e.g. FTP or HTTP)

More information

NetworkPathDiscoveryMechanismforFailuresinMobileAdhocNetworks

NetworkPathDiscoveryMechanismforFailuresinMobileAdhocNetworks Global Journal of Computer Science and Technology: E Network, Web & Security Volume 14 Issue 3 Version 1.0 Year 2014 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

802.11. Markku Renfors. Partly based on student presentation by: Lukasz Kondrad Tomasz Augustynowicz Jaroslaw Lacki Jakub Jakubiak

802.11. Markku Renfors. Partly based on student presentation by: Lukasz Kondrad Tomasz Augustynowicz Jaroslaw Lacki Jakub Jakubiak 802.11 Markku Renfors Partly based on student presentation by: Lukasz Kondrad Tomasz Augustynowicz Jaroslaw Lacki Jakub Jakubiak Contents 802.11 Overview & Architecture 802.11 MAC 802.11 Overview and Architecture

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com

More information

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software Local Area What s a LAN? A transmission system, usually private owned, very speedy and secure, covering a geographical area in the range of kilometres, comprising a shared transmission medium and a set

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information

PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks

PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks Sinem Coleri and Pravin Varaiya Department of Electrical Engineering and Computer Science University of California,

More information

Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols

Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Purvi N. Ramanuj Department of Computer Engineering L.D. College of Engineering Ahmedabad Hiteishi M. Diwanji

More information

Selfish MAC Layer Misbehavior in Wireless Networks

Selfish MAC Layer Misbehavior in Wireless Networks 1 Selfish MAC Layer Misbehavior in Wireless Networks Pradeep Kyasanur + and Nitin H. Vaidya This research was supported in part by UIUC Campus Research Board. This research was published in part at International

More information

Dynamic Load Balance Algorithm (DLBA) for IEEE 802.11 Wireless LAN

Dynamic Load Balance Algorithm (DLBA) for IEEE 802.11 Wireless LAN Tamkang Journal of Science and Engineering, vol. 2, No. 1 pp. 45-52 (1999) 45 Dynamic Load Balance Algorithm () for IEEE 802.11 Wireless LAN Shiann-Tsong Sheu and Chih-Chiang Wu Department of Electrical

More information

A Survey: High Speed TCP Variants in Wireless Networks

A Survey: High Speed TCP Variants in Wireless Networks ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com A Survey:

More information

EPL 657 Wireless Networks

EPL 657 Wireless Networks EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing

More information

Study of Different Types of Attacks on Multicast in Mobile Ad Hoc Networks

Study of Different Types of Attacks on Multicast in Mobile Ad Hoc Networks Study of Different Types of Attacks on Multicast in Mobile Ad Hoc Networks Hoang Lan Nguyen and Uyen Trang Nguyen Department of Computer Science and Engineering, York University 47 Keele Street, Toronto,

More information

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols

More information

Dynamic Channel Allocation And Load Balancing With Sleep Scheduling In Manet

Dynamic Channel Allocation And Load Balancing With Sleep Scheduling In Manet International Journal of Science and Engineering Research (IJ0SER), Vol 3 Issue 9 September -2015 3221 5687, (P) 3221 568X Dynamic Channel Allocation And Load Balancing With Sleep Scheduling In Manet 1

More information

Mobility and wireless MAC Protocols in MANETs

Mobility and wireless MAC Protocols in MANETs 1 Mobility and wireless MAC Protocols in MANETs Abstract The emergence of lightweight wireless mobile devices, like laptops, PDAs, and sensors makes mobile ad hoc networks (MANETs) an exciting and important

More information

Medium Access Control with Dynamic Frame Length in Wireless Sensor Networks

Medium Access Control with Dynamic Frame Length in Wireless Sensor Networks Journal of Information Processing Systems, Vol.6, No.4, December 2010 DOI : 10.3745/JIPS.2010.6.4.501 Medium Access Control with Dynamic Frame Length in Wireless Sensor Networks Dae-Suk Yoo* and Seung

More information

Tutorial 7 : Link layer part I

Tutorial 7 : Link layer part I Lund University ETSN01 Advanced Telecommunication Tutorial 7 : Link layer part I Author: Antonio Franco Course Teacher: Emma Fitzgerald February 12, 2015 Contents I Before you start 3 II Exercises 3 1

More information

A Comparative Study of Video Transfer over Bluetooth and 802.11 Wireless MAC

A Comparative Study of Video Transfer over Bluetooth and 802.11 Wireless MAC A Comparative Study of Video Transfer over Bluetooth and 802.11 Wireless MAC Aravind Iyer and U. B. Desai SPANN Laboratory Department of Electrical Engineering IIT Bombay, INDIA - 400076 Abstract In this

More information

DESIGN AND DEVELOPMENT OF LOAD SHARING MULTIPATH ROUTING PROTCOL FOR MOBILE AD HOC NETWORKS

DESIGN AND DEVELOPMENT OF LOAD SHARING MULTIPATH ROUTING PROTCOL FOR MOBILE AD HOC NETWORKS DESIGN AND DEVELOPMENT OF LOAD SHARING MULTIPATH ROUTING PROTCOL FOR MOBILE AD HOC NETWORKS K.V. Narayanaswamy 1, C.H. Subbarao 2 1 Professor, Head Division of TLL, MSRUAS, Bangalore, INDIA, 2 Associate

More information

RT-QoS for Wireless ad-hoc Networks of Embedded Systems

RT-QoS for Wireless ad-hoc Networks of Embedded Systems RT-QoS for Wireless ad-hoc Networks of Embedded Systems Marco accamo University of Illinois Urbana-hampaign 1 Outline Wireless RT-QoS: important MA attributes and faced challenges Some new ideas and results

More information

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman 1 Wireless Networks Reading: Sec5on 2.8 COS 461: Computer Networks Spring 2011 Mike Freedman hep://www.cs.princeton.edu/courses/archive/spring11/cos461/ 2 Widespread Deployment Worldwide cellular subscribers

More information

802.11 standard. Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale

802.11 standard. Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data-rate applications Ability to

More information

A Performance Comparison of Stability, Load-Balancing and Power-Aware Routing Protocols for Mobile Ad Hoc Networks

A Performance Comparison of Stability, Load-Balancing and Power-Aware Routing Protocols for Mobile Ad Hoc Networks A Performance Comparison of Stability, Load-Balancing and Power-Aware Routing Protocols for Mobile Ad Hoc Networks Natarajan Meghanathan 1 and Leslie C. Milton 2 1 Jackson State University, 1400 John Lynch

More information

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks LANs Local Area Networks via the Media Access Control (MAC) SubLayer 1 Local Area Networks Aloha Slotted Aloha CSMA (non-persistent, 1-persistent, p-persistent) CSMA/CD Ethernet Token Ring 2 Network Layer

More information

Lecture 7 Multiple Access Protocols and Wireless

Lecture 7 Multiple Access Protocols and Wireless Lecture 7 Multiple Access Protocols and Wireless Networks and Security Jacob Aae Mikkelsen IMADA November 11, 2013 November 11, 2013 1 / 57 Lecture 6 Review What is the responsibility of the link layer?

More information

1 M.Tech, 2 HOD. Computer Engineering Department, Govt. Engineering College, Ajmer, Rajasthan, India

1 M.Tech, 2 HOD. Computer Engineering Department, Govt. Engineering College, Ajmer, Rajasthan, India Volume 5, Issue 5, May 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Dynamic Performance

More information

Security Scheme for Distributed DoS in Mobile Ad Hoc Networks

Security Scheme for Distributed DoS in Mobile Ad Hoc Networks Security Scheme for Distributed DoS in Mobile Ad Hoc Networks Sugata Sanyal 1, Ajith Abraham 2, Dhaval Gada 3, Rajat Gogri 3, Punit Rathod 3, Zalak Dedhia 3 and Nirali Mody 3 1 School of Technology and

More information

Adaptive Bandwidth Management and QoS Provisioning in Large Scale Ad Hoc Networks

Adaptive Bandwidth Management and QoS Provisioning in Large Scale Ad Hoc Networks Adaptive Bandwidth Management and QoS Provisioning in Large Scale Ad Hoc Networks Kaixin Xu, Ken Tang, Rajive Bagrodia Scalable Network Technologies, Inc. {xkx, ktang,rlb}@scalable-networks.com Mario Gerla

More information

Cluster-based Multi-path Routing Algorithm for Multi-hop Wireless Network

Cluster-based Multi-path Routing Algorithm for Multi-hop Wireless Network International Journal of Future Generation Communication and Networking 67 Cluster-based Multi-path Routing Algorithm for Multi-hop Wireless Network Jie Zhang, Choong Kyo Jeong, Goo Yeon Lee, Hwa Jong

More information

Algorithms for Interference Sensing in Optical CDMA Networks

Algorithms for Interference Sensing in Optical CDMA Networks Algorithms for Interference Sensing in Optical CDMA Networks Purushotham Kamath, Joseph D. Touch and Joseph A. Bannister {pkamath, touch, joseph}@isi.edu Information Sciences Institute, University of Southern

More information

Dynamic Source Routing in Ad Hoc Wireless Networks

Dynamic Source Routing in Ad Hoc Wireless Networks Dynamic Source Routing in Ad Hoc Wireless Networks David B. Johnson David A. Maltz Computer Science Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213-3891 dbj@cs.cmu.edu Abstract

More information

IEEE 802.11 Ad Hoc Networks: Performance Measurements

IEEE 802.11 Ad Hoc Networks: Performance Measurements IEEE 8. Ad Hoc Networks: Performance Measurements G. Anastasi Dept. of Information Engineering University of Pisa Via Diotisalvi - 56 Pisa, Italy Email: g.anastasi@iet.unipi.it E. Borgia, M. Conti, E.

More information

Performance Evaluation of a Binary Exponential Code Backoff Algorithm for IEEE 802.11. Kang Sun

Performance Evaluation of a Binary Exponential Code Backoff Algorithm for IEEE 802.11. Kang Sun Performance Evaluation of a Binary Exponential Code Backoff Algorithm for IEEE 802.11 by Kang Sun A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements

More information

LOAD BALANCING AND EFFICIENT CLUSTERING FOR IMPROVING NETWORK PERFORMANCE IN AD-HOC NETWORKS

LOAD BALANCING AND EFFICIENT CLUSTERING FOR IMPROVING NETWORK PERFORMANCE IN AD-HOC NETWORKS LOAD BALANCING AND EFFICIENT CLUSTERING FOR IMPROVING NETWORK PERFORMANCE IN AD-HOC NETWORKS Saranya.S 1, Menakambal.S 2 1 M.E., Embedded System Technologies, Nandha Engineering College (Autonomous), (India)

More information

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

ECE 333: Introduction to Communication Networks Fall 2002

ECE 333: Introduction to Communication Networks Fall 2002 ECE 333: Introduction to Communication Networks Fall 2002 Lecture 14: Medium Access Control II Dynamic Channel Allocation Pure Aloha In the last lecture we began discussing medium access control protocols

More information

Protocolo IEEE 802.15.4. Sergio Scaglia SASE 2012 - Agosto 2012

Protocolo IEEE 802.15.4. Sergio Scaglia SASE 2012 - Agosto 2012 Protocolo IEEE 802.15.4 SASE 2012 - Agosto 2012 IEEE 802.15.4 standard Agenda Physical Layer for Wireless Overview MAC Layer for Wireless - Overview IEEE 802.15.4 Protocol Overview Hardware implementation

More information

Chapter 6: Medium Access Control Layer

Chapter 6: Medium Access Control Layer Chapter 6: Medium Access Control Layer Chapter 6: Roadmap Overview! Wireless MAC protocols! Carrier Sense Multiple Access! Multiple Access with Collision Avoidance (MACA) and MACAW! MACA By Invitation!

More information

then, we require that, in order to support the offered load, (1)

then, we require that, in order to support the offered load, (1) Capacity of an IEEE 802.11b Wireless LAN supporting VoIP To appear in Proc. IEEE Int. Conference on Communications (ICC) 2004 David P. Hole and Fouad A. Tobagi Dept. of Electrical Engineering, Stanford

More information

A Catechistic Method for Traffic Pattern Discovery in MANET

A Catechistic Method for Traffic Pattern Discovery in MANET A Catechistic Method for Traffic Pattern Discovery in MANET R. Saranya 1, R. Santhosh 2 1 PG Scholar, Computer Science and Engineering, Karpagam University, Coimbatore. 2 Assistant Professor, Computer

More information

An Overview of Wireless LAN Standards IEEE 802.11 and IEEE 802.11e

An Overview of Wireless LAN Standards IEEE 802.11 and IEEE 802.11e An Overview of Wireless LAN Standards IEEE 802.11 and IEEE 802.11e Jahanzeb Farooq, Bilal Rauf Department of Computing Science Umeå University Sweden Jahanzeb Farooq, 2006 (tipputhegreat@hotmail.com) Chapter

More information

Random Access Protocols

Random Access Protocols Lecture Today slotted vs unslotted ALOHA Carrier sensing multiple access Ethernet DataLink Layer 1 Random Access Protocols When node has packet to send transmit at full channel data rate R. no a priori

More information

Performance evaluation of QoS in wireless networks using IEEE 802.11e

Performance evaluation of QoS in wireless networks using IEEE 802.11e Performance evaluation of QoS in wireless networks using IEEE 802.11e Laio B. Vilas Boas, Pedro M. C. Massolino, Rafael T. Possignolo, Cintia B. Margi and Regina M. Silveira Abstract The increase demand

More information

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network Recent Advances in Electrical Engineering and Electronic Devices Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network Ahmed El-Mahdy and Ahmed Walid Faculty of Information Engineering

More information

Spatially Limited Contention for Multi-Hop Wireless Networks

Spatially Limited Contention for Multi-Hop Wireless Networks Spatially Limited Contention for Multi-Hop Wireless Networks Fikret Sivrikaya, Sahin Albayrak DAI-Labor / TU Berlin, Germany Bülent Yener Rensselaer Polytechnic Institute, NY, USA Abstract With rapid developments

More information

ECE 428 Computer Networks and Security

ECE 428 Computer Networks and Security ECE 428 Computer Networks and Security 1 Instructor: Sagar Naik About the Instructor Office: EIT 4174, ECE Dept. Other courses that I teach ECE 355: Software Engineering ECE 453/CS 447/ SE 465: Software

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA

More information

MEDIUM ACCESS CONTROL PROTOCOLS FOR AD-HOC WIRELESS NETWORKS: A SURVEY

MEDIUM ACCESS CONTROL PROTOCOLS FOR AD-HOC WIRELESS NETWORKS: A SURVEY MEDIUM ACCESS CONTROL PROTOCOLS FOR AD-HOC WIRELESS NETWORKS: A SURVEY Sunil Kumar 1, Vineet S. Raghavan 2 and Jing Deng 3 1 Electrical and Computer Engineering Department, Clarkson University, Potsdam,

More information

Wiereless LAN 802.11

Wiereless LAN 802.11 Tomasz Kurzawa Wiereless LAN 802.11 Introduction The 802.11 Architecture Channels and Associations The 802.11 MAC Protocol The 802.11 Frame Introduction Wireless LANs are most important access networks

More information

QoS issues in Voice over IP

QoS issues in Voice over IP COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This

More information

PROVIDING STATISTICAL QOS GUARANTEE FOR VOICE OVER IP IN THE IEEE 802.11 WIRELESS LANS

PROVIDING STATISTICAL QOS GUARANTEE FOR VOICE OVER IP IN THE IEEE 802.11 WIRELESS LANS V OICE OVER WIRELESS LOCAL AREA N ETWORK PROVIDING STATISTICAL QOS GUARANTEE FOR VOICE OVER IP IN THE IEEE 82.11 WIRELESS LANS HONGQIANG ZHAI, JIANFENG WANG, AND YUGUANG FANG, UNIVERSITY OF FLORIDA The

More information

MDA: An Efficient Directional MAC scheme for Wireless Ad Hoc Networks 1

MDA: An Efficient Directional MAC scheme for Wireless Ad Hoc Networks 1 MDA: An Efficient Directional MAC scheme for Wireless Ad Hoc Networks Motorola Inc. Mesh Research and Development Group Maitland, FL 375 Hrishikesh.Gossain@motorola.com Hrishikesh Gossain, Carlos Cordeiro

More information

Performance Evaluation Of Multiband CSMA/CA With RTS/CTS For M2M Communication With Finite Retransmission Strategy

Performance Evaluation Of Multiband CSMA/CA With RTS/CTS For M2M Communication With Finite Retransmission Strategy Performance Evaluation Of Multiband CSMA/CA With RTS/CTS For M2M Communication With Finite Retransmission Strategy Baher Mawlawi, Jean-Baptiste Doré, Nikolai Lebedev, Jean-Marie Gorce To cite this version:

More information

A Power Efficient QoS Provisioning Architecture for Wireless Ad Hoc Networks

A Power Efficient QoS Provisioning Architecture for Wireless Ad Hoc Networks A Power Efficient QoS Provisioning Architecture for Wireless Ad Hoc Networks Didem Gozupek 1,Symeon Papavassiliou 2, Nirwan Ansari 1, and Jie Yang 1 1 Department of Electrical and Computer Engineering

More information

ECE 333: Introduction to Communication Networks Fall 2001

ECE 333: Introduction to Communication Networks Fall 2001 ECE 333: Introduction to Communication Networks Fall 2001 Lecture 17: Medium Access Control V Perfectly scheduled approaches Token ring networks 1 We have categorized channel allocation techniques as either

More information

Performance Analysis of the IEEE 802.11 Wireless LAN Standard 1

Performance Analysis of the IEEE 802.11 Wireless LAN Standard 1 Performance Analysis of the IEEE. Wireless LAN Standard C. Sweet Performance Analysis of the IEEE. Wireless LAN Standard Craig Sweet and Deepinder Sidhu Maryland Center for Telecommunications Research

More information

Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8

Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the

More information

An Experimental Study of Throughput for UDP and VoIP Traffic in IEEE 802.11b Networks

An Experimental Study of Throughput for UDP and VoIP Traffic in IEEE 802.11b Networks An Experimental Study of Throughput for UDP and VoIP Traffic in IEEE 82.11b Networks Sachin Garg sgarg@avaya.com Avaya Labs Research Basking Ridge, NJ USA Martin Kappes mkappes@avaya.com Avaya Labs Research

More information

10. Wireless Networks

10. Wireless Networks Computernetzwerke und Sicherheit (CS221) 10. Wireless Networks 1. April 2011 omas Meyer Departement Mathematik und Informatik, Universität Basel Chapter 6 Wireless and Mobile Networks (with changes CS221

More information

PERFORMANCE STUDY AND SIMULATION OF AN ANYCAST PROTOCOL FOR WIRELESS MOBILE AD HOC NETWORKS

PERFORMANCE STUDY AND SIMULATION OF AN ANYCAST PROTOCOL FOR WIRELESS MOBILE AD HOC NETWORKS PERFORMANCE STUDY AND SIMULATION OF AN ANYCAST PROTOCOL FOR WIRELESS MOBILE AD HOC NETWORKS Reza Azizi Engineering Department, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran reza.azizi@bojnourdiau.ac.ir

More information

Simulation Analysis of Different Routing Protocols Using Directional Antenna in Qualnet 6.1

Simulation Analysis of Different Routing Protocols Using Directional Antenna in Qualnet 6.1 Simulation Analysis of Different Routing Protocols Using Directional Antenna in Qualnet 6.1 Ankit Jindal 1, Charanjeet Singh 2, Dharam Vir 3 PG Student [ECE], Dept. of ECE, DCR University of Science &

More information

Adaptive Medium Access Control (MAC) for Heterogeneous Mobile Wireless Sensor Networks (WSNs).

Adaptive Medium Access Control (MAC) for Heterogeneous Mobile Wireless Sensor Networks (WSNs). 2008 Adaptive Medium Access Control (MAC) for Heterogeneous Mobile Wireless Sensor Networks (WSNs). Giorgio Corbellini 1 Challenges of the Ph.D. Study of urgency in sensed data Study of mobility in WSNs

More information

Halmstad University Post-Print

Halmstad University Post-Print Halmstad University Post-Print Wireless Sensor Networks for Surveillance Applications - A Comparative Survey of MAC Protocols Mahmood Ali, Annette Böhm and Magnus Jonsson N.B.: When citing this work, cite

More information

Energy Efficiency of Load Balancing in MANET Routing Protocols

Energy Efficiency of Load Balancing in MANET Routing Protocols Energy Efficiency of Load Balancing in MANET Routing Protocols Sunsook Jung, Nisar Hundewale, Alex Zelikovsky Abstract This paper considers energy constrained routing protocols and workload balancing techniques

More information

Security in Ad Hoc Network

Security in Ad Hoc Network Security in Ad Hoc Network Bingwen He Joakim Hägglund Qing Gu Abstract Security in wireless network is becoming more and more important while the using of mobile equipments such as cellular phones or laptops

More information

Intelligent Agents for Routing on Mobile Ad-Hoc Networks

Intelligent Agents for Routing on Mobile Ad-Hoc Networks Intelligent Agents for Routing on Mobile Ad-Hoc Networks Y. Zhou Dalhousie University yzhou@cs.dal.ca A. N. Zincir-Heywood Dalhousie University zincir@cs.dal.ca Abstract This paper introduces a new agent-based

More information

An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks *

An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks * An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks * Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea iwj oeshanyang.ac.kr Abstract. To satisfy the user requirements

More information

A Well-organized Dynamic Bandwidth Allocation Algorithm for MANET

A Well-organized Dynamic Bandwidth Allocation Algorithm for MANET A Well-organized Dynamic Bandwidth Allocation Algorithm for MANET S.Suganya Sr.Lecturer, Dept. of Computer Applications, TamilNadu College of Engineering, Coimbatore, India Dr.S.Palaniammal Prof.& Head,

More information

A Non-beaconing ZigBee Network Implementation and Performance Study

A Non-beaconing ZigBee Network Implementation and Performance Study A Non-beaconing ZigBee Network Implementation and Performance Study Magnus Armholt Email: magnus.armholt@tut.fi Sakari Junnila Email: sakari.junnila@tut.fi Irek Defee Email: irek.defee@tut.fi Abstract

More information