OCRP Implementation to Optimize Resource Provisioning Cost in Cloud Computing
|
|
|
- Chastity Dennis
- 10 years ago
- Views:
Transcription
1 OCRP Implementation to Optimize Resource Provisioning Cost in Cloud Computing K. Satheeshkumar PG Scholar K. Senthilkumar PG Scholar A. Selvakumar Assistant Professor Abstract- Cloud computing is a large-scale distributed computing paradigm in which a pool of computing resources is available to users via the Internet. Computing resources are represented to cloud consumers as the accessible public utility services. In cloud computing, cloud providers can offer cloud consumers two provisioning plans for computing resources, namely reservation and on-demand plans. With the reservation plan, cloud consumers reserve the resources in advance which are cheaper than that provisioned by on-demand plan. As a result, the reservation plan can reduce the total resource provisioning cost. However, the best advance reservation of resources is difficult to be achieved due to uncertainty of consumer s future demand and providers resource prices. To address this problem, an optimal cloud resource provisioning (OCRP) algorithm is proposed by considering on-demand plan with both static and dynamic pricing to minimize the total cost for provisioning resources in a certain time period. To make an optimal decision, the demand uncertainty from cloud consumer side and price uncertainty from cloud providers are taken into account to adjust the tradeoff between on-demand and oversubscribed costs. The OCRP algorithm can provision computing resources for being used in multiple provisioning stages as well as a long-term plan, e.g., four stages in a quarter plan and twelve stages in a yearly plan. The proposed OCRP algorithm will facilitate the adoption of cloud computing of the users as it can reduce the cost of using computing resource significantly. Keywords Cloud Computing, Optimal Resource Provisioning, OCRP, Dynamic Pricing I. INTRODUCTION The term Cloud Computing refers to pool of computing resources made available to the users as per their requirement through the internet. It is mostly used to sell hosted services in the sense of application service provisioning that run client server software at a remote location. Such services are given popular acronyms like SaaS (Software as a Service), PaaS (Platform as a Service), IaaS (Infrastructure as a Service). Infrastructure-as-a-Service (IaaS) is a computational service model widely applied in the cloud computing paradigm. To deploy cloud consumers applications under IaaS, cloud users install operating-system images and their application software on the cloud infrastructure. Cloud providers typically bill IaaS services on a utility computing basis cost reflect the amount of resources allocated and consumed. A cloud provider is responsible for guaranteeing the Quality of Services (QoS) for running the VMs. A resource provisioning methodology is essential in cloud computing to provide cloud users, a set of computing resources for processing the tasks and storing the data. Cloud providers offer two types of plans to cloud consumers in cloud computing environment. They are reservation plans and on-demand plans. In general, cost of utilizing computing resources provisioned by reservation plan is cheaper than that provisioned by on-demand plan, since cloud consumer has to pay to provider in advance. With the reservation plan, the consumer can reduce the total resource provisioning cost. However, the best advance Vol. 4 Issue 1 May ISSN: X
2 reservation of resources is difficult to be achieved due to uncertainty of consumer s future demand and providers resource prices. Underprovisioning problem can occur when the reserved resources are unable to fully meet the demand due to its uncertainty. Although this problem can be solved by provisioning more resources with on-demand plan to fit the extra demand, the high cost will be incurred due to more expensive price of resource provisioning with on-demand plan. On the other hand, the overprovisioning problem can occur if the reserved resources are more than the actual demand in which part of a resource pool will be underutilized. It is important for the cloud consumer to minimize the total cost of resource provisioning by reducing the on-demand cost and oversubscribed cost of underprovisioning and overprovisioning. II. RELATED WORK An optimal cloud resource provisioning (OCRP) algorithm is proposed to minimize the total cost for provisioning resources in a certain time period. To make an optimal decision, the demand uncertainty from cloud consumer side and price uncertainty from cloud providers are taken into account to adjust the tradeoff between on-demand and oversubscribed costs. The proposed system considers following provisioning options/plans. Advantages Reservation Plan On-Demand (Static Pricing) Plan On-Demand (Dynamic Pricing) Plan The proposed approach will be useful to the cloud consumers (e.g., organization and company) for the management of virtual machines in cloud computing environment. The proposed OCRP algorithm will reduce the cost of using computing resource significantly. Provisioning Plans III. OPTIMAL CLOUD RESOURCE PROVISIONING MODEL A cloud provider can offer the consumer provisioning plans namely reservation plan and on-demand plans. As part of proposed system, the on-demand plans can be further considered as static pricing and dynamic pricing. The cloud broker considers the reservation plan as medium to long term planning and the on-demand plan as short term planning. The reservation plan reduces the total provisioning cost during long term. But the on-demand with static pricing plan is efficient when the resources reserved by the reservation plans are insufficient, but this will increase total provisioning cost whereas the on-demand with dynamic pricing plan provides effective provisioning by considering both demand and price uncertainty, thus reduces the total provisioning cost during short term. It can be used during the peak load. Provisioning Phases The cloud broker considers both reservation and on demand plans for provisioning resources. Time interval when resources need to be provisioned or utilized also called provisioning phases. There are three types of phase s viz. reservation, expending and on-demand phases. In reservation phase, the cloud broker reserves the resources in advance. In the expending phase, the cloud consumer utilized the reserved resources and in on-demand phase the cloud broker provision more resources on-demand. Provisioning Stages Provisioning stage is the time epoch when cloud broker makes a decision. Every provisioning stage may consist of one or more provisioning phases. Cloud broker makes a decision to provision resources by purchasing reservation and/or on-demand plans. Vol. 4 Issue 1 May ISSN: X
3 Figure 1. Optimal Cloud Resource Provisioning Model Provisioning Costs There are three corresponding provisioning costs incurred in these phases, namely reservation costs, expending costs and on-demand costs. The prices in reservation and expending phases could be adjusted by cloud providers without informing the consumer in advance, except the price of the reservation plan in the first provisioning stage. IV. SYSTEM ARCHITECTURE The cloud computing system model consists of four main components. Cloud Consumer Virtual Machine (VM) Repository Cloud Broker Cloud Providers Cloud Consumer The cloud consumer has demand to execute jobs. Before the jobs are executed, computing resources has to be provisioned from cloud providers. To obtain such resources, the consumer firstly creates VMs integrated with software required by the jobs. In cloud consumer s site, the cloud broker is responsible on behalf of the cloud consumer for provision resources for hosting the VMs. Vol. 4 Issue 1 May ISSN: X
4 Figure 2. System Architecture Virtual Machine (VM) Repository The optimal cloud resource provisioning algorithm is proposed for the virtual machine management. The created VMs are stored in the VM repository. Then, the VMs can be hosted on cloud providers infrastructures whose resources can be utilized by the VMs. Cloud Broker The broker can allocate the VM requests that stored in the VM repository to appropriate cloud provider. The broker implements the OCRP algorithm to make an optimal decision of resource provisioning. The cloud broker can reserve computing resources from cloud providers to be used in the future according to the actual demand. This demand can be determined as the number of created VMs. The additional resources can be provisioned instantly from cloud providers if the reserved resources are not enough to accommodate the actual demand. Cloud Provider Cloud provider supplies a pool of resources to the consumer. Cloud providers can offer cloud consumers two resource provisioning plans, namely short-term on-demand and long-term reservation plans. V. PERFORMANCE ANALYSIS The demand uncertainty from cloud consumer side and price uncertainty from cloud providers are considered to provide optimal resource provisioning. The results are calculated based on resources provided by cloud providers during initial load and peak load. Numerical studies are extensively performed in which the results clearly show that cloud consumer can successfully minimize total cost of resource provisioning in cloud computing environments using on-demand with dynamic pricing plan. Vol. 4 Issue 1 May ISSN: X
5 Figure 3. Demand Uncertainty Figure 4. Price Uncertainty VI. CONCLUSION In cloud computing environment the cost optimization problem draws significant of optimizing resource price and how to optimally provision cloud resources to meet service requirements. In cloud Environment on demand Cost, reservation Cost and expending cost are the major areas to be used for finding the optimal resource cost. The proposed optimal cloud resource provisioning (OCRP) algorithm is used to provision resources offered by multiple cloud providers, which reduces the on demand cost and reservation cost during the resource provisioning stage. The OCRP algorithm can be used as a resource provisioning tool for the emerging cloud computing market in which the tool can effectively save the total cost. The performance evaluation of the OCRP algorithm has been performed by numerical studies and simulations. According to the results, the algorithm can optimally correct the trade-off between reservation of resources and allocation of on demand resources by cloud consumers. V. FUTURE WORK This work can be extended to incorporate the prediction of future resource demand in advance using analytical tool which further reduces the resource provision cost in cloud computing. REFERENCES [1] S. Chaisiri, B.S. Lee, and D. Niyato, Optimal Virtual Machine Placement across Multiple Cloud Providers, Proc. IEEE Asia- Pacific Services Computing Conf. (APSCC). [2] Amazon EC2 Reserved Instances, reserved-instances, [3] GoGrid, [4] G. Juve and E. Deelman, Resource Provisioning Options for Large-Scale Scientific Workflows, Proc. IEEE Fourth Int l Conf. e- Science, [5] Z. Huang, C. He, and J. Wu, On-Demand Service in Grid: Architecture Design, and Implementation, Proc. 11th Int l Conf. Parallel and Distributed Systems (ICPADS), [6] Optimization of Resource Provisioning Cost in Cloud Computing V. Anitha, G. Kumar, International Journal of Innovative Technologies, Vol. 01, Issue No. 2, Sep [7] Optimization of Cost in Cloud Computing using OCRP Algorithm Lekshimi M Meera, Lourdes Mary, International Journal of Advanced Research in Computer Science and Software Engineering, Vol No. 3, Issue No. 3, Mar 2013 [8] K. Miyashita, K. Masuda, and F. Higashitani,Coordinating Service Allocation through Flexible Reservation,IEEE Trans.Services Computing, Vol. 1, Issue No. 2, Apr.-June [9] Y. Jie, Q. Jie, and L. Ying, A Profile-Based Approach to Just-in- Time Scalability for Cloud Applications, Proc. IEEE Int l Conf. Cloud Computing (CLOUD 09), [10] Rajkamal Kaur Grewal & Pushpendra Kumar Pateriya, A Rule-based Approach for Effective Resource Provisioning in Hybrid Cloud Environment, International Journal of Computer Science and Informatics ISSN (PRINT): Vol. 1, Issue No. 4, Vol. 4 Issue 1 May ISSN: X
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
Karthi M,, 2013; Volume 1(8):1062-1072 INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK EFFICIENT MANAGEMENT OF RESOURCES PROVISIONING
Exploring Resource Provisioning Cost Models in Cloud Computing
Exploring Resource Provisioning Cost Models in Cloud Computing P.Aradhya #1, K.Shivaranjani *2 #1 M.Tech, CSE, SR Engineering College, Warangal, Andhra Pradesh, India # Assistant Professor, Department
Resource Provisioning Cost of Cloud Computing by Adaptive Reservation Techniques
Resource Provisioning Cost of Cloud Computing by Adaptive Reservation Techniques M.Manikandaprabhu 1, R.SivaSenthil 2, Department of Computer Science and Engineering St.Michael College of Engineering and
Fuzzy Based Reactive Resource Pricing in Cloud Computing
Fuzzy Based Reactive Resource Pricing in Cloud Computing 1P. Pradeepa, 2M. Jaiganesh, 3A. Vincent Antony Kumar, 4M. Karthiha Devi 1, 2, 3, 4 Department of Information Technology, PSNA College of Engineering
Cloud deployment model and cost analysis in Multicloud
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) ISSN: 2278-2834, ISBN: 2278-8735. Volume 4, Issue 3 (Nov-Dec. 2012), PP 25-31 Cloud deployment model and cost analysis in Multicloud
Auto-Scaling Model for Cloud Computing System
Auto-Scaling Model for Cloud Computing System Che-Lun Hung 1*, Yu-Chen Hu 2 and Kuan-Ching Li 3 1 Dept. of Computer Science & Communication Engineering, Providence University 2 Dept. of Computer Science
COST OPTIMIZATION IN DYNAMIC RESOURCE ALLOCATION USING VIRTUAL MACHINES FOR CLOUD COMPUTING ENVIRONMENT
COST OPTIMIZATION IN DYNAMIC RESOURCE ALLOCATION USING VIRTUAL MACHINES FOR CLOUD COMPUTING ENVIRONMENT S.Umamageswari # 1 M.C.Babu *2 # PG Scholar, Department of Computer Science and Engineering St Peter
A Secure Strategy using Weighted Active Monitoring Load Balancing Algorithm for Maintaining Privacy in Multi-Cloud Environments
IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X A Secure Strategy using Weighted Active Monitoring Load Balancing Algorithm for Maintaining
Cloud Computing Simulation Using CloudSim
Cloud Computing Simulation Using CloudSim Ranjan Kumar #1, G.Sahoo *2 # Assistant Professor, Computer Science & Engineering, Ranchi University, India Professor & Head, Information Technology, Birla Institute
Infrastructure as a Service (IaaS)
Infrastructure as a Service (IaaS) (ENCS 691K Chapter 4) Roch Glitho, PhD Associate Professor and Canada Research Chair My URL - http://users.encs.concordia.ca/~glitho/ References 1. R. Moreno et al.,
Webpage: www.ijaret.org Volume 3, Issue XI, Nov. 2015 ISSN 2320-6802
An Effective VM scheduling using Hybrid Throttled algorithm for handling resource starvation in Heterogeneous Cloud Environment Er. Navdeep Kaur 1 Er. Pooja Nagpal 2 Dr.Vinay Guatum 3 1 M.Tech Student,
Optimal Multi Server Using Time Based Cost Calculation in Cloud Computing
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 8, August 2014,
Keywords: Cloudsim, MIPS, Gridlet, Virtual machine, Data center, Simulation, SaaS, PaaS, IaaS, VM. Introduction
Vol. 3 Issue 1, January-2014, pp: (1-5), Impact Factor: 1.252, Available online at: www.erpublications.com Performance evaluation of cloud application with constant data center configuration and variable
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS Survey of Optimization of Scheduling in Cloud Computing Environment Er.Mandeep kaur 1, Er.Rajinder kaur 2, Er.Sughandha Sharma 3 Research Scholar 1 & 2 Department of Computer
Optimizing the Cost for Resource Subscription Policy in IaaS Cloud
Optimizing the Cost for Resource Subscription Policy in IaaS Cloud Ms.M.Uthaya Banu #1, Mr.K.Saravanan *2 # Student, * Assistant Professor Department of Computer Science and Engineering Regional Centre
A Study on Service Oriented Network Virtualization convergence of Cloud Computing
A Study on Service Oriented Network Virtualization convergence of Cloud Computing 1 Kajjam Vinay Kumar, 2 SANTHOSH BODDUPALLI 1 Scholar(M.Tech),Department of Computer Science Engineering, Brilliant Institute
Optimal Service Pricing for a Cloud Cache
Optimal Service Pricing for a Cloud Cache K.SRAVANTHI Department of Computer Science & Engineering (M.Tech.) Sindura College of Engineering and Technology Ramagundam,Telangana G.LAKSHMI Asst. Professor,
International Journal of Advance Research in Computer Science and Management Studies
Volume 3, Issue 6, June 2015 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
Grid Computing Vs. Cloud Computing
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 6 (2013), pp. 577-582 International Research Publications House http://www. irphouse.com /ijict.htm Grid
A SURVEY ON WORKFLOW SCHEDULING IN CLOUD USING ANT COLONY OPTIMIZATION
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 2, February 2014,
AN EFFICIENT LOAD BALANCING APPROACH IN CLOUD SERVER USING ANT COLONY OPTIMIZATION
AN EFFICIENT LOAD BALANCING APPROACH IN CLOUD SERVER USING ANT COLONY OPTIMIZATION Shanmuga Priya.J 1, Sridevi.A 2 1 PG Scholar, Department of Information Technology, J.J College of Engineering and Technology
INCREASING THE CLOUD PERFORMANCE WITH LOCAL AUTHENTICATION
INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 INCREASING THE CLOUD PERFORMANCE WITH LOCAL AUTHENTICATION Sanjay Razdan Department of Computer Science and Eng. Mewar
International Journal of Computer & Organization Trends Volume21 Number1 June 2015 A Study on Load Balancing in Cloud Computing
A Study on Load Balancing in Cloud Computing * Parveen Kumar * Er.Mandeep Kaur Guru kashi University,Talwandi Sabo Guru kashi University,Talwandi Sabo Abstract: Load Balancing is a computer networking
Efficient Service Broker Policy For Large-Scale Cloud Environments
www.ijcsi.org 85 Efficient Service Broker Policy For Large-Scale Cloud Environments Mohammed Radi Computer Science Department, Faculty of Applied Science Alaqsa University, Gaza Palestine Abstract Algorithms,
CHAPTER 8 CLOUD COMPUTING
CHAPTER 8 CLOUD COMPUTING SE 458 SERVICE ORIENTED ARCHITECTURE Assist. Prof. Dr. Volkan TUNALI Faculty of Engineering and Natural Sciences / Maltepe University Topics 2 Cloud Computing Essential Characteristics
Cloud Computing Technology
Cloud Computing Technology The Architecture Overview Danairat T. Certified Java Programmer, TOGAF Silver [email protected], +66-81-559-1446 1 Agenda What is Cloud Computing? Case Study Service Model Architectures
A Survey Paper: Cloud Computing and Virtual Machine Migration
577 A Survey Paper: Cloud Computing and Virtual Machine Migration 1 Yatendra Sahu, 2 Neha Agrawal 1 UIT, RGPV, Bhopal MP 462036, INDIA 2 MANIT, Bhopal MP 462051, INDIA Abstract - Cloud computing is one
Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing
Multi-dimensional Affinity Aware VM Placement Algorithm in Cloud Computing Nilesh Pachorkar 1, Rajesh Ingle 2 Abstract One of the challenging problems in cloud computing is the efficient placement of virtual
Sistemi Operativi e Reti. Cloud Computing
1 Sistemi Operativi e Reti Cloud Computing Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea Magistrale in Informatica Osvaldo Gervasi [email protected] 2 Introduction Technologies
An Approach to Load Balancing In Cloud Computing
An Approach to Load Balancing In Cloud Computing Radha Ramani Malladi Visiting Faculty, Martins Academy, Bangalore, India ABSTRACT: Cloud computing is a structured model that defines computing services,
Data Sharing Options for Scientific Workflows on Amazon EC2
Data Sharing Options for Scientific Workflows on Amazon EC2 Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Benjamin P. Berman, Bruce Berriman, Phil Maechling Francesco Allertsen Vrije Universiteit
Cloud Computing Architecture: A Survey
Cloud Computing Architecture: A Survey Abstract Now a day s Cloud computing is a complex and very rapidly evolving and emerging area that affects IT infrastructure, network services, data management and
Cloud Computing Architectures and Design Issues
Cloud Computing Architectures and Design Issues Ozalp Babaoglu, Stefano Ferretti, Moreno Marzolla, Fabio Panzieri {babaoglu, sferrett, marzolla, panzieri}@cs.unibo.it Outline What is Cloud Computing? A
A Survey on Load Balancing and Scheduling in Cloud Computing
IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 7 December 2014 ISSN (online): 2349-6010 A Survey on Load Balancing and Scheduling in Cloud Computing Niraj Patel
Throtelled: An Efficient Load Balancing Policy across Virtual Machines within a Single Data Center
Throtelled: An Efficient Load across Virtual Machines within a Single ata Center Mayanka Gaur, Manmohan Sharma epartment of Computer Science and Engineering, Mody University of Science and Technology,
Environments, Services and Network Management for Green Clouds
Environments, Services and Network Management for Green Clouds Carlos Becker Westphall Networks and Management Laboratory Federal University of Santa Catarina MARCH 3RD, REUNION ISLAND IARIA GLOBENET 2012
Cloud Computing. Chapter 1 Introducing Cloud Computing
Cloud Computing Chapter 1 Introducing Cloud Computing Learning Objectives Understand the abstract nature of cloud computing. Describe evolutionary factors of computing that led to the cloud. Describe virtualization
Comparison of Various Particle Swarm Optimization based Algorithms in Cloud Computing
Comparison of Various Particle Swarm Optimization based Algorithms in Cloud Computing Er. Talwinder Kaur M.Tech (CSE) SSIET, Dera Bassi, Punjab, India Email- [email protected] Er. Seema Pahwa Department
A Comparative Study of Load Balancing Algorithms in Cloud Computing
A Comparative Study of Load Balancing Algorithms in Cloud Computing Reena Panwar M.Tech CSE Scholar Department of CSE, Galgotias College of Engineering and Technology, Greater Noida, India Bhawna Mallick,
IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT
IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT Muhammad Muhammad Bala 1, Miss Preety Kaushik 2, Mr Vivec Demri 3 1, 2, 3 Department of Engineering and Computer Science, Sharda
A Comparative Study of cloud and mcloud Computing
A Comparative Study of cloud and mcloud Computing Ms.S.Gowri* Ms.S.Latha* Ms.A.Nirmala Devi* * Department of Computer Science, K.S.Rangasamy College of Arts and Science, Tiruchengode. [email protected]
Dynamic Round Robin for Load Balancing in a Cloud Computing
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 6, June 2013, pg.274
A Study on Analysis and Implementation of a Cloud Computing Framework for Multimedia Convergence Services
A Study on Analysis and Implementation of a Cloud Computing Framework for Multimedia Convergence Services Ronnie D. Caytiles and Byungjoo Park * Department of Multimedia Engineering, Hannam University
CLOUD COMPUTING. DAV University, Jalandhar, Punjab, India. DAV University, Jalandhar, Punjab, India
CLOUD COMPUTING 1 Er. Simar Preet Singh, 2 Er. Anshu Joshi 1 Assistant Professor, Computer Science & Engineering, DAV University, Jalandhar, Punjab, India 2 Research Scholar, Computer Science & Engineering,
How To Compare Cloud Computing To Cloud Platforms And Cloud Computing
Volume 3, Issue 11, November 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Cloud Platforms
PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM
PERFORMANCE ANALYSIS OF PaaS CLOUD COMPUTING SYSTEM Akmal Basha 1 Krishna Sagar 2 1 PG Student,Department of Computer Science and Engineering, Madanapalle Institute of Technology & Science, India. 2 Associate
Cloud Computing. Chapter 1 Introducing Cloud Computing
Cloud Computing Chapter 1 Introducing Cloud Computing Learning Objectives Understand the abstract nature of cloud computing. Describe evolutionary factors of computing that led to the cloud. Describe virtualization
Secure Cloud Computing through IT Auditing
Secure Cloud Computing through IT Auditing 75 Navita Agarwal Department of CSIT Moradabad Institute of Technology, Moradabad, U.P., INDIA Email: [email protected] ABSTRACT In this paper we discuss the
Cloud Computing. Chapter 1 Introducing Cloud Computing
Cloud Computing Chapter 1 Introducing Cloud Computing Learning Objectives Understand the abstract nature of cloud computing. Describe evolutionary factors of computing that led to the cloud. Describe virtualization
Reallocation and Allocation of Virtual Machines in Cloud Computing Manan D. Shah a, *, Harshad B. Prajapati b
Proceedings of International Conference on Emerging Research in Computing, Information, Communication and Applications (ERCICA-14) Reallocation and Allocation of Virtual Machines in Cloud Computing Manan
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 36 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 36 An Efficient Approach for Load Balancing in Cloud Environment Balasundaram Ananthakrishnan Abstract Cloud computing
SLA-driven Dynamic Resource Provisioning for Service Provider in Cloud Computing
IEEE Globecom 2013 Workshop on Cloud Computing Systems, Networks, and Applications SLA-driven Dynamic Resource Provisioning for Service Provider in Cloud Computing Yongyi Ran *, Jian Yang, Shuben Zhang,
Implementing & Developing Cloud Computing on Web Application
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 2, February 2014,
White Paper on CLOUD COMPUTING
White Paper on CLOUD COMPUTING INDEX 1. Introduction 2. Features of Cloud Computing 3. Benefits of Cloud computing 4. Service models of Cloud Computing 5. Deployment models of Cloud Computing 6. Examples
Cloud Computing and Software Agents: Towards Cloud Intelligent Services
Cloud Computing and Software Agents: Towards Cloud Intelligent Services Domenico Talia ICAR-CNR & University of Calabria Rende, Italy [email protected] Abstract Cloud computing systems provide large-scale
Key Research Challenges in Cloud Computing
3rd EU-Japan Symposium on Future Internet and New Generation Networks Tampere, Finland October 20th, 2010 Key Research Challenges in Cloud Computing Ignacio M. Llorente Head of DSA Research Group Universidad
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1681 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1681 Software as a Model for Security in Cloud over Virtual Environments S.Vengadesan, B.Muthulakshmi PG Student,
Table of Contents. Abstract... Error! Bookmark not defined. Chapter 1... Error! Bookmark not defined. 1. Introduction... Error! Bookmark not defined.
Table of Contents Abstract... Error! Bookmark not defined. Chapter 1... Error! Bookmark not defined. 1. Introduction... Error! Bookmark not defined. 1.1 Cloud Computing Development... Error! Bookmark not
Improving Performance and Reliability Using New Load Balancing Strategy with Large Public Cloud
Improving Performance and Reliability Using New Load Balancing Strategy with Large Public Cloud P.Gayathri Atchuta*1, L.Prasanna Kumar*2, Amarendra Kothalanka*3 M.Tech Student*1, Associate Professor*2,
Migration of Virtual Machines for Better Performance in Cloud Computing Environment
Migration of Virtual Machines for Better Performance in Cloud Computing Environment J.Sreekanth 1, B.Santhosh Kumar 2 PG Scholar, Dept. of CSE, G Pulla Reddy Engineering College, Kurnool, Andhra Pradesh,
Efficient and Enhanced Load Balancing Algorithms in Cloud Computing
, pp.9-14 http://dx.doi.org/10.14257/ijgdc.2015.8.2.02 Efficient and Enhanced Load Balancing Algorithms in Cloud Computing Prabhjot Kaur and Dr. Pankaj Deep Kaur M. Tech, CSE P.H.D [email protected],
Survey on Models to Investigate Data Center Performance and QoS in Cloud Computing Infrastructure
Survey on Models to Investigate Data Center Performance and QoS in Cloud Computing Infrastructure Chandrakala Department of Computer Science and Engineering Srinivas School of Engineering, Mukka Mangalore,
A Novel Approach for Efficient Load Balancing in Cloud Computing Environment by Using Partitioning
A Novel Approach for Efficient Load Balancing in Cloud Computing Environment by Using Partitioning 1 P. Vijay Kumar, 2 R. Suresh 1 M.Tech 2 nd Year, Department of CSE, CREC Tirupati, AP, India 2 Professor
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 4, July-Aug 2014
RESEARCH ARTICLE An Efficient Service Broker Policy for Cloud Computing Environment Kunal Kishor 1, Vivek Thapar 2 Research Scholar 1, Assistant Professor 2 Department of Computer Science and Engineering,
Cloud Computing: Opportunities, Challenges, and Solutions. Jungwoo Ryoo, Ph.D., CISSP, CISA The Pennsylvania State University
Cloud Computing: Opportunities, Challenges, and Solutions Jungwoo Ryoo, Ph.D., CISSP, CISA The Pennsylvania State University What is cloud computing? What are some of the keywords? How many of you cannot
How to Do/Evaluate Cloud Computing Research. Young Choon Lee
How to Do/Evaluate Cloud Computing Research Young Choon Lee Cloud Computing Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing
CLEVER: a CLoud-Enabled Virtual EnviRonment
CLEVER: a CLoud-Enabled Virtual EnviRonment Francesco Tusa Maurizio Paone Massimo Villari Antonio Puliafito {ftusa,mpaone,mvillari,apuliafito}@unime.it Università degli Studi di Messina, Dipartimento di
International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015
RESEARCH ARTICLE OPEN ACCESS Ensuring Reliability and High Availability in Cloud by Employing a Fault Tolerance Enabled Load Balancing Algorithm G.Gayathri [1], N.Prabakaran [2] Department of Computer
Subash Krishnaswamy Applications Software Technology Corporation
Oracle Applications and Cloud Computing - Future Direction Subash Krishnaswamy Applications Software Technology Corporation Agenda Introduction ti to CLOUD Oracle Corporation and CLOUD Oracle Applications
Cloud Computing Services and its Application
Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 1 (2014), pp. 107-112 Research India Publications http://www.ripublication.com/aeee.htm Cloud Computing Services and its
Efficient Qos Based Resource Scheduling Using PAPRIKA Method for Cloud Computing
Efficient Qos Based Resource Scheduling Using PAPRIKA Method for Cloud Computing Hilda Lawrance* Post Graduate Scholar Department of Information Technology, Karunya University Coimbatore, Tamilnadu, India
Payment minimization and Error-tolerant Resource Allocation for Cloud System Using equally spread current execution load
Payment minimization and Error-tolerant Resource Allocation for Cloud System Using equally spread current execution load Pooja.B. Jewargi Prof. Jyoti.Patil Department of computer science and engineering,
Achieve Better Ranking Accuracy Using CloudRank Framework for Cloud Services
Achieve Better Ranking Accuracy Using CloudRank Framework for Cloud Services Ms. M. Subha #1, Mr. K. Saravanan *2 # Student, * Assistant Professor Department of Computer Science and Engineering Regional
ANALYSIS OF WORKFLOW SCHEDULING PROCESS USING ENHANCED SUPERIOR ELEMENT MULTITUDE OPTIMIZATION IN CLOUD
ANALYSIS OF WORKFLOW SCHEDULING PROCESS USING ENHANCED SUPERIOR ELEMENT MULTITUDE OPTIMIZATION IN CLOUD Mrs. D.PONNISELVI, M.Sc., M.Phil., 1 E.SEETHA, 2 ASSISTANT PROFESSOR, M.PHIL FULL-TIME RESEARCH SCHOLAR,
Supply Chain Platform as a Service: a Cloud Perspective on Business Collaboration
Supply Chain Platform as a Service: a Cloud Perspective on Business Collaboration Guopeng Zhao 1, 2 and Zhiqi Shen 1 1 Nanyang Technological University, Singapore 639798 2 HP Labs Singapore, Singapore
Testing as a Service on Cloud: A Review
Testing as a Service on Cloud: A Review Shruti N. Pardeshi 1, Vaishali Choure 1 Research Scholar, 2 Associate Professor, Medicaps Group of Institutions,Indore Abstract Software testing is an important
Architectural Implications of Cloud Computing
Architectural Implications of Cloud Computing Grace Lewis Research, Technology and Systems Solutions (RTSS) Program Lewis is a senior member of the technical staff at the SEI in the Research, Technology,
Cloud Based E-Government: Benefits and Challenges
Cloud Based E-Government: Benefits and Challenges Saleh Alshomrani 1 and Shahzad Qamar 2 1 Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia 2 Faculty of Computing and IT, North
High Performance Computing Cloud Computing. Dr. Rami YARED
High Performance Computing Cloud Computing Dr. Rami YARED Outline High Performance Computing Parallel Computing Cloud Computing Definitions Advantages and drawbacks Cloud Computing vs Grid Computing Outline
International Journal of Engineering Research & Management Technology
International Journal of Engineering Research & Management Technology March- 2015 Volume 2, Issue-2 Survey paper on cloud computing with load balancing policy Anant Gaur, Kush Garg Department of CSE SRM
Security Considerations for Public Mobile Cloud Computing
Security Considerations for Public Mobile Cloud Computing Ronnie D. Caytiles 1 and Sunguk Lee 2* 1 Society of Science and Engineering Research Support, Korea [email protected] 2 Research Institute of
Keywords Distributed Computing, On Demand Resources, Cloud Computing, Virtualization, Server Consolidation, Load Balancing
Volume 5, Issue 1, January 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Survey on Load
RESOURCE MANAGEMENT IN CLOUD COMPUTING ENVIRONMENT
RESOURCE MANAGEMENT IN CLOUD COMPUTING ENVIRONMENT A.Chermaraj 1, Dr.P.Marikkannu 2 1 PG Scholar, 2 Assistant Professor, Department of IT, Anna University Regional Centre Coimbatore, Tamilnadu (India)
Optimized Resource Allocation in Cloud Environment Based on a Broker Cloud Service Provider
International Journal of Scientific and Research Publications, Volume 3, Issue 5, May 2013 1 Optimized Resource Allocation in Cloud Environment Based on a Broker Cloud Service Provider Jyothi.R.L *, Anilkumar.A
Virtual Machine Allocation Policy in Cloud Computing Using CloudSim in Java
Vol.8, No.1 (2015), pp.145-158 http://dx.doi.org/10.14257/ijgdc.2015.8.1.14 Virtual Machine Allocation Policy in Cloud Computing Using CloudSim in Java Kushang Parikh, Nagesh Hawanna, Haleema.P.K, Jayasubalakshmi.R
Dynamic Resource management with VM layer and Resource prediction algorithms in Cloud Architecture
Dynamic Resource management with VM layer and Resource prediction algorithms in Cloud Architecture 1 Shaik Fayaz, 2 Dr.V.N.Srinivasu, 3 Tata Venkateswarlu #1 M.Tech (CSE) from P.N.C & Vijai Institute of
Internet Video Streaming and Cloud-based Multimedia Applications. Outline
Internet Video Streaming and Cloud-based Multimedia Applications Yifeng He, [email protected] Ling Guan, [email protected] 1 Outline Internet video streaming Overview Video coding Approaches for video
Permanent Link: http://espace.library.curtin.edu.au/r?func=dbin-jump-full&local_base=gen01-era02&object_id=154091
Citation: Alhamad, Mohammed and Dillon, Tharam S. and Wu, Chen and Chang, Elizabeth. 2010. Response time for cloud computing providers, in Kotsis, G. and Taniar, D. and Pardede, E. and Saleh, I. and Khalil,
Method of Fault Detection in Cloud Computing Systems
, pp.205-212 http://dx.doi.org/10.14257/ijgdc.2014.7.3.21 Method of Fault Detection in Cloud Computing Systems Ying Jiang, Jie Huang, Jiaman Ding and Yingli Liu Yunnan Key Lab of Computer Technology Application,
TECHNOLOGY GUIDE THREE. Emerging Types of Enterprise Computing
TECHNOLOGY GUIDE THREE Emerging Types of Enterprise Computing TECHNOLOGY GU IDE OUTLINE TG3.1 Introduction TG3.2 Server Farms TG3.3 Virtualization TG3.4 Grid Computing TG3.5 Utility Computing TG3.6 Cloud
Multilevel Communication Aware Approach for Load Balancing
Multilevel Communication Aware Approach for Load Balancing 1 Dipti Patel, 2 Ashil Patel Department of Information Technology, L.D. College of Engineering, Gujarat Technological University, Ahmedabad 1
Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment
Abstract Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment (14-18) Energy Optimized Virtual Machine Scheduling Schemes in Cloud Environment Ghanshyam Parmar a, Dr. Vimal Pandya b
