Relationship between Values of Business Processes and Need for Supervisory Control and Data Acquisition (SCADA) Systems in Oil Refineries.

Size: px
Start display at page:

Download "Relationship between Values of Business Processes and Need for Supervisory Control and Data Acquisition (SCADA) Systems in Oil Refineries."

Transcription

1 Relationship between Values of Business Processes and Need for Supervisory Control and Data Acquisition (SCADA) Systems in Oil Refineries. By VINEETH KURUCHETI With the assistance of Nary Subramanian, Ph.D., Committee Chair A research project submitted in partial fulfillment Of the requirements for the degree of Master of Science in the Department of Computer Science (CSE) The University of Texas at Tyler Tyler, Texas May 2010 Page 1

2 The University of Texas at Tyler Tyler, Texas This is to certify that the Master s Project of VINEETH KURUCHETI Has been approved for the research project requirement on 05/03/2010 For the Master of Computer Science degree Approvals: Dr. Narayanan Subramanian, Ph.D: (Project Chair) Dr. George M. Whitson, Ph.D: (Committee Member) Dr. Kazem Mahdavi, Ph.D: (Committee Member) Page 2

3 Acknowledgement I would like to thank my family and all my friends who have been a constant source of encouragement and inspiration in my life. Their support has helped me to courageously face the challenges that I encountered in the process of pursuing my educational career. I would like to thank the faculty of the Department of Computer Science at The University of Texas at Tyler for providing me an excellent platform to hone my Computer skills and achieve my Master s degree. Special Thanks to my advisor, Dr. Narayanan Subramanian for his constant encouragement and taking a lot of effort in completing this project and being available at all the times that I needed him. Thanks to my Committee members, Dr. George M. Whitson and Dr. Kazem Mahdavi who spent their valuable time in looking into my report. Page 3

4 Contents Abstract... 7 Chapter 1 Introduction... 8 Chapter Importance of a Business Process Methods & Control Business Process Management Lifecycle (BPM) The Importance of Business Process Improvement. 12 a How Can Business Process Improvement Aid Company Performance? Chapter 3 SCADA system What is a SCADA system Layers of SCADA system Chapter 4 Oil Refinery Business Processes Business Processes in an Oil Refinery 18 a Crude selection.. 18 b Crude transportation. 19 c Crude processing.. 19 d Product demands Barrel of Crude Oil.. 21 Page 4

5 Chapter 5 Simulation Oil Refinery Business Processes Oil Refinery Business Processes Simulation Phases in Oil Refinery Business Processes What Is The Profit-Margin For Refining Crude Oil Into Gasoline Cost Estimation for processing 2 million barrels of crude Oil. 37 Chapter 6 SCADA Requirements The 2 Basic Components of SCADA Where SCADA can be used SCADA System Operation Parts enable a SCADA system to perform four types of tasks SCADA Requirement in Business Processes of an oil refinery 45 a SCADA system for Oil Pipelines.. 45 b SCADA system for storage tanks and reactors. 46 Chapter 7 Relationship between Business values and SCADA Requirements SCADA Technology evolves to create new market dynamics Determining the phase in the business processes of an oil refinery where SCADA system is much needed to increase the profit-margins Phases in oil refinery where RTU s and Master Units are must need.. 50 SCADA need in oil refinery.. 52 Page 5

6 Chapter 8 Conclusions and future work.. 53 Chapter 9 References Page 6

7 Abstract The SCADA (Supervisory Control and Data Acquisition) system consists of a Master system that communicates with the Remote Terminal Units (RTU) to gather data and check the values for the optimum functioning of the oil refinery. The SCADA system checks various parameters like the pressure, temperature, density of the oil inside the pipeline s and storage tanks in the oil refinery. In this project we first find the business processes that are involved in the oil refinery and estimate the total cost and profits made on refining crude oil by simulating using AccuProcess Simulator (APS). Secondly, we use the business processes values to find out what phases in oil refinery require SCADA system for monitoring. We find that, higher the value of business process the more SCADA equipment is needed. Page 7

8 Chapter 1 Introduction As the price of crude oil continues to remain high, refineries across the globe are increasingly focused on initiatives to protect their margins. Flexibility in changing the processes to get aligned to the dynamic business scenario is being aimed by the refiners. Refinery executives are keenly examining on probable effective ways of managing & motivation their people, managing their business process and changing technology accordingly, to get tune their operations with dynamic supply chain in the business. [1] Modern crude optimization techniques have challenged organizations to rethink the way they conduct business both internally and externally, i.e. how efficiently and effectively their entire supply chain is managed. Supply Chain Management (SCM) is one such business function that has benefited substantially from optimization software advances and solutions. The primary goal of SCM is to maximize profit by integrated management of material and transactional flows within a business and to customer and partner companies. The petroleum refining industry has effectively embraced the software solutions (e.g. SCADA systems) to optimize the business supply chain to maximize the profit margins and create order in the chaos of numerous opportunities and challenges. The supply chain of a typical petroleum refining company involves a wide spectrum of activities, starting from crude purchase and crude transportation to refineries, refining operations, product transportation and finally delivering the product to the end user. The nature of the value chain is such that its economics are extremely complex and heavily linked. For example, the process of selecting the Page 8

9 right crude is linked not only to the transportation costs involved in delivering it to the refinery, but it must take into consideration the refinery configuration, capabilities and constraints in converting the crude into products, as well as the product volume and price fluctuations. In this project we will discuss about business values and SCADA system, later we simulate the business processes of an oil refinery in order to calculate the cost involved in the oil refinery. After that, we will discuss about the SCADA requirements in the oil refinery, from the values produced by the simulation we determining the phase in the business processes of an oil refinery where SCADA system is much needed to increase the profit-margins. Page 9

10 Chapter 2 This chapter briefly describes the Business Process Management Lifecycle (BPM) and its importance in oil refinery. 2.1 Importance of a Business Process Methods & Control A business process or business method is a collection of related, structured activities or tasks that produce a specific service or product (serve a particular goal) for a particular customer or customers. It often can be visualized with a flowchart as a sequence of activities. There are three types of business processes: [2] 1. Management processes, the processes that govern the operation of a system. Typical management processes include "Corporate Governance" and "Strategic Management". 2. Operational processes, processes that constitute the core business and create the primary value stream. Typical operational processes are purchasing, manufacturing, marketing and sales. 3. Supporting processes, which support the core processes. Examples include accounting, recruitment, and technical support. A business process begins with a customer s need and ends with a customer s need fulfillment. Process oriented organizations break down the barriers of structural departments and try to avoid functional silos. A business process can be decomposed into several sub-processes, which have their own attributes, but also contribute to achieving the goal of the super-process. The analysis of business processes typically includes the mapping of processes and sub-processes down to activity level. Page 10

11 Business Processes are designed to add value for the customer and should not include unnecessary activities. The outcome of a well designed business process is increased effectiveness (value for the customer) and increased efficiency (less costs for the company). Business Processes can be modeled through a large number of methods and techniques. For instance, the business process modeling notation is a business process modeling technique that can be used for drawing business processes in a workflow. 2.2 Business Process Management Lifecycle (BPM) The business process lifecycle consists of the steps shown in Figure 1. [3] Figure 1: Business process lifecycle Model and Simulate: Business process owners create a high-level design of the tasks to be done and a list of the required resources. This is usually done graphically using a drawing package such as Microsoft Visio or a proper modeling tool such as Popkin's Page 11

12 System Architect. The modeling tool may also be used to perform optional simulation steps during which hypothetical scenarios are run to identify critical paths and bottlenecks. Implement and Deploy/Execute: Developers convert the business process definitions into an executable process model linking systems, APIs, and people through workflows. The resulting executable process is then deployed to a BPEL or BPM engine for execution. Monitor and Optimize: Deployed business processes are monitored to measure key performance indicators and other metrics. Process throughput and utilization metrics can be fed into a simulation tool to derive the optimal execution mode by using real data (e.g. historical). 2.3 The Importance of Business Process Improvement In order for a business to make money and to remain effective over time, leadership must continually plan and oversee the organization from the top-down. If businesses have a clear understanding of their day-to-day operations and processes, they stand a better chance of longterm success. A crucial component in understanding, solidifying and enhancing operations is a practice known as business process improvement. [4] Business process improvement is defined as a systematic approach that allows companies to optimize their core processes in order to obtain the most efficient results. When companies engage in process improvement, they will start to define: - The goals and objectives of the business itself Page 12

13 - The purpose of the business - Who their customers really are - What strategic improvements need to be made? - Which processes should be improved or eliminated to ensure maximum efficiency and profitability When it comes to business process improvement, the overall goal is to determine which company processes are the most efficient and what processes are problematic. The company will then be able to determine the steps it needs to take to reach its goals. For example, in cases where a company has inefficiencies or is spending too much money on resources that it does not need, it would evaluate how to best improve its process so that it is efficient and able to maximize its performance. Business process mapping is typically used to achieve these goals. 2.3.a How Can Business Process Improvement Aid Company Performance? In today s struggling economy, more and more businesses are starting to realize that in order to survive they must improve their existing processes and address areas of concern. Often times, businesses struggle in one way or another, whether they have poor customer service or their sales are simply down. If a business wants to correct problems and optimize its performance, it will have to take a close look at its existing processes and start making improvements. Process improvement begins when a company identifies its problem areas. The company must then document and measure how these problems are adversely impacting business and revenue. Finally, the company must manage the problem and find effective solutions. By finding solutions, the company will make necessary improvements and will ultimately perform better over time. When business process improvements are implemented correctly, the end result is usually higher performance and increased monetization. Page 13

14 Chapter 3 SCADA system This chapter briefly describes the SCADA system and its application in oil refinery. 3.1 What is a SCADA system? SCADA stands for Supervisory Control and Data Acquisition. It is an industrial control system used to control and monitor a process. SCADA consists of the following subsystems. [5] Human machine interface (HMI) Supervisory control system Communication infrastructure Remote terminal units(rtus) A Human-Machine Interface or HMI is the apparatus which presents process data to a human operator, and through this, the human operator, monitors and controls the process. A supervisory control system collects data on the process and sends commands (control) to the process. The Remote Terminal Units (RTUs) are small computerized units deployed in the field at specific locations to gather reports from sensors within the process. Communication infrastructure connects the supervisory system to the Remote Terminal Units. Page 14

15 3.2 Layers of SCADA system Generally, a SCADA system has three layers, SCADA master, communication media, and local control system shown in Figure 2. [6] SCADA Figure 2: Example of a SCADA system SCADA is an acronym for "Supervisory Control and Data Acquisition", meant to explain the very essence of the system. SCADA is a technology permitting to collect and process data received from the remote (in terms of distance from the control center) objects, and transmit commands via cable or radio communication systems. SCADA may either eliminate the necessity of the on-going technological process personnel's presence, or drastically reduce the number of inspection visits to the system's objects. SCADA is a technological control and management system providing for highly efficient cost effective production. Page 15

16 SCADA enables a technological process operator to monitor and control equipment status, to open and shut valves or motors, to view each of the technological process parameters all from a single Central Control Room. SCADA systems are based on modern microprocessor and networking technologies enabling the system designer to implement a scalable application that can grow with expanding needs. 3.2.a SCADA master The SCADA master is set up at central locations (multiple masters can be established) of your operational organization. SCADA master consists of three main parts, SCADA console, SCADA server, and MTU (Master Terminal Unit). The console is HMI (Human Machine Interface) for your operation. The server contains database(s) for historical trend of relevant data. MTU is a terminal that communicates with RTUs (Remote Terminal Unit). Each piece of SCADA master equipment is a node in SCADA master LAN (Local Area Network). The number and locations of SCADA master are determined for each application, depending on operation plan, total system reliability and other design terms. 3.2.b Communication media For the data communication between MTU and RTU, communication media will be chosen from leased line, microwave radio, UHF/VHF radio, fiber optic transmission, or satellite communication. If you need to own new communications by yourself, installation cost of communication media tends to have a large impact on your total investment. Before you choose the best one for communication, it is important to consider your requirements, local installation Page 16

17 constraints, communication service availability, and total system reliability. Back up circuits using different communication media from the main circuits are sometime provided to increase the strength of communication circuits. 3.2.c Local control system The local control system includes all necessary control functions required for a local station and communication capability with SCADA masters. For a relatively small station such as a block valve station, a small RTU is suitable. On the other hand, a DCS (distributed control system) is often adapted to a terminal or booster station. It is crucial to design a local control system to safely continue controls in case of communication circuits failure with SCADA master(s). If incase oil pipeline is running cross-country, the power supply for stations often poses a problem. In such case, solar cells or a small power station is built to a local station. Page 17

18 Chapter 4 Oil Refinery Business Processes This chapter briefly describes the Business Processes involved in the oil refinery. 4.1 Business Processes in an Oil Refinery Modern optimization techniques have challenged organizations to rethink the way they conduct business both internally and externally, i.e. how efficiently and effectively their entire supply chain is managed. Supply Chain Management (SCM) (Refer to Figure 3) is one such business function that has benefited substantially from optimization software advances and solutions. The primary goal of SCM is to maximize profit by integrated management of material and transactional flows within a business and to customer and partner companies. 4.1.a Crude selection Modern petroleum refineries are designed to process a variety of indigenous and imported crudes. As the crude cost is about 90% of the refinery input cost, the selection of optimum crude mix is extremely important to achieve higher margins. However, the number of options for buying the crudes under a fluctuating price scenario and transporting them to refineries are so enormous that it is very difficult to evaluate all the crudes and decide on the optimum crude mix for the refinery. Refineries buy crudes both on term contracts with leading suppliers and also by spot purchases from the market. The optimum selection of term and spot crudes is extremely difficult when multiple refineries are involved and work in an integrated scenario. [8] Page 18

19 4.1.b Crude transportation Once the crudes are selected and purchased, the focus is to optimize the transportation cost from the crude suppliers to refineries. The transportation cost can be minimized by considering the multiple options available for cargo sizes, sea routes, loading and unloading infrastructure facilities, taxes and duties, etc. 4.1.c Crude processing The crudes often land at refinery sites as a mix of various crudes and various options of crude blending are evaluated before it is processed. The ultimate challenge a refinery faces is processing the crudes in the best possible manner and maximize the $/bbl (dollars per barrel) for the crude input. Determining the best possible option is a very difficult task, as modern day refineries are built with complex processing schemes, having a combination of various technologies for heavy ends upgrading, product quality improvement, efficient fuel usage and controlling refinery emissions. The most common configuration includes catalytic cracking, hydro cracking and thermal cracking to maximize the bottom of the barrel. The other process technologies like catalytic reforming, hydro treating and sulfur recovery are a must to comply with stringent environment and product quality regulations. Page 19

20 Figure 3: Typical Supply chain of Petroleum business 4.1.d Product demands The product demands, quality and prices drive the entire crude processing and secondary unit operations. Multiple streams with multiple blending options to make different grades of a product further make the task of refinery planning cumbersome and demanding. Moreover, the future promises to add even more complexity through additional product specifications, environmental norms, changing feedstock, product prices, mergers and acquisitions. Page 20

21 4.2 Barrel of Crude Oil A Barrel (Shown in Figure 4) of crude oil contains 50% of Gasoline 40% Diesel Fuel, Jet Fuel, Kerosene 10% Residual Fuel Figure 4: A barrel crude oil contain Page 21

22 Chapter 5 Simulation This chapter briefly describes the simulation of Business Processes in an oil refinery. 5.1 Oil Refinery Business Processes An oil refinery or petroleum refinery is an industrial process plant where crude oil is processed and refined into more useful petroleum products, such as gasoline, diesel fuel, asphalt base, heating oil, kerosene, and liquefied petroleum gas. Oil refineries (Referred in Figure 5) are typically large sprawling industrial complexes with extensive piping running throughout, carrying streams of fluids between large chemical processing units. In many ways, oil refineries use much of the technology. [9] Figure 5: Oil refinery plant Page 22

23 5.2 Oil Refinery Business Processes Simulation Accuprocess simulator was used to simulate the business processes of an oil refinery. Figure 6: Oil Refinery Business Processes Simulation Page 23

24 5.3 Phases in Oil Refinery Business Processes Business processes of an oil refinery were divided in to 8 phases. 5.3.a Pumping Crude Oil In this activity a supertanker containing crude oil is considered. The oil from the tanker is pumped into oil pipelines in order to transport the crude to the refinery. Figure 7: Pumping Crude Oil (refer to Figure 6) Page 24

25 5.3.b Crude Transportation Crude oil that is pumped out from the supertanker is transported to the oil refinery through pipelines. Figure 8: Crude Oil Transportation (refer to Figure 6) Page 25

26 5.3.c Crude Storage In this activity the crude that was traveled through the pipelines are stored in the storage tanks as shown in Figure 6. Figure 9: Crude Storage (refer to Figure 6) 5.3.d Oil Refinery Initial Phase This is the initial phase of the oil refinery technical process, in this phase the crude that was stored in the storage tanks was subjected to Crude Distillation and Vacuum Distillation. i) Crude Distillation Process Objective: To distill and separate valuable distillates (naphtha, kerosene, diesel) and atmospheric gas oil (AGO) from the crude feedstock. [10] Primary Process Technique: Complex distillation Page 26

27 ii) Vacuum Distillation Process Objective: To recover valuable gas oils from reduced crude via vacuum distillation. Primary Process Technique: Reduce the hydrocarbon partial pressure via vacuum and stripping steam. Figure 10: Oil refinery Initial phase (refer to Figure 6) Page 27

28 5.3.e Oil Refinery Intermediate Phase In this phase the distilled crude oil is subjected to Hydro treating, Coking, Fluidic Catalytic Cracking and Hydro cracking in order to separate, purify as well as to upgrade variety of feeds from the distilled crude. i) Hydro treating Process Process Objective: To remove contaminants (sulfur, nitrogen, metals) and saturate olefins and aromatics to produce a clean product for further processing or finished product sales. Primary Process Technique: Hydrogenation occurs in a fixed catalyst bed to improve H/C ratios and to remove sulfur, nitrogen, and metals. Figure 11: Oil Refinery Intermediate Phase (Hydro treating) (refer to Figure 6) Page 28

29 ii) Coking Process Process Objective: To convert low value resides to valuable products (naphtha and diesel) and Coker gas oil. Primary Process Technique: Thermo cracking increases H/C ratio by carbon rejection in a semi-batch process. Figure 12: Oil Refinery Intermediate Phase (Coking) (refer to Figure 6) Page 29

30 iii) Fluidic Catalytic Cracking Process Objective: To convert low value gas oils to valuable products (naphtha and diesel) and slurry oil. Primary Process Technique: Catalytic cracking increases H/C ratio by carbon rejection in a continuous process Figure 13: Oil Refinery Intermediate Phase (Fluidic Catalytic Cracking) (refer to Figure 6) Page 30

31 iv) Hydro cracking Process Process Objective: To remove feed contaminants (nitrogen, sulfur, metals) and to convert low value gas oils to valuable products (naphtha, middle distillates, and ultra-clean lube base stocks). Primary Process Technique: Hydrogenation occurs in fixed hydro treating catalyst beds to improve H/C ratios and to remove sulfur, nitrogen, and metals. This is followed by one or more reactors with fixed hydro cracking catalyst beds to dealkylate aromatic rings, open naphthene rings, and hydrocrack paraffin chains. Figure 14: Oil Refinery Intermediate Phase (Hydro Cracking) (refer to Figure 6) Page 31

32 5.3.f Oil Refinery Final Phase In this final phase the separated mixture will undergo Isomerization, Catalytic Reforming and Alkylation in order to produce the end products like Gasoline, Hydrogen, and Aromatics. i) Isomerization Process Process Objective: To convert low-octane n-paraffins to high-octane iso-paraffins. Primary Process Technique: Isomerization occurs in a chloride promoted fixed bed reactor where n-paraffins are converted to iso-paraffins. The catalyst is sensitive to incoming contaminants (sulfur and water). Figure 15: Oil Refinery Final Phase (Isomerization) (refer to Figure 6) Page 32

33 ii) Alkylation Process Process Objective: To combine light olefins (propylene and butylene) with isobutane to form a high octane gasoline (alkylate). Primary Process Technique: Alkylation occurs in the presence of a highly acidic catalyst (hydrofluoric acid or sulfuric acid). Figure 16: Oil Refinery Final Phase (Alkylation) (refer to Figure 6) Page 33

34 iii) Catalytic Reforming Process Process Objective: To convert low-octane naphtha into a high-octane reformate for gasoline blending and/or to provide aromatics (benzene, toluene, and xylene) for petrochemical plants. Reforming also produces high purity hydrogen for hydro treating processes. Primary Process Technique: Reforming reactions occur in chloride promoted fixed catalyst beds; or continuous catalyst regeneration (CCR) beds where the catalyst is transferred from one stage to another, through a catalyst regenerator and back again. Desired reactions include: dehydrogenation of naphthenes to form aromatics; isomerization of naphthenes; dehydrocyclization of paraffins to form aromatics; and isomerization of paraffins. Hydro cracking of paraffins is undesirable due to increased light-ends make. Figure 17: Oil Refinery Final Phase (Catalytic Reforming) (refer to Figure 6) Page 34

35 5.3.g Product Storage All the Refined Products are collected and stored. Storage is an important phase in the oil refinery in order to increase the price of the final product. "You may only pay $40 a barrel, but you could sell it today, lock in a future price much, much higher, just a few months down the road and take advantage of that. You could lock in, per barrel, a $3 or a $5 or, if you could hold the oil long enough, maybe even a $10 profit. [11] Figure 18: Refined product storage (refer to Figure 6) Page 35

36 5.3.h Marketing & Supply Marketing and Distribution of petroleum products takes place on a vast, global scale. Every day, hundreds of millions of companies and individuals buy these products at wholesale or directly from retail outlets as shown in Figure 6. Figure 19: Marketing & Supply (refer to Figure 6) Page 36

37 5.4 What Is The Profit-Margin For Refining Crude Oil Into Gasoline? As of 1999, for every gallon of gasoline refined from crude oil, U.S. oil refiners made an average profit of 22.8 cents. By 2004, the profits jumped to 40.8 cents per gallon of gasoline refined. In the specialized California market where the gasoline must conform to the requirements of the California Air Resources Board, refinery margins were even higher. In fact, this helped Exxon, the largest company, report a profit (as of February 2008) of $40.6 billion. Nevertheless, one financial tracking institution reported that the profit-margins have now dropped to about 29.6 cents a gallon or around 60 percent lower than a year ago. Generally speaking, since there are so many variables to consider, precise cost breakdowns are difficult to ascertain. According to the Energy Information Administration (EIA), however, which issues the Official Energy Statistics from the U.S. Government the average cost at the pump for a gallon of gasoline is broken down as follows: 74% - Cost of the crude oil 11% - Taxes 10% - Refining costs 5% - Distribution and marketing 5.5 Cost Estimation for processing 2 million barrels of crude Oil In this cost estimation we estimate the total cost of 2 million barrels of crude oil to refine (including man power) and determine the profit for one gallon of refined oil by comparing with the current oil prices in the market. Page 37

38 5.5.a Cost for buying crude oil A supertanker holds roughly 2 million barrels or 84 million gallons of crude oil. 1 barrel contain 42 gallons Crude-oil futures rose above $82 a barrel Ship cost of a crude oil * 82 = 164,000,000 $ Shipping crew wages = 22,000 $ 5.5.b Cost for transporting crude oil to the refinery Here there are different types for transporting crude to refinery (e.g. Road transportation, Pipelines, etc.) We are considering pipelines because it was the cheapest of all. Pipeline with a capacity of 600 million barrels per day (mb/d) costs nearly 2.52 cents per barrel. So for transporting 2 million barrels is * 2.52 cents = cents = 50,400 $ (shown in Figure 20) 5.5c Cost for refining crude oil Total cost of the technical processes in the refinery. Figure 20: Simulated values for total cost of each activity Page 38

39 Technical processes Cost (Process cost including man power) Crude Distillation/Vacuum Distillation 3,970,432 Hydro treating 2,942,950 Coking 2,711,620 Fluidic Catalytic Cracking 2,902,320 Hydro cracking 2,803,030 Isomerization 2,842,800 Alkylation 2,514,940 Catalytic Reforming 2,651,730 Total 23,339,822 $ 5.5.d Cost for Storing refined oil "You may only pay $40 a barrel, but you could sell it today, lock in a future price much, much higher, just a few months down the road and take advantage of that. You could lock in, per barrel, a $3 or a $5 or, if you could hold the oil long enough, maybe even a $10 profit." Storage cost per year 5, 54,439 $ (shown in Figure 20) 5.5.e Cost for Marketing and Distribution of refined oil Every day, critical business outcomes depend on seamless supply and trading around the globe. Marketing and Distribution of petroleum products takes place on a vast, global scale. Every day, hundreds of millions of companies and individuals buy these products at wholesale or directly from retail outlets. Trading & Supply cost 5,230,000 Marketing & Distribution cost 5,230,000 Total cost 10,460,000 $ Page 39

40 Overall Estimation Overall Cost 164,000,000 (crude oil) + 22,000 (shipping crew wages) + 50,400 (transporting crude) + 23,339,822 (process cost including man power) + 5, 54,439 (storage cost) + 10,460,000 (marketing and distribution) 198,096,661 Tax s on each gallon of refined oil 23cents according to the California Energy Commission [14] So for 84 million gallons of refined oil => *.23 = 19,320,000 $ Total refinery cost with Tax s = = 217,416,661 Today each gallon of refined oil cost 3.00 $ (retail price) So for 84,000,000 gallons of refined oil cost => * 3 = 252,000,000 $ Profit made on 84 million gallons of refined oil => = 34,583,339 Profit on 1 gallon of refined oil 34,583,339 / 84,000,000 = 41.1 cents Page 40

41 Chapter 6 SCADA Requirements This chapter briefly describes the requirements for SCADA in an oil refinery. 6.1 The 2 Basic Components of SCADA Any SCADA scenario involves 2 basic components [7] 1. Things you want to monitor and control 2. Devices you will use to perform monitoring and controlling functions As stated above, SCADA systems are used to collect data and control processes at the supervisory level. Therefore, one of the major components of a SCADA system is having something that you want to control. This could be a system or process, or even specific machinery. These SCADA-monitored elements could be just about anything, from an oil refinery plant, a power-generation system, an organization s communication network, or even a simple switch. To monitor and control these elements using a SCADA system, you will need devices to collect data from them and issue commands. This network of monitoring and control devices makes up your SCADA system. Using sensors (discrete or analog) and control relays, the system can collect information about processes and control individual pieces of equipment. The system is governed by a SCADA master, that collects data from monitoring devices and issues controls in response (either automatically or at the request of human operators). Page 41

42 6.2 Where SCADA can be used While SCADA can be used to manage any kind of equipment, SCADA systems are typically for the automation of industrial processes where humans are unable to manage complex or rapid operations. These are often fast-paced processes dealing with extremely delicate and tiny parts and equipment that are simply too difficult for human operators to monitor with any consistent level of accuracy. 6.3 SCADA System Operation There are four parts common to every SCADA system: 1. Sensors (either digital or analog) and control relays - These are input/output devices that monitor and control the managed processes and equipment. 2. Remote Terminal units (RTU s) - These are devices deployed in the field at specific sites and locations. RTU s gather information locally from the sensors to report back to the SCADA master unit. 3. SCADA master units- SCADA master units are the main, user-end component of the entire SCADA monitoring system. They are also sometimes referred to as the SCADA HMI (Human-Machine Interface). The master provides the central processing capability for the SCADA system. Master units connect the human operators to the system with a browser interface that allows the system operator to respond to data gathered from all parts of the network. 4. The communications network- The communication network provides the connection between the SCADA master unit and the RTU s in the field. It is the all-important link between the far-flung elements of a geo-diverse operation. Page 42

43 6.4 Parts enable a SCADA system to perform four types of tasks: 1. Data collection- A SCADA system is composed of large numbers of sensors that collect inputs into a system, or measure the output levels of a system or process. The information collected by these sensors is collected by the RTU s locally, and then forwarded to the SCADA master, where reports and alarms are presented to the network operator. Sensors can be classified as two types, either discrete or analog. Discrete sensors collect information about simple events, whereas analog sensors can provide more detailed information that can fall within a range of values, rather than a present/not present type of situation. Analog sensors are particularly useful in measuring environmental factors, such as temperature and humidity, battery levels, fuel levels, and more. 2. Communication of data across the network- To monitor geo-diverse operational systems from a centralized location, you need a communications network. This network provides you with a means to transport all information collected across the system. SCADA communications generally take place on Ethernet and IP over SONET. To alleviate security concerns when transporting sensitive data, communication of data should be done over internal LAN/WANs, not the public Internet. SCADA uses protocol communication methods, so input and output devices cannot interpret or create SCADA communications on their own. RTU s interpret information from attached sensors and transmit it to the SCADA master (HMI). In turn, the RTU receives control commands in protocol format from the SCADA master, and forwards Page 43

44 these commands to the appropriate control relays. This allows the SCADA master to control individual operational processes throughout the network from a single location 3. Information reporting- A SCADA system presents data to operators via the SCADA HMI (Human-Machine Interface). Along with presenting this data, the SCADA master station also performs many other tasks for network operators. The master continuously monitors all sensors and alerts the operator when there is a Change-of-State (COS) event within the managed system. The master presents a comprehensive view of the entire network of devices, and presents more specific information about the managed equipment and processes when the system operator requests it. The master also presents reports and summarizes historical trends of data gathered by the system. 4. System control functions- A SCADA solution with control functions can respond to COS events anywhere in the system by automatically issuing related, user-specified commands. If you have an advanced SCADA master, this can be done without any human intervention at all, resulting in instantaneous response to dynamic problems and threats. Advanced systems also allow overriding of automatic controls as the need occurs. Page 44

45 6.5 SCADA Requirement in Business Processes of an oil refinery SCADA is required in different phases of an oil refinery, in order to manage complex or rapid operations which are difficult for human to operate and monitor. Oil refinery needs SCADA for different purposes like, to manage the temperature and pressure in the reactors, to control the flow of fluids in the pipelines, to collect the data and values for testing the purity of the refined products and also need sensors to detect the tank levels. 6.5.a SCADA system for Oil Pipelines Oil is transported from the oil wells or oil containers to the refineries and refineries to various places through the pipelines. Since the oil pipelines travel through hundreds of miles, a single system cannot monitor the entire pipeline. Hence many devices like field instruments, programmable logic units and RTU s are placed at different places throughout the pipeline. These field instruments and the programmable logic units are connected to RTU s and the SCADA system is used to monitor all these RTU s. Various parameters are being sensed by these devices namely pressure, temperature of the oil flowing inside the pipeline, density of the liquid flowing etc. Since there are many RTU s located at different places throughout the pipeline and since all these RTU s communicate with the SCADA master system (as shown in Figure 22), rapid exchange of data takes place. The RTU s sends the data to the SCADA master system and the SCADA master system checks if everything is working well or if there are any changes to be made. If there are any changes to be made, the SCADA master sends a message to the respective RTU and it performs the required action. Page 45

46 Any minor change in the pipeline can be detected by the SCADA master system and the required action can be taken. The application of SCADA has reduced huge amount man power requirements in the field which in turn has reduced the expenditure Figure 22: Oil pipeline SCADA System Architecture 6.5.b SCADA system for storage tanks and reactors SCADA Systems are often used to maintain oil storage tank and reactor levels with offsite pump stations. The SCADA system monitors and controls the oil level in the storage tanks and reactors, provides tank level control from several offsite pump stations, allows operators to specify set-points, displays graphical representations of the tank and the system, provides alarm features, and generates trending and historical data. [12] The systems are programmed to start and stop pumps based on operator-adjustable tank level set-points. The pressure transmitter continuously measures a tank level variable and transmits signal representing the level to the local RTU. (As shown in Figure 23) Page 46

47 RTUs were installed at each offsite location. For each given pump, there is a start and stop command based on tank level and an alternation scheme. The system monitors the tank level and controls pumps according to the set-points. If the tank level drops, the system activates a pump, monitors the levels, and stops the pump. It also monitors for potential pump failures or failure conditions, and keeps track of the pump usage for allotment purposes. Operator override pump control and pump disable is permitted. Different operation performed by SCADA system in storage tanks and reactors Monitor high and low levels in the tanks. Fill them when a certain level is reached. Calculated and store the volume used. Monitor the level in the main feed tank. Alarm when a certain level is reached to notify purchasing. Plot the usage of chemicals vs. time, process, or any other parameter. Turn pumps, valve, switches on and off. [13] Figure 23: Storage tank SCADA System Architecture Page 47

48 Chapter 7 Relationship between Business values and SCADA Requirements In this chapter we discuss and determine the phase in the business processes of an oil refinery where SCADA system is more needed to increase the profit-margins. 7.1 SCADA Technology evolves to create new market dynamics The role of SCADA (Supervisory Control and Data Acquisition) systems continues to grow with requirements for more quality monitoring, efficiency monitoring, real-time OEE (Overall Equipment Effectiveness), sub metering and alarm monitoring. Remote Terminal Units (RTU) technology provides monitoring for remote locations operating wirelessly. [15] The worldwide SCADA market reflects the impact of new technology on SCADA components and cost effective communications for knowledge transfer. SCADA components are easier to integrate and provide vastly improved capabilities and functionalities. Communication limitations have been eliminated. Consequently, SCADA systems are being used for a range of operational improvement applications and linking these to business processes for a variety of purposes both internal and external to the enterprise. Supported by intelligent field devices, expanded communication networks, and improved compatibility with IT, SCADA can now provide a wealth of information and knowledge to help users modify their business processes. The effective use of today's SCADA systems requires their usage be leveraged to encompass both robust control and automation functionalities and, Page 48

49 more importantly, the capability to support higher-level systems that overlap into enterprise optimization for utility and energy companies. 7.2 Determining the phase in the business processes of an oil refinery where SCADA system is much needed to increase the profit-margins The four major SCADA system components include the Master Terminal Unit (MTU), the Remote Terminal Unit (RTU), Communication Equipment and SCADA Software Setting a SCADA system involves placing sensors at right places and connecting those sensors to a Remote Terminal Unit (RTU) which are placed at the specified sites and locations. They gather information locally from the sensors to report back to the SCADA master unit. Master units are larger computer consoles that serve as the central processor for the SCADA system. Cost to setup a true SCADA system is approximately $30,000, SmartSCADA provides a complete packaged solution, with all of the components necessary for a successful system: [16] --SCADA Master Station --Key Applications --SOFTWARE --Substation Controller (RTU s) --Training --Project Management --Service and Support --Optional Communications Page 49

50 7.3 Phases in oil refinery where RTU s and Master Units are must needed SCADA system is much needed where there is a huge amount of money invested in the refinery, because SCADA is a technological control and management system which provides highly efficient cost effective production. Since 75% of the total investment goes for the purchase of crude oil. Only 25 % of the amount was invested in different phase of an oil refinery. 7.3.a Pumping crude oil In this phase a single sensor and a single RTU is sufficient, in order to acquire the data like rate at which the system is pumping crude oil and to calculate the amount of crude oil pumped. In this phase there is no need of a Master Unit. 7.3.b Transporting crude oil Cost estimation in this phase for transporting 2 million barrels of crude oil = 50,400 $ Transporting crude trough pipelines, in this phase 4-5 RTU s are sufficient to record the flow of crude in the pipeline, and to detect the leakage in the pipeline. This phase need a Master Unit to monitor and control the flow as well as to control the valves. 7.3.c Crude and final products storage tanks Estimated cost in this phase for storing 2 million barrels of crude oil = 5, 54,439 $ This phase need only sensors to detect the temperature and pressure in the oil tanks, sensors also detect the oil levels in the tanks and activate alarm in case oil level increase beyond certain values. There is no need of a Master Unit or an RTU in this phase. Page 50

51 7.3.d Technical processes in the oil refinery Estimated cost in this phase for processing 2 million barrels of crude oil = 23,339,822 $ This is most important phase in the oil refinery where there is a much need of RTU s and the Master Unit. Each technical process needs at least 5 6 sensors in order to record the levels in the reactors (as shown in Figure 24) and also for record the rate at which liquid flow in the pipes between the reactors, each technical process needs at least one RTU in order to transmit the recoded values by the sensors to the Master unit. This phase require a Master unit to control the flow of liquids and to control the pumps and valves that are in this phase. There are 7 technical processes in the oil refinery each requires an RTU and at least 5 sensors to monitor. Sensors and RTU s needed in this phase are sensors, 7-10 RTU s and 1 MTU. (Shown in Figure 25) Since huge amount is invested in this phase, SCADA system is much needed in this phase. Figure 24: Example to show how many RTU s and sensors needed for each technical process Page 51

52 Phases of Oil refinery Business processes SCADA need in oil refinery Sub phases Number of Sensors needed Number of Remote Terminal Units (RTUs) needed Number of Master Terminal Unit (MTUs) needed 1) Pumping Crude Oil ) Crude Transportation 3) Crude Storage ) Oil Refinery Initial Phase Crude Distillation / Vacuum Distillation ) Oil Refinery Hydro treating 9 1 Intermediate Phase Coking 7 1 Fluidic Catalytic Cracking Hydro cracking ) Oil Refinery Final Phase Isomerization 6 1 Catalytic Reforming 8 1 Alkylation 8 1 7) Product Storage ) Marketing & Supply supply & Trading Marketing & Distribution Figure 25: Table showing how many sensors, RTUs and MTUs required for each phase in the business process of an oil refinery Page 52

53 Chapter 8 Conclusions and Future work Before the development of the SCADA systems, we had to send people around the refinery to close valves and turn on pumps at various times. This requires lot of effort and man power. The use of SCADA systems became popular in 1960 s as a need to arise to more efficiently monitor and control the state of remote equipment. A problem with early SCADA systems is that they required human oversight to make decisions as well as human support to maintain the information system. With the technology growing rapidly, the human intervention in the SCADA system is becoming very low. Human Intervention is needed only for some very rare events. In this project we discussed about the business values and SCADA system, we also simulated the business processes of an oil refinery by using Accuprocess simulator and calculate the cost involved in the oil refinery. After that, we discussed about SCADA requirements in the oil refinery, from the values produced by the simulation we determined the phase in the business processes of an oil refinery where SCADA system is much needed to increase the profit-margins. This system can be further developed to work on some other issues like the security scenarios, profit-margins, or doing a little deeper research into the system and improving the business values of the refinery. Page 53

54 Chapter 9 References [1] Business Process Improvement in Refinery by Christopher Fonseca - Practice Director, Seshasai Kandrakota Practice Head Energy Resource & Utilities for Tata Consultancy Services, Process-Improvement-Refinery.pdf [2] Business process From Wikipedia, the free encyclopedia. [3] Supporting the Business Process Lifecycle Using Standards-Based Tools by Bhagat Nainani - product development manager, Oracle Application Server division [4] The Importance of Business Process Improvement by Julia James [5] SCADA - Wikipedia, the free encyclopedia [6] What is SCADA system? VEESTAWORLD [7] SCADA Knowledge Base DPS telecom [8] PETROLEUM REFINERY: COMPLEXITY OF OPERATIONS AND THE NEED AND SCOPE OF OPTIMIZATION GLOBALSPEC [9] Oil refinery - From Wikipedia, the free encyclopedia [10] Oil Refinery Processes - A Brief Overview [11] Oil Storage at Record Levels as Speculators Await Higher Prices Voice of America [12] SCADA Applications Data Flow Systems Page 54

********** An short and simple explanation of how oil is converted into gasoline and then brought to you, the consumer.

********** An short and simple explanation of how oil is converted into gasoline and then brought to you, the consumer. ********** An short and simple explanation of how oil is converted into gasoline and then brought to you, the consumer. CEC-180-2008-008 July 2008 CONTENTS [St e p 1 ] SOURCES [Step 2] extraction **************

More information

Oil Refinery Processes A Brief Overview

Oil Refinery Processes A Brief Overview Oil Refinery Processes A Brief Overview Ronald (Ron) F. Colwell, P.E. Some Historical Events 3000 BC Sumerians use asphalt as an adhesive; Eqyptians use pitch to grease chariot wheels; Mesopotamians use

More information

ASimple Guide to Oil Refining

ASimple Guide to Oil Refining ASimple Guide to Oil Refining We all know that motor oil and gasoline come from crude oil. What many people do not realize is that crude oil is also the starting point for many diverse products such as

More information

Refining of Crude Oil - Process

Refining of Crude Oil - Process Introduction: The process of producing valuable Petroleum Products from Crude Oil is termed as Oil Refining. Refining is a complex engineering application which involves both Physical and Chemical processes

More information

Kepware Whitepaper. Enabling Big Data Benefits in Upstream Systems. Steve Sponseller, Business Director, Oil & Gas. Introduction

Kepware Whitepaper. Enabling Big Data Benefits in Upstream Systems. Steve Sponseller, Business Director, Oil & Gas. Introduction Kepware Whitepaper Enabling Big Data Benefits in Upstream Systems Steve Sponseller, Business Director, Oil & Gas Introduction In the Oil & Gas Industry, shifting prices mean shifting priorities. With oil

More information

Glossary of Energy Terms

Glossary of Energy Terms Glossary of Energy Terms A API gravity A measure of the weight of hydrocarbons according to a scale established by the American Petroleum Institute. Crude oils with higher values are lighter and tend to

More information

A Proposed Integration of Hierarchical Mobile IP based Networks in SCADA Systems

A Proposed Integration of Hierarchical Mobile IP based Networks in SCADA Systems , pp. 49-56 http://dx.doi.org/10.14257/ijsh.2013.7.5.05 A Proposed Integration of Hierarchical Mobile IP based Networks in SCADA Systems Minkyu Choi 1 and Ronnie D. Caytiles 2 1 Security Engineering Research

More information

Sulphur in Nigerian Diesel

Sulphur in Nigerian Diesel Sulphur in Nigerian Diesel Aminu Jalal National Automotive Council, Abuja, Nigeria, At National Sensitisation Workshop on Sulphur Reduction in Vehicle Fuels, Lome, Togo, 17-18 June 2008 Outline Introduction

More information

Gas Detection for Refining. HA University

Gas Detection for Refining. HA University Gas Detection for Refining HA University Refinery Process and Detection Needs Refining i Crude Oil Final Products Coke Asphalt Waxes, Lubricating Oils and Greases Kerosene, Jet Fuel, Diesel Fuel, Home

More information

<Insert Picture Here> JD Edwards EnterpriseOne Bulk Stock Industry & Overview

<Insert Picture Here> JD Edwards EnterpriseOne Bulk Stock Industry & Overview JD Edwards EnterpriseOne Bulk Stock Industry & Overview 2 The following is intended to outline our general product direction. It is intended for information purposes only, and may

More information

Apache Hadoop: The Big Data Refinery

Apache Hadoop: The Big Data Refinery Architecting the Future of Big Data Whitepaper Apache Hadoop: The Big Data Refinery Introduction Big data has become an extremely popular term, due to the well-documented explosion in the amount of data

More information

OIL MARKETS AND THEIR ANALYSIS IEA ENERGY TRAINING WEEK PARIS, APRIL 2013

OIL MARKETS AND THEIR ANALYSIS IEA ENERGY TRAINING WEEK PARIS, APRIL 2013 OIL MARKETS AND THEIR ANALYSIS IEA ENERGY TRAINING WEEK PARIS, APRIL 2013 A (VERY) BRIEF OVERVIEW OF THE OIL INDUSTRY End consumers buy refined products (eg gasoline / diesel) Refineries buy crude oil

More information

Tank Gauging & Inventory Management Solutions

Tank Gauging & Inventory Management Solutions & Inventory Management Solutions Automation solutions for oil & gas, defense and aviation applications FuelsManager, Varec s industry-leading software is available in four editions: Standard, Professional,

More information

Failsafe Protection for Utility Critical Infrastructure

Failsafe Protection for Utility Critical Infrastructure Failsafe Protection for Utility Critical Infrastructure Introduction PUCs maintain a crucial part of the nation s CI that provide essential services to the public, business and government. Reliable CI

More information

How To Build A Network For Mining

How To Build A Network For Mining GE Digital Energy Industrial Communication Solutions for the Mining Industry g imagination at work GE Industrial Communications For over twenty-five years, GE Industrial Communications has provided rugged

More information

CRG CONSERVE RESOURCES GROUP ECO ENVIRONMENTAL ENGINEERING TECHNOLOGIES. NEW State of the Art. Advanced OIL REFINERY TECHNOLOGY & PROCESSES

CRG CONSERVE RESOURCES GROUP ECO ENVIRONMENTAL ENGINEERING TECHNOLOGIES. NEW State of the Art. Advanced OIL REFINERY TECHNOLOGY & PROCESSES NEW State of the Art Advanced OIL REFINERY TECHNOLOGY & PROCESSES TABLE OF CONTENTS Introduction ( Part 1 ) Comparison Advantages Information Appendix Result of Fraction Refinery Economic indicator + Supporting

More information

Introduction To SCADA and Telemetry

Introduction To SCADA and Telemetry Introduction To SCADA and Telemetry Joe Mullaney Senior I&C Engineer MSE Technology Applications, Inc. Tetragenics Division joe.mullaney@mse-ta.com Overview Definitions What is SCADA? What is Telemetry?

More information

Intelligent Device Management with DCS, PLC, and RTU

Intelligent Device Management with DCS, PLC, and RTU wp_dcs PLC RTU ra 2015-07-04 12:47:00 Intelligent Device Management with DCS, PLC, and RTU EDDL-based Intelligent Device Management (IDM) software part of the Asset Management System (AMS) can be used

More information

Refinery Equipment of Texas. Mini - Refinery Feasibility Overview

Refinery Equipment of Texas. Mini - Refinery Feasibility Overview Mini - Refinery Feasibility Overview Introduction This paper is intended to provide information, answer questions, and assist the owner or project developer in making informed buying decisions. A mini-refinery

More information

The data can be transmitted through a variety of different communications platforms such as:

The data can be transmitted through a variety of different communications platforms such as: COMMUNICATION NETWORK General Overview of SCADA Communications Without a properly designed communication network system, a SCADA system cannot exist. All supervisory control and data acquisition aspects

More information

Reliability Modeling Software Defined

Reliability Modeling Software Defined Reliability Modeling Software Defined Using Titan Reliability Modeling Software May 30, 2014 Prepared by: The Fidelis Group 122 West Way, Suite 300 Lake Jackson, TX 77566 Fidelis Group, LLC All Rights

More information

Main areas of services are:

Main areas of services are: Pakistan Foundation for the Advancement of Engineering & Technology provides superior solutions to Oil & Gas Companies/ industry upstream, production, transportation, refining and related industries. Upstream

More information

Intelligent Terminal Automation System

Intelligent Terminal Automation System Intelligent Terminal Automation System. Rockwell Automation intelligent Terminal Automation Systems provide a complete automation solution for tank terminals beyond your expectations The Rockwell Automation

More information

Automotive Base Oil Presentation

Automotive Base Oil Presentation Automotive Base Oil Presentation What is a Base Oil? The refined petroleum mineral or synthetic material that is produced by a refinery to a required set of specifications. A lubricant s quality can depend

More information

Development of large-scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC)

Development of large-scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC) Development of large-scale storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC) Yoshimi Okada 1, Mitsunori Shimura 2 Principal researcher, Technology Development Unit, Chiyoda

More information

The Relation Between Gasoline Quality, Octane Number and the Environment

The Relation Between Gasoline Quality, Octane Number and the Environment MH1 The Relation Between Gasoline Quality, Octane Number and the Environment Rafat Assi National Project Manager Jordan s Second National Communications on Climate Change (www.snc.gov.jo) Presented at

More information

Improving Security of Oil Pipeline SCADA Systems Using Service-Oriented Architectures

Improving Security of Oil Pipeline SCADA Systems Using Service-Oriented Architectures Improving Security of Oil Pipeline SCADA Systems Using Service-Oriented Architectures Nary Subramanian Department of Computer Science The University of Texas at Tyler 3900 University Blvd. Tyler, Texas

More information

Introduction to Oil & Gas Industry, Accounting & Financial Statement Analysis. Copyright by Wall Street Prep, Inc. All rights reserved 1

Introduction to Oil & Gas Industry, Accounting & Financial Statement Analysis. Copyright by Wall Street Prep, Inc. All rights reserved 1 Introduction to Oil & Gas Industry, Accounting & Financial Statement Analysis Copyright by Wall Street Prep, Inc. All rights reserved 1 A number of distinct yet interconnected sectors There are a number

More information

Internet-Accessible Power Monitoring & Control Systems

Internet-Accessible Power Monitoring & Control Systems Internet-Accessible Power Monitoring & Control Systems By GE Specification Engineers Keith B. Brock, P.E. Robert P. Hansen, PhD, P.E. Introduction Accessing electrical system information from any location

More information

Using Cellular RTU Technology for Remote Monitoring and Control in Pipeline and Well Applications

Using Cellular RTU Technology for Remote Monitoring and Control in Pipeline and Well Applications Using Cellular RTU Technology for Remote Monitoring and Control in Pipeline and Well Applications Steve Frank Business Development Manager Moxa Inc. Introduction Cellular technology minimizes site visits

More information

Design and Implementation of SCADA System Based Power Distribution for Primary Substation ( Monitoring System)

Design and Implementation of SCADA System Based Power Distribution for Primary Substation ( Monitoring System) Design and Implementation of SCADA System Based Power Distribution for Primary Substation ( Monitoring System) Aye Min Zaw 1, Hla Myo Tun 2 Department of Electronic Engineering, Mandalay Technological

More information

The Cisco and Pelco Industrial Wireless Video Surveillance Solution: Real-Time Monitoring of Process Environments for Safety and Security

The Cisco and Pelco Industrial Wireless Video Surveillance Solution: Real-Time Monitoring of Process Environments for Safety and Security The Cisco and Pelco Industrial Wireless Video Surveillance Solution: Real-Time Monitoring of Process Environments for Safety and Security The Cisco and Pelco Industrial Wireless Video Surveillance Solution

More information

Recent Technologies in Nuclear Power Plant Supervisory and Control Systems

Recent Technologies in Nuclear Power Plant Supervisory and Control Systems Hitachi Review Vol. 49 (2000), No. 2 61 Recent Technologies in Nuclear Power Plant Supervisory and Control Systems Toshiharu Yamamori Takashi Ichikawa Satoshi Kawaguchi Hiroyuki Honma OVERVIEW: Supervisory

More information

Refinery Planning & Scheduling - Plan the Act. Act the Plan.

Refinery Planning & Scheduling - Plan the Act. Act the Plan. Refinery Planning & Scheduling - Plan the Act. Act the Plan. By Sowmya Santhanam EXECUTIVE SUMMARY Due to the record high and fluctuating crude prices, refineries are under extreme pressure to cut down

More information

Critical Infrastructure & Supervisory Control and Data Acquisition (SCADA) CYBER PROTECTION

Critical Infrastructure & Supervisory Control and Data Acquisition (SCADA) CYBER PROTECTION Critical Infrastructure & Supervisory Control and Data Acquisition (SCADA) CYBER PROTECTION ALBERTO AL HERNANDEZ, ARMY RESERVE OFFICER, SOFTWARE ENGINEER PH.D. CANDIDATE, SYSTEMS ENGINEERING PRESENTATION

More information

AM-08-14 Cost Effective Solutions for Reduction of Benzene in Gasoline

AM-08-14 Cost Effective Solutions for Reduction of Benzene in Gasoline Annual Meeting March 9-11, 2008 Manchester Grand Hyatt San Diego, CA Cost Effective Solutions for Reduction of Benzene in Gasoline Presented By: Kerry Rock Director, Technology Commercialization CDTECH

More information

OUR CONVERSATION TODAY

OUR CONVERSATION TODAY OUR CONVERSATION TODAY Our goal is to raise the level of awareness around the oil supply chain among key stakeholders in order to facilitate positive working relationships and more informed decision making.

More information

Maximizing Equipment Uptime

Maximizing Equipment Uptime Maximizing Equipment Uptime The benefits of maximizing your equipment s uptime are obvious: if your equipment is not running, then it cannot produce; if it is not producing, then your revenue and profits

More information

Introduction. Background

Introduction. Background Predictive Operational Analytics (POA): Customized Solutions for Improving Efficiency and Productivity for Manufacturers using a Predictive Analytics Approach Introduction Preserving assets and improving

More information

A STUDY OF ENVIRONMENTAL BENEFITS OF INDUSTRIAL INTEGRATION

A STUDY OF ENVIRONMENTAL BENEFITS OF INDUSTRIAL INTEGRATION A STUDY OF ENVIRONMENTAL BENEFITS OF INDUSTRIAL INTEGRATION Presented to Hydrocarbon Upgrading Task Force Calgary, Alberta Presented By: AMEC EARTH & ENVIRONMENTAL Edmonton, Alberta June 2007 Objectives

More information

Movicon in energy efficiency management: the ISO 50001 standard

Movicon in energy efficiency management: the ISO 50001 standard Movicon in energy efficiency management: the ISO 50001 standard The importance of energy consumption within the company reflects the importance of the world energy crisis due to a growing demand and the

More information

Chapter 6 Essentials of Design and the Design Activities

Chapter 6 Essentials of Design and the Design Activities Systems Analysis and Design in a Changing World, sixth edition 6-1 Chapter 6 Essentials of Design and the Design Activities Chapter Overview There are two major themes in this chapter. The first major

More information

FOXBORO. I/A Series SOFTWARE Product Specifications. I/A Series Intelligent SCADA SCADA Platform PSS 21S-2M1 B3 OVERVIEW

FOXBORO. I/A Series SOFTWARE Product Specifications. I/A Series Intelligent SCADA SCADA Platform PSS 21S-2M1 B3 OVERVIEW I/A Series SOFTWARE Product Specifications Logo I/A Series Intelligent SCADA SCADA Platform PSS 21S-2M1 B3 The I/A Series Intelligent SCADA Platform takes the traditional SCADA Master Station to a new

More information

Wireless Communications for SCADA Systems Utilizing Mobile Nodes

Wireless Communications for SCADA Systems Utilizing Mobile Nodes , pp. 1-8 http://dx.doi.org/10.14257/ijsh.2013.7.5.01 Wireless Communications for SCADA Systems Utilizing Mobile Nodes Minkyu Choi Security Engineering Research Support Center, Daejon, Republic of Korea

More information

Automation Technology Helps Precast Producer Reduce Energy Consumption and Lower Costs

Automation Technology Helps Precast Producer Reduce Energy Consumption and Lower Costs Automation Technology Helps Precast Producer Reduce Energy Consumption and Lower Costs Gregg Jacobson, Gary Jacobs, Tom Holmes and Tony Bryant, Wells Concrete Don Pankowski, Wally Metzen, Gretchen Hughes

More information

System 800xA Fully automated ESD System for major gas plant increases safety

System 800xA Fully automated ESD System for major gas plant increases safety Project Report System 800xA Fully automated ESD System for major gas plant increases safety Danish energy giant DONG Energy trusts ABBs System 800xA High Integrity to protect critical gas treatment plant.

More information

HMS Industrial Networks. Putting industrial applications on the cloud

HMS Industrial Networks. Putting industrial applications on the cloud HMS Industrial Networks Putting industrial applications on the cloud Whitepaper Best practices for managing and controlling industrial equipment remotely. HMS Industrial Networks Inc 35 E Wacker Drive,

More information

Executive summary. by Tony Collins

Executive summary. by Tony Collins 998-2095-11-21-Y13AR0 by Tony Collins Executive summary Regulatory compliance is an expensive and critical business issue for oil and gas pipeline operators. Any approach that expedites compliance efforts

More information

Work Process Management

Work Process Management GE Intelligent Platforms Work Process Management Achieving Operational Excellence through Consistent and Repeatable Plant Operations With Work Process Management, organizations can drive the right actions

More information

OPERATIONS CAPITAL. The Operations Capital program for the test years is divided into two categories:

OPERATIONS CAPITAL. The Operations Capital program for the test years is divided into two categories: Filed: September 0, 00 EB-00-0 Tab Schedule Page of OPERATIONS CAPITAL.0 INTRODUCTION Operations Capital funds enhancements and replacements to the facilities required to operate the Hydro One Transmission

More information

Maximize Conversion and Flexibility

Maximize Conversion and Flexibility Maximize Conversion and Flexibility The UOP TM Robert Haizmann UOP LLC 6 th Russia & CIS BBTC Conference April 13-14, 2011 Moscow, Russia 2011 UOP LLC. All rights reserved. Maximize Conversion and Flexibility

More information

EC 350 Simplifies Billing Data Integration in PowerSpring Software

EC 350 Simplifies Billing Data Integration in PowerSpring Software White Paper EC 350 Simplifies Billing Data Integration in PowerSpring Software Executive Summary In the current energy environment, gas-metering data must be collected more frequently and in smaller increments

More information

TITLE PAGE: Feasibility Study for a Petroleum Refinery for The Jicarilla Apache Tribe.

TITLE PAGE: Feasibility Study for a Petroleum Refinery for The Jicarilla Apache Tribe. TITLE PAGE: Feasibility Study for a Petroleum Refinery for The Jicarilla Apache Tribe. Report Title and Type: FINAL PROJECT TECHNICAL NARRATIVE REPORT Report Period: SEPTEMBER 30, 2002 through OCTOBER

More information

Industry Description and Practices. Waste Characteristics

Industry Description and Practices. Waste Characteristics Pollution Prevention and Abatement Handbook WORLD BANK GROUP Effective July 1998 Industry Description and Practices The petroleum industry is organized into four broad sectors: exploration and production

More information

HYRADIX ALPHA 4 PERFORMANCE REVIEW

HYRADIX ALPHA 4 PERFORMANCE REVIEW HYRADIX ALPHA 4 PERFORMANCE REVIEW TECHNICAL BULLETIN: TB-03-001 January 2004 The Center for Fuel Cell Research and Applications a program of the Houston Advanced Research Center www.harc.edu/fuelcell

More information

Fuel Management System. Fuel Tank Monitoring TB-9001

Fuel Management System. Fuel Tank Monitoring TB-9001 Fuel Management System Petroleum retailers and Fuel management companies can use this system to monitor their valuable assets. It provides continuous monitoring the usage of fuel, prevents unauthorized

More information

LNG Monitoring. Fiber-Optic Leakage Detection System. Pipeline leakage detection. Regasification and liquefaction monitoring

LNG Monitoring. Fiber-Optic Leakage Detection System. Pipeline leakage detection. Regasification and liquefaction monitoring LNG Monitoring Fiber-Optic Leakage Detection System Pipeline leakage detection Regasification and liquefaction monitoring Tank annulus and base slab monitoring Spill containment control Intelligent Solutions

More information

5.2 Transportation And Marketing Of Petroleum Liquids 1-3. 5.2.1 General

5.2 Transportation And Marketing Of Petroleum Liquids 1-3. 5.2.1 General 5.2 Transportation And Marketing Of Petroleum Liquids 1-3 5.2.1 General The transportation and marketing of petroleum liquids involve many distinct operations, each of which represents a potential source

More information

Remote Monitoring and Satellite Communications

Remote Monitoring and Satellite Communications Mining, Oil & Gas: Abstract With the majority of Australia s mineral, oil and gas reserves situated in remote locations, resource companies can struggle to get timely access to the data they need to make

More information

Special Report. B&O Tax Pyramiding in. Briefly

Special Report. B&O Tax Pyramiding in. Briefly Since 1932 WASHINGTON RESEARCH COUNCIL Special Report January 18, 2010 B&O Tax Pyramiding in Petroleum Distribution 1. OVERVIEW Briefly For the Washington Oil Marketers Association, the Washington Research

More information

Southern Utah Water SCADA Project and Dispelling Myths regarding 900MHz Spread Spectrum Technology:

Southern Utah Water SCADA Project and Dispelling Myths regarding 900MHz Spread Spectrum Technology: Southern Utah Water SCADA Project and Dispelling Myths regarding 900MHz Spread Spectrum Technology: Problem: How to get reliable and accurate data from hundreds of IO points scattered throughout a very

More information

UOP Career Development. Career development program for mechanical and civil engineers

UOP Career Development. Career development program for mechanical and civil engineers UOP Career Development Career development program for mechanical and civil engineers MAKING OUR WORLD SAFER AND MORE SECURE, MORE COMFORTABLE AND ENERGY EFFICIENT, AND MORE INNOVATIVE AND PRODUCTIVE Our

More information

Fact Sheet Technology. Bergius-Pier Process (1)

Fact Sheet Technology. Bergius-Pier Process (1) tec Energy Technology Projects Subject: Bergius 1: 1924 1945 Rev: April 2006 Fact Sheet Technology The information included in this document is property of. Use and reproduction of this document, without

More information

SCADA Systems. Make the most of your energy. March 2012 / White paper. by Schneider Electric Telemetry & Remote SCADA Solutions

SCADA Systems. Make the most of your energy. March 2012 / White paper. by Schneider Electric Telemetry & Remote SCADA Solutions SCADA Systems March 2012 / White paper by Schneider Electric Telemetry & Remote SCADA Solutions Make the most of your energy Summary Executive Summary... p 2 Introduction... p 3 Field Instrumentation...

More information

Refinery Off-sites Suite. Inventory, Movement and Blend Management for Refinery Off-sites and Terminal Operations

Refinery Off-sites Suite. Inventory, Movement and Blend Management for Refinery Off-sites and Terminal Operations Inventory, Movement and Blend Management for Refinery Off-sites and Terminal Operations 01 SUMMARY Consistent and accurate refinery inventory information is important for optimal planning, scheduling,

More information

Web SCADA Employing Application Program Interface as Data Source

Web SCADA Employing Application Program Interface as Data Source 보안공학연구논문지 (Journal of Security Engineering), 제 7권 제 6호 2010년 12월 Web SCADA Employing Application Program Interface as Data Source Hoon Ko 1) Abstract An Application programming interface or API is a set

More information

SCADA Systems Automate Electrical Distribution

SCADA Systems Automate Electrical Distribution SCADA Systems Automate Electrical Distribution PC-based supervisory control and data acquisition systems increase uptime, cut costs and improve utilization. A White Paper from InduSoft Fabio Terezinho

More information

OUR CONVERSATION TODAY

OUR CONVERSATION TODAY OUR CONVERSATION TODAY Our goal is to raise the level of awareness around the natural gas supply chain among key stakeholders in order to facilitate positive working relationships and more informed decision

More information

HMI Mobility. A White Paper from InduSoft

HMI Mobility. A White Paper from InduSoft HMI Mobility The benefits of remote access for manufacturing operations are widely known and accepted. This article details how modern SCADA systems are providing this access in a variety of ways to all

More information

QUICK REFERENCE GUIDE MOBILE HUMAN MACHINE INTERFACE (HMI): INNOVATION THAT EMPOWERS THE MOBILE OPERATOR

QUICK REFERENCE GUIDE MOBILE HUMAN MACHINE INTERFACE (HMI): INNOVATION THAT EMPOWERS THE MOBILE OPERATOR MOBILE HUMAN MACHINE INTERFACE (HMI): INNOVATION THAT EMPOWERS THE MOBILE OPERATOR Mobile operators are critical to ensuring the overall efficiency and uptime of the production line and play a critical

More information

Pet Coke Consulting, LLC. Phil Fisher Argus Conference, Houston September 19-21, 2012

Pet Coke Consulting, LLC. Phil Fisher Argus Conference, Houston September 19-21, 2012 Pet Coke Consulting, LLC Phil Fisher Argus Conference, Houston September 19-21, 2012 Will Pet Coke continue to be made over next 25 years? To answer, we need to know: What drives pet coke production? How

More information

Expert Reference Series of White Papers. Introduction to Amazon Relational Database Service (Amazon RDS)

Expert Reference Series of White Papers. Introduction to Amazon Relational Database Service (Amazon RDS) Expert Reference Series of White Papers Introduction to Amazon Relational Database Service (Amazon RDS) 1-800-COURSES www.globalknowledge.com Introduction to Amazon Relational Database Service (Amazon

More information

CONGRESSMAN DON YOUNG LEADS FACT FINDING TRIP TO SOUTH AFRICA TO VIEW MOSSGAS GTL PLANT

CONGRESSMAN DON YOUNG LEADS FACT FINDING TRIP TO SOUTH AFRICA TO VIEW MOSSGAS GTL PLANT CONGRESSMAN DON YOUNG LEADS FACT FINDING TRIP TO SOUTH AFRICA TO VIEW MOSSGAS GTL PLANT Alaskan Congressman Don Young, Chairman of the House Committee on Natural Resources, led a delegation from Alaska,

More information

Jeffery J. Williams Emerson Process Management Power & Water Solutions 200 Beta Drive Pittsburgh, PA. 15238

Jeffery J. Williams Emerson Process Management Power & Water Solutions 200 Beta Drive Pittsburgh, PA. 15238 Author: Jeffery J. Williams Power & Water Solutions 200 Beta Drive Pittsburgh, PA. 15238 Keywords: Abstract: Efficiency, Enterprise Automation, Expert Systems, Modeling, Neural Networks, Optimization,

More information

IP Sensing Water & Wastewater AMR/SCADA System

IP Sensing Water & Wastewater AMR/SCADA System IP Sensing is Pleased To Be Presenting The: IP Sensing Water & Wastewater AMR/SCADA System 12/09/11 Key Markets Addressed by IP Sensing Products Are: Remote Monitoring AMR/SCADA for Water and Wastewater

More information

Control of Boiler Operation using PLC SCADA

Control of Boiler Operation using PLC SCADA Control of Boiler Operation using PLC SCADA K. Gowri Shankar Abstract This paper outlines the various stages of operation involved in the conversion of a manually operated boiler towards a fully automated

More information

Optimizing Energy Operations with Machine-to-Machine Communications

Optimizing Energy Operations with Machine-to-Machine Communications Optimizing Energy Operations with Machine-to-Machine Communications Contents Executive Summary... 3 The Role of M2M in Energy Companies... 3 Leveraging a M2M Platform... 5 Key Requirements for M2M Application

More information

Understanding Device Level Connection Topologies

Understanding Device Level Connection Topologies July 2013 Understanding Device Level Connection Topologies Author: Advantech E-mail: eainfo@advantech.com July 2013 Even ten years ago, most factory floor sensors were connected directly to a PLC or other

More information

Natural Gas in Transportation J.B. HUNT Perspective

Natural Gas in Transportation J.B. HUNT Perspective WHITE PAPER REV 2/14 Natural Gas in Transportation J.B. HUNT Perspective What s your next move? General Position: We believe there will continue to be more and more natural gas tractors go into service

More information

NEW GENERATION PROGRAMMABLE AUTOMATION CONTROLLER

NEW GENERATION PROGRAMMABLE AUTOMATION CONTROLLER NEW GENERATION PROGRAMMABLE AUTOMATION CONTROLLER NEW GENERATION PROGRAMMABLE AUTOMATION CONTROLLER Understanding what a PAC is starts from the understanding of PLC. A PLC is a Programmable Logic while

More information

Oncor s Pioneering Transmission Dynamic Line Rating (DLR) Demonstration Lays Foundation for Follow-On Deployments

Oncor s Pioneering Transmission Dynamic Line Rating (DLR) Demonstration Lays Foundation for Follow-On Deployments Oncor s Pioneering Transmission Dynamic Line Rating (DLR) Demonstration Lays Foundation for Follow-On Deployments 1. Summary Oncor Electric Delivery Company (Oncor) successfully demonstrated a fully integrated

More information

Meeting the challenges of today s oil and gas exploration and production industry.

Meeting the challenges of today s oil and gas exploration and production industry. Meeting the challenges of today s oil and gas exploration and production industry. Leveraging innovative technology to improve production and lower costs Executive Brief Executive overview The deep waters

More information

Monitoring Underground Power Networks

Monitoring Underground Power Networks Monitoring Underground Power Networks By Mark Stiles Merve Cankaya ABSTRACT Underground electric distribution systems are common in large cities throughout the United States. Power usage for the entire

More information

Entis Pro Inventory Systems Global Experience. Locally Applied.

Entis Pro Inventory Systems Global Experience. Locally Applied. Entis Pro Inventory Systems Global Experience. Locally Applied. Pressure on margins, regulatory demands and skills shortages create a challenging environment for terminal operators. Operators need accurate

More information

Dong-Joo Kang* Dong-Kyun Kang** Balho H. Kim***

Dong-Joo Kang* Dong-Kyun Kang** Balho H. Kim*** Visualization Issues of Mass Data for Efficient HMI Design on Control System in Electric Power Industry Visualization in Computerized Operation & Simulation Tools Dong-Joo Kang* Dong-Kyun Kang** Balho

More information

Network Infrastructure Considerations for Smart Grid Strategies By Jim Krachenfels, Marketing Manager, GarrettCom, Inc.

Network Infrastructure Considerations for Smart Grid Strategies By Jim Krachenfels, Marketing Manager, GarrettCom, Inc. Network Infrastructure Considerations for Smart Grid Strategies By Jim Krachenfels, Marketing Manager, GarrettCom, Inc. The Smart Grid is having a decided impact on network infrastructure design and the

More information

Steel supply chain transformation challenges Key learnings

Steel supply chain transformation challenges Key learnings IBM Global Business Services White Paper Industrial Products Steel supply chain transformation challenges Key learnings 2 Steel supply chain transformation challenges Key learnings Introduction With rising

More information

Industrial Strength Leak Detection

Industrial Strength Leak Detection Industrial Strength Leak Detection Don t let an undetected leak or spill ruin the environment or your reputation... TraceTek Technology: Find leaks before major damage is done... TraceTek Technology: Sensors

More information

HMS Industrial Networks

HMS Industrial Networks HMS Industrial Networks Putting industrial applications on the cloud Whitepaper Best practices for managing and controlling industrial equipment remotely. HMS Industrial Networks AB Stationsgatan 37 30245

More information

A Conceptual Approach to Data Visualization for User Interface Design of Smart Grid Operation Tools

A Conceptual Approach to Data Visualization for User Interface Design of Smart Grid Operation Tools A Conceptual Approach to Data Visualization for User Interface Design of Smart Grid Operation Tools Dong-Joo Kang and Sunju Park Yonsei University unlimit0909@hotmail.com, boxenju@yonsei.ac.kr Abstract

More information

CLEANING IN PLACE AUTOMATION FOR PROCESS INDUSTRY USING PLC AND SCADA SOFTWARE

CLEANING IN PLACE AUTOMATION FOR PROCESS INDUSTRY USING PLC AND SCADA SOFTWARE CLEANING IN PLACE AUTOMATION FOR PROCESS INDUSTRY USING PLC AND SCADA SOFTWARE Siddhesh Dhonde 1, Bhaskar Nadigatla 2, D.U. Dalavi 3 1,2, 3 ETC, SCSCOE, SPPU, (India), ABSTRACT In Process Industries, proper

More information

Fiscal Measurement Natural Gas

Fiscal Measurement Natural Gas White Paper FSG-WP-0012 February 2014 Fiscal Measurement Natural Gas Fiscal Measurement How much? Fiscal Measurement must not be confused with Custody Transfer; in fact, fiscal measurement is a more general

More information

What makes a good process?

What makes a good process? Rob Davis Everyone wants a good process. Our businesses would be more profitable if we had them. But do we know what a good process is? Would we recognized one if we saw it? And how do we ensure we can

More information

Remote Management White Paper 27th June, 2012

Remote Management White Paper 27th June, 2012 Remote Management White Paper 27th June, 2012 Contents Page 3 Page 4 Page 5 Page 8 Page 10 Page 11 Executive Summary The rise of wireless M2M The need Remote monitoring and control Borderless networks

More information

Model, Analyze and Optimize the Supply Chain

Model, Analyze and Optimize the Supply Chain Model, Analyze and Optimize the Supply Chain Optimize networks Improve product flow Right-size inventory Simulate service Balance production Optimize routes The Leading Supply Chain Design and Analysis

More information

Application of Simulation Models in Operations A Success Story

Application of Simulation Models in Operations A Success Story Application of Simulation Models in Operations A Success Story David Schumann and Gregory Davis, Valero Energy Company, and Piyush Shah, Aspen Technology, Inc. Abstract Process simulation models can offer

More information

Hydrocracking Process Description and CRITERION / ZEOLYST Hydrocracking Catalyst Applications

Hydrocracking Process Description and CRITERION / ZEOLYST Hydrocracking Catalyst Applications PROCESS DESCRIPTIONS: Hydrocracking Process Description and CRITERION / ZEOLYST Hydrocracking Catalyst Applications OBJECTIVE The objective of hydrocracking is to convert heavy oil feedstocks into high

More information

Monitoring Remote Chemical Tanks

Monitoring Remote Chemical Tanks Monitoring Remote Chemical Tanks Introduction Economically meeting requirements for monitoring of mobile assets and remote processes always presents project engineers a considerable challenge. While the

More information

Safety Requirements Specification Guideline

Safety Requirements Specification Guideline Safety Requirements Specification Comments on this report are gratefully received by Johan Hedberg at SP Swedish National Testing and Research Institute mailto:johan.hedberg@sp.se -1- Summary Safety Requirement

More information

Presented by. Dr. Osvaldo A. Bascur, IP and OSIPress Initiative

Presented by. Dr. Osvaldo A. Bascur, IP and OSIPress Initiative Enabling Enterprise Operational Intelligence in the Process Industries: Improvements, Innovation and Reinvention Presented by Dr. Osvaldo A. Bascur, IP and OSIPress Initiative Abstract: Large industrial

More information