Social Prediction in Mobile Networks: Can we infer users emotions and social ties?

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Social Prediction in Mobile Networks: Can we infer users emotions and social ties?"

Transcription

1 Social Prediction in Mobile Networks: Can we infer users emotions and social ties? Jie Tang Tsinghua University, China 1 Collaborate with John Hopcroft, Jon Kleinberg (Cornell) Jinghai Rao (Nokia), Jimeng Sun (IBM TJ Watson) Tiancheng Lou, Wenbin Tang, Honglei Zhuang, Yuan Zhang (Tsinghua)

2 Motivation Social behavior VS. Emotion change 2

3 Motivation Emotion Social stimulates behavior the mind 3000 Emotion times change quicker than rational VS. thought!!! It's an emotional world we live in! Six degree vs. Three degree [Nature; BMJ] 3

4 Motivation: A Happy System Can we predict users activities and emotion? 4

5 Motivation: Inferring Social Ties From Home 08:40 From Office 11:35 From Office 15:20 Both in office 08:00 18:00 From Office 17: Friends Other From Outside 21:

6 6 Motivation: RideSharing

7 MoodCast: Emotion Prediction via Dynamic Continuous Factor Graph Model ICDM 10, IEEE Trans. on Affective Computing 11 7

8 Happy System 8 Can we predict users emotion?

9 荷 塘? Dorm? Observations 教 室??? GYM Activity correlation Location correlation (Red-happy) KO 9

10 Observations (cont.) (a) Social correlation Social correlation (a) Implicit groups by emotions 10 Temporal correlation

11 Observations (cont.) We should not split the data into different time windows Calling (SMS) correlation 11

12 MoodCast: Dynamic Continuous Factor Graph Model MoodCast Social correlation g(.) Jennifer Allen Mike Temporal correlation h(.) Jennifer yesterday Neutral Allen Happy Jennifer today Happy Neutral Mike Predict Jennifer tomorrow? Attributes f(.) location call sms Our solution 1. We directly define continuous feature function; 2. Use Metropolis-Hasting algorithm to learn the factor graph model. 12

13 Problem Formulation Time t G t =(V, E t, X t, Y t ) Emotion: Sad Time t-1, t-2 Attributes: - Location: Lab - Activity: Working Learning Task: 13

14 Dynamic Continuous Factor Graph Model Time t Time t : Binary function 14

15 Model Learning y 5 y 4 y ' 3 y 3 y 2 y 1 Attribute Social Temporal 15

16 16 MH-based Learning algorithm

17 Experiment Data Set Baseline SVM SVM with network features Naïve Bayes Naïve Bayes with network features Evaluation Measure: Precision, Recall, F1-Measure #Users Avg. Links #Labels Other MSN ,869 >36,000hr LiveJournal 469, ,665,166 17

18 18 Performance Result

19 Factor Contributions Mobile All factors are important for predicting user emotions 19

20 Inferring Social Ties in Mobile Networks PKDD 2011 (Best Paper Runnerup), WSDM

21 Real social networks are complex... Nobody exists only in one social network. Public network vs. private network Business network vs. family network However, existing networks (e.g., Facebook and Twitter) are trying to lump everyone into one big network FB tries to solve this problem via lists/groups However Google+ which circle? Users do not take time to create it. 21

22 Even complex than we imaged! Only 16% of mobile phone users in Europe have created custom contact groups users do not take the time to create it users do not know how to circle their friends The fact is that our social network is black- 22

23 Problem Formulation Input: G=(V,E L,E U,R L,W) Partially Other Labeled Network?? Other Friend? V: Set of Users E L,R L : Labeled relationships E U : Unlabeled relationships 23 Input: G=(V,E L,E U,R L,W) Output: f: G R

24 Basic Idea V 1 V 3?? Friend V 2 User Node?? r 24 r 56 Other r 45 Relationship Node 24

25 Partially Labeled Pairwise Factor Graph Model (PLP-FGM) Constraint factor h 25 Input: Social Network v 2 Problem: v 4 v 3 v 5 v 1 PLP-FGM y 12 =Friend y 12 =advisor y 12 Latent Variable h (y 12, y 21 ) g (y 12, y 34 ) g (y 12,y 45 ) f(x 2,x 1,y 21 ) f(x 1,x 2,y 12 ) y y 21 =Friend =advisee 21 y 34 =? y 34 f(x 3,x 4,y 34 ) r 12 r 34 r 21 g (y 45, y 34 ) y 45 y 34 y 16 =coauthor y 16 =Other f(x 4,x 5,y 45 ) r 34 r 45 y 34 =? f(x 3,x 4,y 34 ) Correlation factor g relationships Attribute factors f For each Input relationship, identify which type Model Map has relationship the highest probability? to nodes in model Example: Call A makes frequency call to between B immediately two users? after the call to C. Partially Labeled Model

26 Solutions (con t) Different ways to instantiate factors We use exponential-linear functions Attribute Factor: Correlation / Constraint Factor: Log-Likelihood of labeled Data: 26

27 Learning Algorithm Maximize the log-likelihood of labeled relationships Expectation Computing Loopy Belief Propagation Gradient Ascent Method 27

28 Still Challenges? Questions: - How to obtain sufficiently training data? - Can we leverage knowledge from other network? 28

29 Inferring Social Ties Across Networks Input: Heterogeneous Networks Reviewer network Adam review Output: Inferred social ties in different networks Adam Bob review Product 1 Bob distrust distrust trust review Chris trust Chris Danny review Communication network Product 2 Knowledge Transfer for Inferring Social Ties Danny From Home 08:40 Both in office 08:00 18:00 Family Colleague From Office 11:35 Colleague From Office 15:20 From Outside 21:30 From Office 17:55 What is the knowledge to transfer? Friend Colleague Friend 29

30 Social balance theory Structural hole theory Social Theories friend A friend friend A non-friend friend A friend non-friend A non-friend B friend C B non-friend C B non-friend C B non-friend (A) (B) (C) (D) C 30

31 Social Theories Structural hole Social balance theory Structural hole theory Structural hole 31

32 Transfer Factor Graph Model 32 Coauthor network mobile y y 2 =? 4 =? y 2 y 4 h (y 3, y 4, y 5 ) TrFG model y 5 y y 1 1 =1 y 5 =1 Input: social network y 3 h (y 1, y 2, y 3 ) y 3 =0 y 6 y 6 =? f (s v 3, s 3,y 3 ) 3 5 v 6 f (u 5,s 5, y 5 ) 4 f (s 1, u 2,y 1 ) f (u 2, s 2,y 2 ) v f (u 3 4, s 4,y 4 ) 4 6 u 2, s 2 f (s 6, u 6,y 6 ) 2 v 5 (v 2, v 3 ) u 4, s 4 u v 5, s 5 2 u 1, s 1 u 3, s 3 (v 4, v 5 ) (v u 6, s 6 (v 4, v 6 ) 1 v 2, v 1 ) 1 (v 4, v 3 ) (v 6, v 5 ) Observations y y 2 =? 4 =? y 2 y 4 h (y 3, y 4, y 5 ) TrFG model y 5 y y 1 1 =1 y 5 =1 Input: social network y 3 h (y 1, y 2, y 3 ) y 3 =0 y 6 y 6 =? f (s v 3, s 3,y 3 ) 3 5 v 6 f (u 5,s 5, y 5 ) 4 f (s 1, u 2,y 1 ) f (u 2, s 2,y 2 ) v f (u 3 4, s 4,y 4 ) 4 6 u 2, s 2 f (s 6, u 6,y 6 ) 2 v 5 (v 2, v 3 ) u 4, s 4 u v 5, s 5 2 u 1, s 1 u 3, s 3 (v 4, v 5 ) (v u 6, s 6 (v 4, v 6 ) 1 v 2, v 1 ) 1 (v 4, v 3 ) (v 6, v 5 ) Observations Triad-based factor Bridge via social theories

33 Mathematical Formulation Features defined in different networks Triad-based features shared across networks 33

34 Data Sets Epinions a network of product reviewers: 131,828 nodes (users) and 841,372 edges trust relationships between users Slashdot: 82,144 users and 59,202 edges friend relationships between users Mobile: 107 mobile users and 5,436 edges to infer friendships between users 34

35 Results Data Set Method Prec. Rec. F1 Mobile Epinions to Mobile (40%) Slashdot to Mobile (40%) SVM CRF PFG TranFG TranFG SVM and CRF are two baseline methods; PFG is the proposed partially-labeled factor graph model; TranFG is the proposed transfer based factor graph model. 35

36 Varying the percent of the labeled data Epinions-to-Mobile Slashdot-to-Mobile 36

37 Factor contribution analysis SH-Structural hole; SB-Social balance. 37

38 38 Conclusions Moodcast: emotion prediction Emotion stimulates the mind 3000 times quicker than rational though; We demonstrate that it is possible to accurately predict users emotions in mobile network. Inferring social ties different types of social ties have essentially different influence on people; By incorporating social theories, our proposed model can significantly improve (+4-14%) the inferring accuracy.

39 Emotion: Future Work Emotion diffusion in the mobile network; Predicting activities and emotions simultaneously. Inferring social ties: Inferring complex relationships between users, e.g., family, colleague, manager-subordinate; Active learning for inferring social ties. 39

40 Related Publications Jie Tang, Tiancheng Lou, and Jon Kleinberg. Inferring Social Ties across Heterogenous Networks. WSDM 12. Chi Wang, Jiawei Han, Yuntao Jia, Duo Zhang, Yintao Yu, Jie Tang, Jingyi Guo. Mining Advisor-Advisee Relationships from Research Publication Networks. KDD 10. Wenbin Tang, Honglei Zhuang, and Jie Tang. Learning to Infer Social Relationships in Large Networks. PKDD'11. (Best Student Paper Runner-up) Jie Tang, Yuan Zhang, Jimeng Sun, Jinghai Rao, Wenjing Yu, Yiran Chen, and ACM Fong. Quantitative Study of Individual Emotional States in Social Networks. IEEE Transactions on Affective Computing Yuan Zhang, Jie Tang, Jimeng Sun, Yiran Chen, and Jinghai Rao. MoodCast: Emotion Prediction via Dynamic Continuous Factor Graph Model. ICDM'10. Chenhao Tan, Jie Tang, Jimeng Sun, Quan Lin, and Fengjiao Wang. Social Action Tracking via Noise Tolerant Time-varying Factor Graphs. KDD 10. Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social Influence Analysis in Largescale Networks. KDD'09. 40

41 Thanks! HP: System: 41

How Long will She Call Me? Distribution, Social Theory and Duration Prediction

How Long will She Call Me? Distribution, Social Theory and Duration Prediction How Long will She Call Me? Distribution, Social Theory and Duration Prediction Yuxiao Dong, Jie Tang, Tiancheng Lou, Bin Wu and Nitesh V. Chawla Department of Computer Science and Engineering, University

More information

Link Prediction and Recommendation across Heterogeneous Social Networks

Link Prediction and Recommendation across Heterogeneous Social Networks Link Prediction and Recommendation across Heterogeneous Social Networks Yuxiao Dong, Jie Tang, Sen Wu, Jilei Tian, Nitesh V. Chawla, Jinghai Rao, Huanhuan Cao Department of Computer Science and Technology,

More information

MALLET-Privacy Preserving Influencer Mining in Social Media Networks via Hypergraph

MALLET-Privacy Preserving Influencer Mining in Social Media Networks via Hypergraph MALLET-Privacy Preserving Influencer Mining in Social Media Networks via Hypergraph Janani K 1, Narmatha S 2 Assistant Professor, Department of Computer Science and Engineering, Sri Shakthi Institute of

More information

IJCSES Vol.7 No.4 October 2013 pp.165-168 Serials Publications BEHAVIOR PERDITION VIA MINING SOCIAL DIMENSIONS

IJCSES Vol.7 No.4 October 2013 pp.165-168 Serials Publications BEHAVIOR PERDITION VIA MINING SOCIAL DIMENSIONS IJCSES Vol.7 No.4 October 2013 pp.165-168 Serials Publications BEHAVIOR PERDITION VIA MINING SOCIAL DIMENSIONS V.Sudhakar 1 and G. Draksha 2 Abstract:- Collective behavior refers to the behaviors of individuals

More information

Collective Behavior Prediction in Social Media. Lei Tang Data Mining & Machine Learning Group Arizona State University

Collective Behavior Prediction in Social Media. Lei Tang Data Mining & Machine Learning Group Arizona State University Collective Behavior Prediction in Social Media Lei Tang Data Mining & Machine Learning Group Arizona State University Social Media Landscape Social Network Content Sharing Social Media Blogs Wiki Forum

More information

Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

ONLINE SOCIAL NETWORK MINING: CURRENT TRENDS AND RESEARCH ISSUES

ONLINE SOCIAL NETWORK MINING: CURRENT TRENDS AND RESEARCH ISSUES ONLINE SOCIAL NETWORK MINING: CURRENT TRENDS AND RESEARCH ISSUES G Nandi 1, A Das 1 & 2 1 Assam Don Bosco University Guwahati, Assam 781017, India 2 St. Anthony s College, Shillong, Meghalaya 793001, India

More information

CLASSIFYING NETWORK TRAFFIC IN THE BIG DATA ERA

CLASSIFYING NETWORK TRAFFIC IN THE BIG DATA ERA CLASSIFYING NETWORK TRAFFIC IN THE BIG DATA ERA Professor Yang Xiang Network Security and Computing Laboratory (NSCLab) School of Information Technology Deakin University, Melbourne, Australia http://anss.org.au/nsclab

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

Jure Leskovec (@jure) Stanford University

Jure Leskovec (@jure) Stanford University Jure Leskovec (@jure) Stanford University KDD Summer School, Beijing, August 2012 8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 2 Graph: Kronecker graphs Graph Node attributes: MAG model Graph

More information

Top Top 10 Algorithms in Data Mining

Top Top 10 Algorithms in Data Mining ICDM 06 Panel on Top Top 10 Algorithms in Data Mining 1. The 3-step identification process 2. The 18 identified candidates 3. Algorithm presentations 4. Top 10 algorithms: summary 5. Open discussions ICDM

More information

Top 10 Algorithms in Data Mining

Top 10 Algorithms in Data Mining Top 10 Algorithms in Data Mining Xindong Wu ( 吴 信 东 ) Department of Computer Science University of Vermont, USA; 合 肥 工 业 大 学 计 算 机 与 信 息 学 院 1 Top 10 Algorithms in Data Mining by the IEEE ICDM Conference

More information

Computer Forensics Application. ebay-uab Collaborative Research: Product Image Analysis for Authorship Identification

Computer Forensics Application. ebay-uab Collaborative Research: Product Image Analysis for Authorship Identification Computer Forensics Application ebay-uab Collaborative Research: Product Image Analysis for Authorship Identification Project Overview A new framework that provides additional clues extracted from images

More information

CS 229, Autumn 2011 Modeling the Stock Market Using Twitter Sentiment Analysis

CS 229, Autumn 2011 Modeling the Stock Market Using Twitter Sentiment Analysis CS 229, Autumn 2011 Modeling the Stock Market Using Twitter Sentiment Analysis Team members: Daniel Debbini, Philippe Estin, Maxime Goutagny Supervisor: Mihai Surdeanu (with John Bauer) 1 Introduction

More information

Information Management course

Information Management course Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli (alberto.ceselli@unimi.it)

More information

Inferring User Demographics and Social Strategies in Mobile Social Networks

Inferring User Demographics and Social Strategies in Mobile Social Networks Inferring User Demographics and Social Strategies in Mobile Social Networks Yuxiao Dong, Yang Yang, Jie Tang, Yang Yang, Nitesh V. Chawla Department of Computer Science and Engineering, University of Notre

More information

A latent representation model for sentiment analysis in heterogeneous social networks

A latent representation model for sentiment analysis in heterogeneous social networks A latent representation model for sentiment analysis in heterogeneous social networks Debora Nozza 1, Daniele Maccagnola 1, Vincent Guigue 2, Enza Messina 1 and Patrick Gallinari 2 1 University of Milano-Bicocca,

More information

Metaheuristics in Big Data: An Approach to Railway Engineering

Metaheuristics in Big Data: An Approach to Railway Engineering Metaheuristics in Big Data: An Approach to Railway Engineering Silvia Galván Núñez 1,2, and Prof. Nii Attoh-Okine 1,3 1 Department of Civil and Environmental Engineering University of Delaware, Newark,

More information

A survey on click modeling in web search

A survey on click modeling in web search A survey on click modeling in web search Lianghao Li Hong Kong University of Science and Technology Outline 1 An overview of web search marketing 2 An overview of click modeling 3 A survey on click models

More information

AMiner-mini: A People Search Engine For University

AMiner-mini: A People Search Engine For University AMiner-mini: A People Search Engine For University Jingyuan Liu*, Debing Liu*, Xingyu Yan*, Li Dong #, Ting Zeng #, Yutao Zhang*, and Jie Tang* *Dept. of Com. Sci. and Tech., Tsinghua University # Tsinghua

More information

Social-Sensed Multimedia Computing

Social-Sensed Multimedia Computing Social-Sensed Multimedia Computing Wenwu Zhu Tsinghua University Multimedia Computing Search Recommend Multimedia Summarize Social Distribution... Sense from Social Preference Influence User behaviors

More information

Large-scale Data Mining: MapReduce and Beyond Part 2: Algorithms. Spiros Papadimitriou, IBM Research Jimeng Sun, IBM Research Rong Yan, Facebook

Large-scale Data Mining: MapReduce and Beyond Part 2: Algorithms. Spiros Papadimitriou, IBM Research Jimeng Sun, IBM Research Rong Yan, Facebook Large-scale Data Mining: MapReduce and Beyond Part 2: Algorithms Spiros Papadimitriou, IBM Research Jimeng Sun, IBM Research Rong Yan, Facebook Part 2:Mining using MapReduce Mining algorithms using MapReduce

More information

Community-Aware Prediction of Virality Timing Using Big Data of Social Cascades

Community-Aware Prediction of Virality Timing Using Big Data of Social Cascades 1 Community-Aware Prediction of Virality Timing Using Big Data of Social Cascades Alvin Junus, Ming Cheung, James She and Zhanming Jie HKUST-NIE Social Media Lab, Hong Kong University of Science and Technology

More information

Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network

Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network , pp.273-284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and

More information

AN INTRODUCTION TO SOCIAL NETWORK DATA ANALYTICS

AN INTRODUCTION TO SOCIAL NETWORK DATA ANALYTICS Chapter 1 AN INTRODUCTION TO SOCIAL NETWORK DATA ANALYTICS Charu C. Aggarwal IBM T. J. Watson Research Center Hawthorne, NY 10532 charu@us.ibm.com Abstract The advent of online social networks has been

More information

Exploring Big Data in Social Networks

Exploring Big Data in Social Networks Exploring Big Data in Social Networks virgilio@dcc.ufmg.br (meira@dcc.ufmg.br) INWEB National Science and Technology Institute for Web Federal University of Minas Gerais - UFMG May 2013 Some thoughts about

More information

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015 An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

More information

SOCIAL NETWORK DATA ANALYTICS

SOCIAL NETWORK DATA ANALYTICS SOCIAL NETWORK DATA ANALYTICS SOCIAL NETWORK DATA ANALYTICS Edited by CHARU C. AGGARWAL IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA Kluwer Academic Publishers Boston/Dordrecht/London

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

Twitter sentiment vs. Stock price!

Twitter sentiment vs. Stock price! Twitter sentiment vs. Stock price! Background! On April 24 th 2013, the Twitter account belonging to Associated Press was hacked. Fake posts about the Whitehouse being bombed and the President being injured

More information

Participation Maximization Based on Social Influence in Online Discussion Forums

Participation Maximization Based on Social Influence in Online Discussion Forums Participation Maximization Based on Social Influence in Online Discussion Forums Tao Sun,Wei Chen,Zhenming Liu,Yajun Wang,Xiaorui Sun,Ming Zhang,Chin-Yew Lin Peking University. {suntao, mzhang}@net.pku.edu.cn

More information

Microblog Sentiment Analysis with Emoticon Space Model

Microblog Sentiment Analysis with Emoticon Space Model Microblog Sentiment Analysis with Emoticon Space Model Fei Jiang, Yiqun Liu, Huanbo Luan, Min Zhang, and Shaoping Ma State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory

More information

Graph Mining and Social Network Analysis

Graph Mining and Social Network Analysis Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann

More information

Social Influence Analysis in Social Networking Big Data: Opportunities and Challenges. Presenter: Sancheng Peng Zhaoqing University

Social Influence Analysis in Social Networking Big Data: Opportunities and Challenges. Presenter: Sancheng Peng Zhaoqing University Social Influence Analysis in Social Networking Big Data: Opportunities and Challenges Presenter: Sancheng Peng Zhaoqing University 1 2 3 4 35 46 7 Contents Introduction Relationship between SIA and BD

More information

Introduction to Data Mining. Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj

Introduction to Data Mining. Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Introduction to Data Mining Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Overview Introduction The Data Mining Process The Basic Data Types The Major Building Blocks Scalability and Streaming

More information

A Semi-supervised Ensemble Approach for Mining Data Streams

A Semi-supervised Ensemble Approach for Mining Data Streams JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2873 A Semi-supervised Ensemble Approach for Mining Data Streams Jing Liu 1,2, Guo-sheng Xu 1,2, Da Xiao 1,2, Li-ze Gu 1,2, Xin-xin Niu 1,2 1.Information

More information

BIG DATA STREAM ANALYTICS FOR CORRELATED

BIG DATA STREAM ANALYTICS FOR CORRELATED BIG DATA STREAM ANALYTICS FOR CORRELATED STOCK PRICE MOVEMENT PREDICTION Wenping Zhang and Raymond Lau Department of Information Systems City University of Hong Kong Hong Kong SAR wzhang23-c@my.cityu.edu.hk

More information

Classification and Prediction

Classification and Prediction Classification and Prediction Slides for Data Mining: Concepts and Techniques Chapter 7 Jiawei Han and Micheline Kamber Intelligent Database Systems Research Lab School of Computing Science Simon Fraser

More information

Data Mining Techniques for Online Social Network Analysis

Data Mining Techniques for Online Social Network Analysis Data Mining Techniques for Online Social Network Analysis 1 Aditya Kumar Agrawal, 2 Shikha Kumari, 3 B.Giridhar, 4 Bhavani Shankar Panda 1, 2 B.Tech Student, 2, 3 Asst.prof in CSE dept Abstract - In this

More information

Customer Relationship Management using Adaptive Resonance Theory

Customer Relationship Management using Adaptive Resonance Theory Customer Relationship Management using Adaptive Resonance Theory Manjari Anand M.Tech.Scholar Zubair Khan Associate Professor Ravi S. Shukla Associate Professor ABSTRACT CRM is a kind of implemented model

More information

Network Analysis For Sustainability Management

Network Analysis For Sustainability Management Network Analysis For Sustainability Management 1 Cátia Vaz 1º Summer Course in E4SD Outline Motivation Networks representation Structural network analysis Behavior network analysis 2 Networks Over the

More information

Predicting Information Popularity Degree in Microblogging Diffusion Networks

Predicting Information Popularity Degree in Microblogging Diffusion Networks Vol.9, No.3 (2014), pp.21-30 http://dx.doi.org/10.14257/ijmue.2014.9.3.03 Predicting Information Popularity Degree in Microblogging Diffusion Networks Wang Jiang, Wang Li * and Wu Weili College of Computer

More information

Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012

Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012 Clustering Big Data Anil K. Jain (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University November 29, 2012 Outline Big Data How to extract information? Data clustering

More information

MINIMIZING STORAGE COST IN CLOUD COMPUTING ENVIRONMENT

MINIMIZING STORAGE COST IN CLOUD COMPUTING ENVIRONMENT MINIMIZING STORAGE COST IN CLOUD COMPUTING ENVIRONMENT 1 SARIKA K B, 2 S SUBASREE 1 Department of Computer Science, Nehru College of Engineering and Research Centre, Thrissur, Kerala 2 Professor and Head,

More information

Graph Processing and Social Networks

Graph Processing and Social Networks Graph Processing and Social Networks Presented by Shu Jiayu, Yang Ji Department of Computer Science and Engineering The Hong Kong University of Science and Technology 2015/4/20 1 Outline Background Graph

More information

Research on the UHF RFID Channel Coding Technology based on Simulink

Research on the UHF RFID Channel Coding Technology based on Simulink Vol. 6, No. 7, 015 Research on the UHF RFID Channel Coding Technology based on Simulink Changzhi Wang Shanghai 0160, China Zhicai Shi* Shanghai 0160, China Dai Jian Shanghai 0160, China Li Meng Shanghai

More information

Understanding Graph Sampling Algorithms for Social Network Analysis

Understanding Graph Sampling Algorithms for Social Network Analysis Understanding Graph Sampling Algorithms for Social Network Analysis Tianyi Wang, Yang Chen 2, Zengbin Zhang 3, Tianyin Xu 2 Long Jin, Pan Hui 4, Beixing Deng, Xing Li Department of Electronic Engineering,

More information

Curriculum Vitae. Summer internship in a financial company that is active in quantitative analysis or development of quantitative

Curriculum Vitae. Summer internship in a financial company that is active in quantitative analysis or development of quantitative Curriculum Vitae XIAOXIAO SHI Department of Computer Science University of Illinois at Chicago Office: 851 S. Morgan St., Rm 1336 SEO, Chicago, IL 60607 xshi9@uic.edu, xiao.x.shi@gmail.com (preferred)

More information

A Lightweight Solution to the Educational Data Mining Challenge

A Lightweight Solution to the Educational Data Mining Challenge A Lightweight Solution to the Educational Data Mining Challenge Kun Liu Yan Xing Faculty of Automation Guangdong University of Technology Guangzhou, 510090, China catch0327@yahoo.com yanxing@gdut.edu.cn

More information

Cross-Validation. Synonyms Rotation estimation

Cross-Validation. Synonyms Rotation estimation Comp. by: BVijayalakshmiGalleys0000875816 Date:6/11/08 Time:19:52:53 Stage:First Proof C PAYAM REFAEILZADEH, LEI TANG, HUAN LIU Arizona State University Synonyms Rotation estimation Definition is a statistical

More information

Classifying Business Types from Twitter Posts Using Active Learning

Classifying Business Types from Twitter Posts Using Active Learning Classifying Business Types from Twitter Posts Using Active Learning Chanattha Thongsuk, Choochart Haruechaiyasak, Phayung Meesad Department of Information Technology Faculty of Information Technology King

More information

Data Mining Yelp Data - Predicting rating stars from review text

Data Mining Yelp Data - Predicting rating stars from review text Data Mining Yelp Data - Predicting rating stars from review text Rakesh Chada Stony Brook University rchada@cs.stonybrook.edu Chetan Naik Stony Brook University cnaik@cs.stonybrook.edu ABSTRACT The majority

More information

Stock Market Forecasting Using Machine Learning Algorithms

Stock Market Forecasting Using Machine Learning Algorithms Stock Market Forecasting Using Machine Learning Algorithms Shunrong Shen, Haomiao Jiang Department of Electrical Engineering Stanford University {conank,hjiang36}@stanford.edu Tongda Zhang Department of

More information

Parallel Data Mining. Team 2 Flash Coders Team Research Investigation Presentation 2. Foundations of Parallel Computing Oct 2014

Parallel Data Mining. Team 2 Flash Coders Team Research Investigation Presentation 2. Foundations of Parallel Computing Oct 2014 Parallel Data Mining Team 2 Flash Coders Team Research Investigation Presentation 2 Foundations of Parallel Computing Oct 2014 Agenda Overview of topic Analysis of research papers Software design Overview

More information

Detecting Human Behavior Patterns from Mobile Phone

Detecting Human Behavior Patterns from Mobile Phone Journal of Computational Information Systems 8: 6 (2012) 2671 2679 Available at http://www.jofcis.com Detecting Human Behavior Patterns from Mobile Phone Anqin ZHANG 1,2,, Wenjun YE 2, Yuan PENG 1,2 1

More information

Anti-Spam Filter Based on Naïve Bayes, SVM, and KNN model

Anti-Spam Filter Based on Naïve Bayes, SVM, and KNN model AI TERM PROJECT GROUP 14 1 Anti-Spam Filter Based on,, and model Yun-Nung Chen, Che-An Lu, Chao-Yu Huang Abstract spam email filters are a well-known and powerful type of filters. We construct different

More information

10/14/11. Big data in science Application to large scale physical systems

10/14/11. Big data in science Application to large scale physical systems Big data in science Application to large scale physical systems Large scale physical systems Large scale systems with spatio-temporal dynamics Propagation of pollutants in air, Water distribution networks,

More information

MapReduce Algorithms. Sergei Vassilvitskii. Saturday, August 25, 12

MapReduce Algorithms. Sergei Vassilvitskii. Saturday, August 25, 12 MapReduce Algorithms A Sense of Scale At web scales... Mail: Billions of messages per day Search: Billions of searches per day Social: Billions of relationships 2 A Sense of Scale At web scales... Mail:

More information

Active Learning SVM for Blogs recommendation

Active Learning SVM for Blogs recommendation Active Learning SVM for Blogs recommendation Xin Guan Computer Science, George Mason University Ⅰ.Introduction In the DH Now website, they try to review a big amount of blogs and articles and find the

More information

Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification

Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification Tina R. Patil, Mrs. S. S. Sherekar Sant Gadgebaba Amravati University, Amravati tnpatil2@gmail.com, ss_sherekar@rediffmail.com

More information

Protein Protein Interaction Networks

Protein Protein Interaction Networks Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics

More information

Data Mining & Data Stream Mining Open Source Tools

Data Mining & Data Stream Mining Open Source Tools Data Mining & Data Stream Mining Open Source Tools Darshana Parikh, Priyanka Tirkha Student M.Tech, Dept. of CSE, Sri Balaji College Of Engg. & Tech, Jaipur, Rajasthan, India Assistant Professor, Dept.

More information

The primary goal of this thesis was to understand how the spatial dependence of

The primary goal of this thesis was to understand how the spatial dependence of 5 General discussion 5.1 Introduction The primary goal of this thesis was to understand how the spatial dependence of consumer attitudes can be modeled, what additional benefits the recovering of spatial

More information

Towards Inferring Web Page Relevance An Eye-Tracking Study

Towards Inferring Web Page Relevance An Eye-Tracking Study Towards Inferring Web Page Relevance An Eye-Tracking Study 1, iconf2015@gwizdka.com Yinglong Zhang 1, ylzhang@utexas.edu 1 The University of Texas at Austin Abstract We present initial results from a project,

More information

PRIVACY-PRESERVING DATA ANALYSIS AND DATA SHARING

PRIVACY-PRESERVING DATA ANALYSIS AND DATA SHARING PRIVACY-PRESERVING DATA ANALYSIS AND DATA SHARING Chih-Hua Tai Dept. of Computer Science and Information Engineering, National Taipei University New Taipei City, Taiwan BENEFIT OF DATA ANALYSIS Many fields

More information

Using One-Versus-All classification ensembles to support modeling decisions in data stream mining

Using One-Versus-All classification ensembles to support modeling decisions in data stream mining Using One-Versus-All classification ensembles to support modeling decisions in data stream mining Patricia E.N. Lutu Department of Computer Science, University of Pretoria, South Africa Patricia.Lutu@up.ac.za

More information

Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information

Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information Eric Hsueh-Chan Lu Chi-Wei Huang Vincent S. Tseng Institute of Computer Science and Information Engineering

More information

Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University September 19, 2012

Clustering Big Data. Anil K. Jain. (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University September 19, 2012 Clustering Big Data Anil K. Jain (with Radha Chitta and Rong Jin) Department of Computer Science Michigan State University September 19, 2012 E-Mart No. of items sold per day = 139x2000x20 = ~6 million

More information

Clustering Technique in Data Mining for Text Documents

Clustering Technique in Data Mining for Text Documents Clustering Technique in Data Mining for Text Documents Ms.J.Sathya Priya Assistant Professor Dept Of Information Technology. Velammal Engineering College. Chennai. Ms.S.Priyadharshini Assistant Professor

More information

A Connectivity-Based Popularity Prediction Approach for Social Networks

A Connectivity-Based Popularity Prediction Approach for Social Networks A Connectivity-Based Popularity Prediction Approach for Social Networks Huangmao Quan, Ana Milicic, Slobodan Vucetic, and Jie Wu Department of Computer and Information Sciences Temple University, Philadelphia,

More information

MapReduce on GPUs. Amit Sabne, Ahmad Mujahid Mohammed Razip, Kun Xu

MapReduce on GPUs. Amit Sabne, Ahmad Mujahid Mohammed Razip, Kun Xu 1 MapReduce on GPUs Amit Sabne, Ahmad Mujahid Mohammed Razip, Kun Xu 2 MapReduce MAP Shuffle Reduce 3 Hadoop Open-source MapReduce framework from Apache, written in Java Used by Yahoo!, Facebook, Ebay,

More information

Exploration and Visualization of Post-Market Data

Exploration and Visualization of Post-Market Data Exploration and Visualization of Post-Market Data Jianying Hu, PhD Joint work with David Gotz, Shahram Ebadollahi, Jimeng Sun, Fei Wang, Marianthi Markatou Healthcare Analytics Research IBM T.J. Watson

More information

PULLING OUT OPINION TARGETS AND OPINION WORDS FROM REVIEWS BASED ON THE WORD ALIGNMENT MODEL AND USING TOPICAL WORD TRIGGER MODEL

PULLING OUT OPINION TARGETS AND OPINION WORDS FROM REVIEWS BASED ON THE WORD ALIGNMENT MODEL AND USING TOPICAL WORD TRIGGER MODEL Journal homepage: www.mjret.in ISSN:2348-6953 PULLING OUT OPINION TARGETS AND OPINION WORDS FROM REVIEWS BASED ON THE WORD ALIGNMENT MODEL AND USING TOPICAL WORD TRIGGER MODEL Utkarsha Vibhute, Prof. Soumitra

More information

ArnetMiner: An Expertise Oriented Search System for Web Community

ArnetMiner: An Expertise Oriented Search System for Web Community ArnetMiner: An Expertise Oriented Search System for Web Community Jie Tang, Jing Zhang, Duo Zhang, Limin Yao, Chunlin Zhu, and Juanzi Li Department of Computer and Technology, Tsinghua University {tangjie,

More information

A SURVEY OF MODELS AND ALGORITHMS FOR SOCIAL INFLUENCE ANALYSIS

A SURVEY OF MODELS AND ALGORITHMS FOR SOCIAL INFLUENCE ANALYSIS Chapter 4 A SURVEY OF MODELS AND ALGORITHMS FOR SOCIAL INFLUENCE ANALYSIS Jimeng Sun IBM TJ Watson Research Center, USA jimeng@us.ibm.com Jie Tang Tsinghua University, China jietang@tsinghua.edu.cn Abstract

More information

CMU SCS Large Graph Mining Patterns, Tools and Cascade analysis

CMU SCS Large Graph Mining Patterns, Tools and Cascade analysis Large Graph Mining Patterns, Tools and Cascade analysis Christos Faloutsos CMU Roadmap Introduction Motivation Why big data Why (big) graphs? Patterns in graphs Tools: fraud detection on e-bay Conclusions

More information

Graph Mining Techniques for Social Media Analysis

Graph Mining Techniques for Social Media Analysis Graph Mining Techniques for Social Media Analysis Mary McGlohon Christos Faloutsos 1 1-1 What is graph mining? Extracting useful knowledge (patterns, outliers, etc.) from structured data that can be represented

More information

large-scale machine learning revisited Léon Bottou Microsoft Research (NYC)

large-scale machine learning revisited Léon Bottou Microsoft Research (NYC) large-scale machine learning revisited Léon Bottou Microsoft Research (NYC) 1 three frequent ideas in machine learning. independent and identically distributed data This experimental paradigm has driven

More information

Contemporary Techniques for Data Mining Social Media

Contemporary Techniques for Data Mining Social Media Contemporary Techniques for Data Mining Social Media Stephen Cutting (100063482) 1 Introduction Social media websites such as Facebook, Twitter and Google+ allow millions of users to communicate with one

More information

SOPS: Stock Prediction using Web Sentiment

SOPS: Stock Prediction using Web Sentiment SOPS: Stock Prediction using Web Sentiment Vivek Sehgal and Charles Song Department of Computer Science University of Maryland College Park, Maryland, USA {viveks, csfalcon}@cs.umd.edu Abstract Recently,

More information

Jiliang Tang. 701 First Avenue Yahoo!, Voice: (408) 744-2053 E-mail: jlt@yahoo-inc.com Sunnyvale, CA, 94089 US. Contact Information

Jiliang Tang. 701 First Avenue Yahoo!, Voice: (408) 744-2053 E-mail: jlt@yahoo-inc.com Sunnyvale, CA, 94089 US. Contact Information Jiliang Tang Contact Information Research Interests 701 First Avenue Yahoo!, Voice: (408) 744-2053 Yahoo Labs E-mail: jlt@yahoo-inc.com Sunnyvale, CA, 94089 US URL: http://www.public.asu.edu/~jtang20 Data

More information

The Data Engineer. Mike Tamir Chief Science Officer Galvanize. Steven Miller Global Leader Academic Programs IBM Analytics

The Data Engineer. Mike Tamir Chief Science Officer Galvanize. Steven Miller Global Leader Academic Programs IBM Analytics The Data Engineer Mike Tamir Chief Science Officer Galvanize Steven Miller Global Leader Academic Programs IBM Analytics Alessandro Gagliardi Lead Faculty Galvanize Businesses are quickly realizing that

More information

Large Scale Learning to Rank

Large Scale Learning to Rank Large Scale Learning to Rank D. Sculley Google, Inc. dsculley@google.com Abstract Pairwise learning to rank methods such as RankSVM give good performance, but suffer from the computational burden of optimizing

More information

Visual Analytics and Information Fusion

Visual Analytics and Information Fusion Visual Analytics and Information Fusion Data in many real world applications may arise from multiple sources, and can be viewed from different aspects. It is a significant analytical challenge to extract

More information

Research on the cloud platform resource management technology for surveillance video analysis

Research on the cloud platform resource management technology for surveillance video analysis Research on the cloud platform resource management technology for surveillance video analysis Yonglong Zhuang 1*, Xiaolan Weng 2, Xianghe Wei 2 1 Modern Educational Technology Center, Huaiyin rmal University,

More information

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University caizhua@gmail.com 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian

More information

Supply Chain Forecasting Model Using Computational Intelligence Techniques

Supply Chain Forecasting Model Using Computational Intelligence Techniques CMU.J.Nat.Sci Special Issue on Manufacturing Technology (2011) Vol.10(1) 19 Supply Chain Forecasting Model Using Computational Intelligence Techniques Wimalin S. Laosiritaworn Department of Industrial

More information

Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing and Developing E-mail Classifier

Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing and Developing E-mail Classifier International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-1, Issue-6, January 2013 Artificial Neural Network, Decision Tree and Statistical Techniques Applied for Designing

More information

Performance Evaluation On Human Resource Management Of China S Commercial Banks Based On Improved Bp Neural Networks

Performance Evaluation On Human Resource Management Of China S Commercial Banks Based On Improved Bp Neural Networks Performance Evaluation On Human Resource Management Of China S *1 Honglei Zhang, 2 Wenshan Yuan, 1 Hua Jiang 1 School of Economics and Management, Hebei University of Engineering, Handan 056038, P. R.

More information

SUIT: A Supervised User-Item Based Topic Model for Sentiment Analysis

SUIT: A Supervised User-Item Based Topic Model for Sentiment Analysis Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence SUIT: A Supervised User-Item Based Topic Model for Sentiment Analysis Fangtao Li 1, Sheng Wang 2, Shenghua Liu 3 and Ming Zhang

More information

Cloud Computing Environments Parallel Data Mining Policy Research

Cloud Computing Environments Parallel Data Mining Policy Research , pp. 135-144 http://dx.doi.org/10.14257/ijgdc.2015.8.4.13 Cloud Computing Environments Parallel Data Mining Policy Research Wenwu Lian, Xiaoshu Zhu, Jie Zhang and Shangfang Li Yulin Normal University,

More information

The Role of Size Normalization on the Recognition Rate of Handwritten Numerals

The Role of Size Normalization on the Recognition Rate of Handwritten Numerals The Role of Size Normalization on the Recognition Rate of Handwritten Numerals Chun Lei He, Ping Zhang, Jianxiong Dong, Ching Y. Suen, Tien D. Bui Centre for Pattern Recognition and Machine Intelligence,

More information

Mining Query-Based Subnetwork Outliers in Heterogeneous Information Networks

Mining Query-Based Subnetwork Outliers in Heterogeneous Information Networks Mining Query-Based Subnetwork Outliers in Heterogeneous Information Networks Honglei Zhuang, Jing Zhang, George Brova, Jie Tang, Hasan Cam, Xifeng Yan, Jiawei Han Department of Computer Science, University

More information

A QoE Based Video Adaptation Algorithm for Video Conference

A QoE Based Video Adaptation Algorithm for Video Conference Journal of Computational Information Systems 10: 24 (2014) 10747 10754 Available at http://www.jofcis.com A QoE Based Video Adaptation Algorithm for Video Conference Jianfeng DENG 1,2,, Ling ZHANG 1 1

More information

ISSN: 2321-7782 (Online) Volume 2, Issue 10, October 2014 International Journal of Advance Research in Computer Science and Management Studies

ISSN: 2321-7782 (Online) Volume 2, Issue 10, October 2014 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 2, Issue 10, October 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

ANALYSING THE FEATURES OF JAVA AND MAP/REDUCE ON HADOOP

ANALYSING THE FEATURES OF JAVA AND MAP/REDUCE ON HADOOP ANALYSING THE FEATURES OF JAVA AND MAP/REDUCE ON HADOOP Livjeet Kaur Research Student, Department of Computer Science, Punjabi University, Patiala, India Abstract In the present study, we have compared

More information

Design call center management system of e-commerce based on BP neural network and multifractal

Design call center management system of e-commerce based on BP neural network and multifractal Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(6):951-956 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Design call center management system of e-commerce

More information

Mechanism Design for Finding Experts Using Locally Constructed Social Referral Web

Mechanism Design for Finding Experts Using Locally Constructed Social Referral Web The 31st Annual IEEE International Conference on Computer Communications: Mini-Conference Mechanism Design for Finding Experts Using Locally Constructed Social Referral Web Lan Zhang, Xiang-Yang Li,, Yunhao

More information

Research on Sentiment Classification of Chinese Micro Blog Based on

Research on Sentiment Classification of Chinese Micro Blog Based on Research on Sentiment Classification of Chinese Micro Blog Based on Machine Learning School of Economics and Management, Shenyang Ligong University, Shenyang, 110159, China E-mail: 8e8@163.com Abstract

More information

Learning. CS461 Artificial Intelligence Pinar Duygulu. Bilkent University, Spring 2007. Slides are mostly adapted from AIMA and MIT Open Courseware

Learning. CS461 Artificial Intelligence Pinar Duygulu. Bilkent University, Spring 2007. Slides are mostly adapted from AIMA and MIT Open Courseware 1 Learning CS 461 Artificial Intelligence Pinar Duygulu Bilkent University, Slides are mostly adapted from AIMA and MIT Open Courseware 2 Learning What is learning? 3 Induction David Hume Bertrand Russell

More information