TRAFFIC SIMULATION SOFTWARE COMPARISON STUDY

Size: px
Start display at page:

Download "TRAFFIC SIMULATION SOFTWARE COMPARISON STUDY"

Transcription

1 TRAFFIC SIMULATION SOFTWARE COMPARISON STUDY By Steven L. Jones, Jr., Ph.D. Andrew J. Sullivan, P.E. Naveen Cheekoti Department of Civil and Environmental Engineering The University of Alabama at Birmingham Birmingham, Alabama and Michael D. Anderson, Ph.D., P.E. Dillip Malave Department of Civil and Environmental Engineering The University of Alabama at Huntsville Huntsville, Alabama Prepared by UTCA University Transportation Center for Alabama The University of Alabama, The University of Alabama at Birmingham, and The University of Alabama in Huntsville UTCA Report June 2004

2 1. Report No FHWA/CA/OR- 4. Title and Subtitle Technical Report Documentation Page 2. Government Accession No. 3. Recipient Catalog No. 5. Report Date Traffic Simulation Software Comparison Study June Performing Organization Code 7. Authors Steven L. Jones, Jr., Andrew Sullivan, Michael Anderson, Dillip Malave, and Naveen Cheekoti 9. Performing Organization Name and Address Department of Civil & Environmental Engineering The University of Alabama at Birmingham th Street South Birmingham, AL Sponsoring Agency Name and Address University Transportation Center for Alabama The University of Alabama P.O. Box Tuscaloosa, AL Supplementary Notes 8. Performing Organization Report No. UTCA Report Work Unit No. 11. Contract or Grant No. DTRS98-G Type of Report and Period Covered Final Report: 10/01/02-10/10/ Sponsoring Agency Code 16. Abstract Currently, many planning agencies rely on regional planning models for analysis of transportation system alternatives. In order to examine the impacts of system alternatives in greater detail (e.g., highway access, interchange configuration, lane geometry), the Regional Planning Commission of Greater Birmingham (RPCGB) expressed interest in exploring the use of microscopic traffic simulation models. This project compared three commercially available traffic simulation software packages: CORSIM (version 4.32), SimTraffic (version 5.0), and AIMSUN (version 4.2). Each simulation package was evaluated using the following corridor types: Interstate, Signalized Principal Arterial, and an Urban Collector. Each package was evaluated according to criteria that included: system requirements, ease of coding, data requirements, relevance/accuracy of performance measures reported in the output, and versatility/expandability (intelligent transportation systems evaluations, incident management, HOV facilities, ramp metering, etc.). The results indicate that all three models can provide reasonable simulations of traffic operations, although they each offer different capabilities and require varying levels of effort to code, debug, and calibrate. SimTraffic, CORSIM, and AIRSUN each have applications to which they are particularly well-suited, and the RPCGB may want to consider a combination of models to address their planning needs. 17. Key Words simulation, traffic operations, transportation planning 19. Security Classification (of this report) Unclassified Form DOT F (8-72) 20. Security Classification (of this page) Unclassified 18. Distribution Statement 21. No of Pages Price ii

3 Table of Contents Contents...iii Tables...v Figures...vi Executive Summary...vi 1.0 Introduction Background & Problem Statement Purpose and Scope Literature Review CORSIM SimTraffic AIMSUN Evaluating and Comparing Simulation Modeling Packages Software Review Micro-Simulation Algorithms Car Following Algorithms Lane Changing Algorithms Gap Acceptance Algorithms Micro-Simulation Algorithms CORSIM SimTraffic AIMSUN Summary of Packages Methodology Corridor Selection U.S. 280 between Dolly Ridge and the Cahaba River U.S. 31 between U.S. 280 and Lakeshore Parkway I-65 between AL 119 and CR Data Collection Network Coding and Debugging Comparison of Models Using Default Parameters Model Calibration and Validation Comparison of Outputs...26 iii

4 5.0 Results Data Requirements Network Coding CORSIM Coding SimTraffic Coding AIMSUN Coding Summary of Network Coding Ease of Debugging and Troubleshooting Comparison of Un-Calibrated Model Outputs Discussion of Un-Calibrated Model Results Traffic Volumes Average Speeds Maximum Queues Summary of Un-Calibrated Outputs Network Calibration and Validation CORSIM Validation and Calibration SimTraffic Validation and Calibration AIMSUN Validation and Calibration Calibrated Outputs Conclusions and Recommendations Acknowledgments References...55 iv

5 Tables 2-1. Summary of previous traffic simulation comparisons Summary of software capabilities Comparison of default parameters Summary of how performance measures are calculated Comparison of relationship to other packages Comparison of environmental capabilities Approximate coding times for test networks Relative ease of coding network features Un-calibrated CORSIM MOEs for U.S Un-calibrated SimTraffic MOEs for U.S Un-calibrated AIMSUN MOEs for U.S Simulated and observed maximum queue lengths...43 v

6 Figures 4-1. U.S. Highway 280 study corridor AM peak hour traffic volumes on U.S. Highway U.S. Highway 31 study corridor PM peak hour traffic volumes on U.S. Highway I-65 study corridor PM peak hour traffic volumes in I-65 study corridor Link-node network coded in CORSIM Coding an offset intersection on CORSIM or SimTraffic Portion of U.S. 280 coded in SimTraffic Portion of U.S. 280 network coded in AIMSUN Coding turn volumes in AIMSUN Simulated vs. observed volumes Highway 280 (un-calibrated) Simulated vs. observed volumes U.S. 31 (un-calibrated) Simulated vs. observed volumes I-65 (un-calibrated) Simulated vs. observed average speeds Highway 280 (un-calibrated) Simulated vs. observed average speeds U.S. 31 (un-calibrated) Simulated vs. observed average speeds I-65 (un-calibrated) Simulated vs. observed maximum queues Highway 280 (un-calibrated) Simulated vs. observed maximum queues U.S. 31 (un-calibrated) Simulated vs. observed maximum queues I-65 (un-calibrated) Simulated vs. observed volumes Highway 280 (calibrated) Simulated vs. observed volumes U.S. 31 (calibrated) Simulated vs. observed volumes I-65 (un-calibrated) Simulated vs. observed average speeds Highway 280 (un-calibrated) Simulated vs. observed average speeds U.S. 31 (un-calibrated) Simulated vs. observed average speeds I-65 (un-calibrated) Simulated vs. observed maximum queues Highway 280 (un-calibrated) Simulated vs. observed maximum queues U.S. 31 (un-calibrated) Simulated vs. observed maximum queues I-65 (un-calibrated)...51 vi

7 Executive Summary The Regional Planning Commission of Greater Birmingham (RPCGB) is responsible for evaluating transportation projects in the Birmingham area. Currently, the RPCGB relies on a regional planning model for analysis of system alternatives, but these types of models are useful primarily for broad system-level analyses. In order to examine the impacts of system alternatives in greater detail (e.g., highway access management, interchange configurations, facility widening), the RPCGB expressed interest in using microscopic traffic simulation models. The RPCGB sought guidance on the strengths and weaknesses of the various microscopic simulation models currently available. Among the characteristics they identified as important were ease of coding, visualization capabilities, and reliability of outputs. This project is intended to provide guidance to the RPCGB on three popular software packages and determine their suitability to their needs. The three micro-simulation modeling packages chosen for evaluation in this study were: CORSIM, SimTraffic, and AIMSUN. CORSIM is the most widely used micro-simulation program in the U.S. and has been refined and updated by the Federal Highway Administration over the course of nearly 30 years. As such, it has been extensively validated and uses widely accepted car following and driver behavior algorithms. SimTraffic is a fairly new microsimulation package that uses many of the same car following and driver behavior models as CORSIM but incorporates a more user-friendly interface that greatly eases network coding requirements and interpreting outputs. AIMSUN is a micro-simulation model developed in Spain that possesses capabilities beyond either CORSIM or SimTraffic as well as 3-D animation capabilities. AIMSUN was selected for evaluation primarily because it allows dynamic trip assignment and the modeling of impacts from ITS systems. The three software packages were compared using a variety of criteria, including: Hardware/software requirements; Difficulty/ease of network coding; Data requirements, appropriateness of defaults; Relevance/accuracy of performance measures reported in the output; In the end, there was no ranking of best or worst software. All three simulation packages were found to perform reasonably well, but with limitations that should be understood prior to selecting one for network evaluation. Each package had strengths and weaknesses that made it suitable for certain applications, depending on the type of transportation improvement or planning analysis being considered. SimTraffic was found to be the easiest of the models to use and its graphical interface resulted in coding times significantly shorter than the other two models. Even inexperienced model users could get a simple network up and running in a very short time, and its ability to export to a CORSIM format also makes it an ideal starting point when creating more complex CORSIM networks. SimTraffic s lack of transit modeling, traffic assignment, or ITS modeling, however, may limit its usefulness in more complex networks. vii

8 CORSIM s ability to model more complex situations than SimTraffic makes it more suitable for modeling complex urban networks. It can simulate the impacts of transit and parking on traffic operations, features likely to be needed in larger urban models. It can also model the impacts of traffic incidents and traffic management strategies. CORSIM requires greater effort and time for coding networks, but when used in conjunction with the Synchro/SimTraffic export capabilities, networks can still be built relatively quickly. Once constructed, it was found that CORSIM tends to over-estimate roadway capacity, leading to cases where the simulated network performance was better than one would expect in real life. CORSIM, and in fact all models, must be carefully calibrated and validated before using its outputs. CORSIM s traffic assignment capabilities, however, are limited to single network types and currently do not function with combined surface street/freeway networks, a serious limitation if regional models are planned. Furthermore, its trip distribution functions are static, meaning the optimum paths remain constant throughout a simulation regardless of network performance or traffic conditions. Still, CORSIM has many positive attributes including its widespread use, well documented traffic flow and driver behavior algorithms, and modest coding requirements. AIMSUN was found to operate acceptably well with outputs comparable to both SimTraffic and CORSIM. It also possesses features that would be useful for creating large urban and regional networks. Its dynamic traffic assignment capability is unmatched by either SimTraffic or CORSIM, as is its ability to fully model the effects of ITS information systems on driver behavior. The downside of AIMSUN was its rather cumbersome coding requirements. Our study, using both novice and experienced simulation modelers, found that coding in AIMSUN required anywhere from four to eight times the time required to code an equivalent network in either SimTraffic or CORSIM. For this reason, the use of AIMSUN might best be limited to scenarios requiring its full capabilities. The RPCGB may wish to consider using a combination of micro-simulation packages for their planning needs. Use SimTraffic for signal and corridor studies, and either CORSIM or AIMSUN for larger urban models. If the RPCGB plans to construct large regional networks to study the impacts of large projects on other parts of the transportation system, AIMSUN is the only package tested that would meet those requirements. viii

9 Section 1 Introduction 1.1. Background & Problem Statement The Regional Planning Commission of Greater Birmingham (RPCGB) is responsible for evaluating transportation projects in the Birmingham area. Currently, the RPCGB relies on a regional transportation model for analysis of transportation system alternatives. Large-scale, regional transportation models are primarily useful for system-level analyses and lack the resolution to evaluate operational effect of proposed transportation projects. In order to examine the impacts of system alternatives in greater detail, in particular access management treatment, the RPCGB expressed interest in using microscopic traffic simulation models. It is believed that the performance measures generated by such models, as well as their visualization capabilities, will allow detailed operational analyses of travel corridors in the area and assist in determining the potential effectiveness of transportation projects and access management practices. The RPCGB sought guidance on the strengths and weaknesses of the various microscopic simulation models currently available. Among the characteristics they identified as important were ease of coding, ability to interface with other software packages, visualization capabilities, and reliability of outputs. This project was conducted to provide guidance to the RPCGB on three popular software packages and determine their suitability to their needs Purpose & Scope The project consists of a review and comparison of three commercially available traffic simulation software packages: CORSIM (version 5.1) developed for the Federal Highway Administration, distributed by McTrans, Gainesville, FL. SimTraffic (version 5.0) developed and distributed by Trafficware Corporation, Albany, CA 1. AIMSUN (version 4.2) developed by Traffic Simulation Systems, Barcelona, Spain. CORSIM was selected for evaluation as it is the most widely used traffic simulation package in the U.S. The CORSIM model, developed by the Federal Highway Administration, has been in use for over 30 years and employs widely accepted driver behavior and vehicle performance models. SimTraffic is a micro-simulation model developed for the Synchro signal timing 1 After much of the analysis was completed for this project, version 6.0 was released. New capabilities associated with 6.0 were incorporated into this version in this report where appropriate. 1

10 program and was originally intended to allow traffic engineers to evaluate coordinated system timings plans. The model has since been expanded to a fully functional traffic simulation tool capable of modeling freeways and other traffic features. Its user-friendly interface and simplified coding methods have made it an increasingly popular choice for traffic engineers. AIMSUN is a popular micro-simulation package used primarily in Europe but now seeing wider use in the U.S. It was selected for evaluation because it offers 3D visualization and very detailed operational analysis capabilities. It also has dynamic traffic assignment capabilities. Each simulation package was evaluated using case studies representing the following three corridor types : Interstate (including interchanges) Signalized principal arterial Urban collector The goal was to test those features which the RPCGB would be most likely to use in their transportation planning work, in particular the evaluation of access management alternatives. It should be stated that all of the models have capabilities that were not tested as part of this study (e.g., modeling transit stops and routes, advanced ITS systems, and ramp metering). Although these features are quite useful and vary among the packages, the current focus was to compare the more basic functions. As such, each package was evaluated based on the following criteria: Hardware/software requirements; Difficulty/ease of network coding; Data requirements, appropriateness of defaults; Relevance/accuracy of performance measures reported in the output; Interoperability of input/output with other traffic analysis packages (e.g., Transyt, Highway Capacity Software); and Versatility/expandability (ITS evaluations, incident management, HOV facilities, ramp metering, etc.). This report presents the results of this evaluation, as well as background information on each simulation package and a review of relevant literature. The comparison results are presented in Section 5. 2

11 Section 2 Literature Review Beginning in the 1990s, several studies were performed to evaluate different traffic simulation packages and their ability to adequately simulate various test networks and transportation system configurations. Studies of the capabilities of specific packages as well as previous studies comparing models are reviewed in the following sections. The literature review is not intended to be exhaustive. Instead, the articles reviewed are intended to provide a sample of the type of work previously conducted on simulation models as well as identify issues germane to the present study CORSIM CORSIM has been studied extensively and is well documented in the literature. Some key papers are summarized in the following section. Owen et al. (2000) presented an excellent overview of the CORSIM model and its uses. In particular, they focused on its ability to model special circumstances such as HOV facilities and real-time adaptive traffic control systems. Hansen et al. (2000) and Perrin et al. (2002) both presented work on the ability of CORSIM to interface with and analyze real-time adaptive traffic control operations. Cragg and Demetsky (1995) examined the use of CORSIM for incident management. The research developed CORSIM models for a case study area, which included a freeway, interchange and surface streets. The authors concluded that CORSIM is a quality model, but can not possibly model all potential transportation system improvements. Nonetheless, the usefulness of CORSIM as a traffic engineering tool has been demonstrated repeatedly. It can be used for operational analyses. For example, Kim et al. (2003) evaluated the HCM-based level-of service thresholds for rural freeway facilities using CORSIM. Bared et al. (2003) displayed the use of CORSIM, in conjunction with Transyt-7F, for examining traffic operations at single point urban interchanges. Others such as Jones and Selinger (2003) have compared interchange alternatives using CORSIM. Chien et al. (2002) used CORSIM to simulate delays associated with work zone traffic control. With respect to access management treatments, Yang and Zhou (2004) used CORSIM to evaluate the relative merits of requiring a right-turn plus a u-turn to and from driveways in lieu of a more conventional direct left-turn. CORSIM has been used extensively to examine traffic control operations. Catarella et al. (2001) showed the use of CORSIM for modeling specific aspects operations of left-turn phasing in coordinated signal systems. Mussa and Selekwa (2003) examined various time-of-day (TOD) signal timing plans and Zhang et al. (2002) examined the optimization of traffic signals in the presence of a railroad crossing using CORSIM. Researchers have also used CORSIM to evaluate transit operations. Luh (2001) examined the use of CORSIM for modeling project improvements for a stretch of Interstate 10 and a light rail 3

12 application. CORSIM was shown to be superior to the Highway Capacity Software (HCS) when considering traffic operations with adjacent effects and CORSIM was also cited for its animation feature allowing visualization of results. Chien et al. (2002) used CORSIM to evaluate bus arrival times predicted by two artificial neural networks they developed. Gan et al. (2003) used CORSIM to estimate and compare travel speeds for bus and other vehicles in a study of bus lane performance SimTraffic There were numerous examples in the literature of applications of SimTraffic. An introduction to SimTraffic and its applications was presented by Sorenson and Collins (2000). Sargeant and Christie (2002) showcased the unique abilities of the Synchro/SimTraffic model to analyze roundabouts. In this study the software was used to compare the operation MOEs (e.g., delay) of roundabouts with that of stop-controlled and signalized intersections serving the same traffic. Drummond et al. (2002) used SimTraffic to generate traffic MOEs to compare with computed crash rates. As with CORSIM, there are numerous examples of SimTraffic being used to analyze traffic operations. Although it does not explicitly treat transit, Gerken and Tracy (2001) used SimTraffic creatively to examine impacts to vehicular traffic from light rail transit crossings AIMSUN Barcelo (2003) describes the AIMSUN model and its potential applications. Barcleo (2001) presents a detailed description of the dynamic assignment capabilities of AIMSUN. Within the discussion, a description of the car-following and lane changing algorithms in AIMSUN and their relation to past methodologies is presented. AIMSUN was applied to traffic-responsive signal control analyses by Diakaki et al. (2003). In addition to examining traffic-responsive control and its advantages in saturated traffic conditions, the work also examined priority control for transit vehicles in a coordinated urban traffic control system. Barcelo and Garcia (2002), Barcelo et al. (2001) and Barcelo et al. (1999) developed papers on the use of AIMSUN for modeling incident management and traffic management strategies. In particular, the articles focused on the dynamic route assignment capabilities of AIMSUN. The concept of alternate routing within a traffic management architecture is developed in all three papers. Finally, Barcelo (2001) provides a case study showcasing the use of AIMSUN in analyzing ITS strategies such as ramp metering and advanced traffic information systems (referred to as vehicle guidance systems in the paper) Evaluating and Comparing Simulation Modeling Packages Although there are no specific references reviewed documenting the comparison of CORSIM, SimTraffic and AIMSUM, numerous researchers have compared various capabilities of traffic simulation packages in past efforts. A summary of key comparisons is presented in Table 2-1. Again, the purpose of the review was not to summarize all work in this area, but rather to present representative findings relevant to the current study. The studies listed in Table 2-1 are offered for reference and additional reading. A comprehensive review of simulation models was 4

13 conducted by the Institute for Transport Studies at the University of Leeds (ITS, 2000). The study compared the capabilities of more than 50 simulation packages. The results are available on the internet at Table 2-1. Summary of previous traffic simulation comparisons Reference Packages Compared Key Findings Middelton and Cooner, 1999 Bloomberg and Dale, 2000 CORSIM (FRESIM component), FREQ and INTEGRATION CORSIM and VISSIM Models were used to simulate congested freeway conditions. All models performed relatively well for uncontested conditions. They were all, however, inconsistent in their ability to accurately model congested conditions. Models compared for congested arterials. Found models produced consistent results among them. Also cited that both equally user friendly with respect to initial coding. Paper stressed need to understand how models work and compute performance measures. Boxill and Yu, 2000 Barrios et al., 2001 Trueblood, 2001 Choa et al., 2002 Demmers et al., 2002 Kaskeo, 2002 Tian et al., 2002 Bloomberg et al., 2003 CORSIM, INTERGRATION, AIMSUN and PARAMICS CORSIM, VISSIM, PARAMICS and SimTraffic CORSIM and SimTraffic CORSIM,, PARAMICS and VISSIM CORSIM and SimTraffic VISSIM, CORSIM and SimTraffic CORSIM, SimTraffic and VISSIM CORSIM, INTEGRATION, MITSIMLab, PARAMICS, VISSIM and WATSIM Models were evaluated on their ability to simulate ITS. Study concluded that AIMSUN and PARAMICS have significant potential for modeling ITS but require more calibration and validation for the U.S. CORSIM and INTERGRATION were concluded to be the most probable for ITS applications due to familiarity and extensive calibration/validation. Packages were evaluated based on their graphical presentation (animation) capabilities. In particular, the selected package was to be used to simulate bus operations. A review of transit-related and visualization capabilities of each model is presented. Ultimately, VISSIM was selected due to its 3-D capabilities. Results showed little difference between models for arterials with low to moderate traffic. Paper stressed importance of user familiarity with models and need to properly validate. Ability of models to accurately simulate a freeway interchange is compared. Study concluded that CORSIM was the easiest to code. Cited link-based routing in CORSIM and POARAMICS as a source of potential inaccuracy in modeling closely spaced intersections. VISSIM uses route-based routing that eliminates problems associated with linkbased. Ability of CORSIM to compute control delay for individual approaches was cited as an advantage. Artificial barrier between surface streets and freeways in CORSIM cited a source of inaccuracies. PARAMICS and VISSIM were determined to more closely reflect actual conditions. 3-D capabilities of PARAMAICS and VISSIM cited as an advantage. Model results compared for congested arterial conditions. Models produced different results for the same arterial. Simulations were conducted and compared for three facility types: freeways, interchanges, and arterials with coordinated signals. Stated that CORSIM was the most mature and widely used package. Study found that VISSIM was most powerful and versatile (e.g., roundabout, LRT, and pedestrian capabilities). Study found VISSIM the least user friendly and cited additional effort and post-processing to make use of outputs. SimTraffic was found to be the most straightforward to use. Signalized arterials were studied. Results indicate that outputs varied with link length and speed range in addition to volume levels. In general outputs varied more as volume approached capacity. CORSIM displayed less overall variability than SimTraffic. All six models were applied to signalized intersections and freeways. Study concluded that all models performed reasonably well and were fairly consistent. The study underscored the need for thorough and consistent calibration in simulations modeling. 5

14 Section 3 Software Review Traffic simulation packages use fundamental traffic flow, speed, and density relationships to estimate network capacity and system performance. There are two primary types of simulation models, micro-simulation and macro-simulation. Micro-simulation models incorporate specific car-following, vehicle performance, and lane changing algorithms to model individual vehicle behavior. Macro-simulation models, on the other hand, focus not on individual vehicles in the traffic stream but instead consider traffic as an aggregate flow using continuum equations. These macroscopic models usually require less data input and simpler coding efforts but provide corresponding lower levels of output detail. The following section presents a brief description of the traffic simulation packages analyzed Micro-simulation Algorithms Most micro-simulation models use various algorithms and driver behavior models to simulate the movement of individual vehicles on a network. Each vehicle that enters the network is assigned a vehicle type (auto, truck, bus, or carpool) and corresponding vehicle performance characteristics (acceleration, deceleration, speed, and turning characteristics). It is also assigned one of ten driver characteristics (ranging from aggressive to cautious), giving each vehicle a unique and realistic performance profile that it maintains while traveling through the network. The position and speed of each vehicle on the network is updated once per second based on its own performance and driver characteristics, the actions of vehicles around it, roadway properties, and traffic control devices. Thus the interaction of vehicle to vehicle, vehicle to road, and vehicle to control devices are modeled accurately for each simulation. Default vehicle and driver characteristics can also be modified to better reflect actual traffic conditions for a given scenario. Once a vehicle is assigned performance and driver characteristics, its movement through the network is determined by three primary algorithms: Car following Lane changing Gap Acceptance There are other algorithms which influence vehicle behavior, such as those which govern queue discharge and traffic signal control, but car following, lane changing, and gap acceptance are perhaps the most important and are common to all traffic simulation models. As CORSIM is generally the most familiar of the three packages, the three algorithms are described in terms of their treatment within CORSIM. As these three parameters are fundamental to traffic simulation, the following discussion is equally relevant to SimTraffic and AIMSUN. 6

15 Car Following Algorithm The car following algorithm determines how vehicles interact with one another and how vehicles distribute themselves within a traffic stream. It, in effect, determines the headway (or spacing) between vehicles. In the real world, drivers will generally try to maintain a safe distance between themselves and the vehicle in front in order to allow for safe reaction times and braking. In CORSIM, each simulated driver has an ideal headway (or spacing) that he tries to maintain with the vehicle ahead. In the simulation, this desired headway averages about one second but varies from driver to driver and vehicle to vehicle just as it does in the real world, where aggressive drivers follow vehicles more closely than cautious drivers. The actual headway a driver maintains depends on his own aggressiveness, his vehicle characteristics, and the characteristics of those around him. In CORSIM, a driver will attempt to maintain his ideal headway with other vehicles while also attempting to travel as close to his ideal free flow speed as possible Lane Changing Algorithms The lane changing algorithms control how vehicles merge, weave, and make lane changes within the traffic stream. Lane changes are complex maneuvers involving driver behavior, vehicle performance, and conditions within the traffic stream. Drivers can choose to make lane changes for different reasons, which typically include mandatory lane changes (e.g., a lane is obstructed, ends, or becomes a turn lane), positioning lane changes (e.g., putting themselves in the correct lane in order to make a turn), and discretionary lane changes (e.g., changing lanes to pass a slower vehicle). Once they have decided to make a lane change, drivers must find an acceptably large gap in the adjacent traffic stream and ensure that there are not differences in speeds between vehicles that would make the maneuver dangerous (for example, a slower moving vehicle pulling out in front of a much faster moving vehicle). It is because of this complexity that lane changing behavior is some of the most difficult to model and why it is often the source of irregularities in simulation. These irregularities may not be noticeable under traffic conditions where only light or moderate lane changing takes place, but in situations where there are heavy merging or weaving movements there can be large variances between what is modeled and what is actually observed in the field. CORSIM models all three types of lane changes and allows the user to modify selected parameters in order to calibrate lane changing behavior to the real world. In general, each driver in the model is assigned lane changing characteristics, which include: maximum deceleration rates they will accept in order to make a lane change; average time/distance over which they will perform a lane change; minimum acceptable gap in an adjacent traffic stream; distance at which they begin positioning for lane changes ( look ahead distance); and desire and thresholds for making discretionary lane changes. 7

16 Drivers will typically accept a higher deceleration rate when making a mandatory lane change than they will for a discretionary one, because the urgency is normally greater. Drivers will also accept riskier maneuvers as the situation requiring the lane change nears, meaning drivers will initially seek a comfortable gap and minimal deceleration conditions in which to change lanes, but as the mandatory lane change point approaches will display greater urgency and begin to consider shorter gaps and higher deceleration rates. By adjusting these maximum deceleration rates and lane change distances, CORSIM can model conservative or aggressive lane changing behavior. CORSIM simulates discretionary lane changes by assigning each driver type a threshold for making a lane change. CORSIM computes the desire for making a lane change based on vehicle speed, desired speed, current headway, and the potential benefit gained by switching to an adjacent lane. If a driver is traveling below his desired speed because of a slower vehicle in front, he will begin to consider whether changing lanes would be advantageous (this reflects his desire ). CORSIM evaluates the potential benefit of changing lanes by considering a vehicle s speed, its desired speed, and the vehicle speeds in adjacent lanes. If it determines the benefits are above a minimum threshold, the vehicle will attempt to change lanes. In the real world this threshold varies from driver to driver. Aggressive drivers will attempt a lane change even when the potential benefits are small, while conservative drivers will not attempt a lane change unless the benefits exceed a rather high threshold. These parameters can be adjusted in CORSIM to reflect real world conditions. CORSIM models positioning lane changes by looking ahead a specified number of links and initiating appropriate lane changes to correctly position a vehicle for a turn. By default, CORSIM assumes that 90% of drivers know their turn movements (left, thru, or right) at the next two intersections and that 10% look ahead only one intersection. What this means in simulation is that most vehicles will initiate positioning lane changes 2 roadway segments (or links) in advance. This works well if the links over which the vehicles are traveling are long enough to accommodate the desired lane changes; however, problems can occur when intersections are closely spaced and the next two links are very short, not providing vehicles enough distance to make necessary lane changes, particularly if traffic volumes are heavy and gaps are few. What can result is an unrealistic simulation of lane changing behavior, where vehicles either miss their turn or stop in an adjacent lane while waiting to merge into the proper lane. In CORSIM, these parameters can therefore be modified to allow simulated drivers to look as many as 12 links ahead. This often better reflects driver behavior in congested conditions, where drivers know they have to allow extra distance to make lane changes. Lane changing parameters must be carefully coded in CORSIM (and all simulation models) because they can have a large impact on network performance. Unrealistic lane changing behavior can either create excessive delays where none exist. Alternatively, it can suggest better operations than actual conditions causing a user to overlook potential choke points. Again, the impacts of lane changes will be less apparent under low density conditions, but as roadway conditions approach capacity the impacts can be substantial. 8

17 Gap Acceptance Algorithms The gap acceptance algorithms control how the simulated vehicles turn into or across conflicting traffic streams. An example is a vehicle waiting to turn onto a major street from a side street, or a vehicle on the mainline waiting to make a left turn across conflicting traffic. In CORSIM it is assumed that drivers wishing to make a turn will wait for a minimum gap (measured in seconds) in the opposing or conflicting traffic stream before they will initiate a turning maneuver. Anything less than this minimum gap would be considered unsafe and would be rejected. These minimum acceptable gaps are different for different maneuvers (e.g., longer for left turns than thru movements) and further vary by driver type (aggressive drivers will typically accept shorter gaps). How long or short these gaps are assumed to be can significantly influence the realism of a simulation. Gap requirements set too high may yield unrealistically long queues as drivers wait for unreasonably long gaps in traffic before making turns. Gaps set too low may produce unrealistically aggressive (and unsafe) driver behavior and underestimate turning delays at intersections. One weakness of the CORSIM gap acceptance parameters is that they are static, meaning drivers will insist on an ideal minimum gap in traffic no matter how long they have been waiting. In reality, many drivers will consider shorter gaps as their wait time increases Overview of Software Packages Some background on each of the models is necessary to understand the differences in capabilities and performance. This review of the models was developed primarily from literature and manuals available from the developers of the packages CORSIM CORSIM is a comprehensive traffic simulation package developed to model surface streets, freeway systems, and combined networks having simple or complex control conditions. The strengths of the model lie in its ability to simulate a wide variety of traffic conditions from signalized arterial corridors and freeway corridors to stop controlled intersections. CORSIM is also one of the most well-documented simulation tools available, due in large part to the continued validation and updating that have occurred over nearly 30 years of use. Its simulation capabilities include: Arterial networks; Freeway and surface street interchanges; Pre-timed and actuated signals, coordination, and pre-emption; Freeway weaving sections, lane adds and lane drops; Stop and yield controlled intersections; Simulation of queue length, queue blockage, and spillback; Origin-destination traffic flow patterns and traffic assignment; Network animation (CORSIM, 2003). 9

18 The CORSIM traffic simulation model was originally developed for the Federal Highway Administration in the mid-1970s as two separate models: NETSIM for surface street networks and FRESIM for freeway networks. The two models have been united under CORSIM, which permits modeling of unified freeway/arterial networks SimTraffic Synchro/SimTraffic is a software package originally developed for modeling and optimizing traffic signal timings. Synchro provides a Windows-based, easy-to-use solution for single intersection capacity analysis and signal timing optimization. In addition to calculating capacity, Synchro can also optimize signal timings, eliminating the trial and error process for determining appropriate signal timings. All input data and parameters are entered in easy-to-use forms, a format that has made it an increasingly popular choice among traffic professionals. SimTraffic is a microscopic simulation package that uses the outputs of the Synchro program to model street networks. It was originally developed to model the arterial signal system timings developed in Synchro and provide the user with an animated view of how the system would function in the field. Since the original version shared the same graphical user interface with Synchro it allowed for relatively easy coding of street networks. The capabilities of SimTraffic were expanded in subsequent versions to model additional features such as freeways, ramps, and roundabouts. With these additions, SimTraffic has become a full-function simulation package, although with more limited features than either CORSIM or AIMSUN. The structure of SimTraffic is very similar to CORSIM. It is a link-node model that uses driver behavior and vehicle performance algorithms to simulate individual vehicle movements through a network. By design, SimTraffic uses many of the same driver behavior and vehicle performance parameters used in CORSIM. In many cases, vehicle lengths, acceleration rates, deceleration rates, cruising speeds, fuel consumption, and emissions factors are identical for both CORSIM and SimTraffic. Other parts of the model, such as reaction times and lane changing, use similar algorithms with slightly different default parameters. Perhaps the greatest difference between CORSIM and SimTraffic lies in the car-following algorithm. CORSIM tries to maintain a fixed headway between vehicles, one that varies based on driver type but averages around 1 second for all speeds and driving conditions. SimTraffic also attempts to maintain a fixed headway between vehicles, but those headways vary based on speed, driver type, and link geometry. In general, this leads to SimTraffic generating saturation flow rates (and therefore roadway capacities) lower than those found in CORSIM. What this means in practical terms is that for a given segment with fixed traffic volumes, CORSIM will tend to generate higher link capacities (and therefore less congestion) than SimTraffic. Another difference between the two models is that CORSIM updates vehicle position, speed, and other performance measures once every second. SimTraffic updates these data in 0.1 second time steps, yielding a finer degree of detail and potentially more accurate modeling of reaction times and vehicle movements. Since CORSIM only updates vehicle performance every second, 10

19 coding reaction times in fractions of a second is not possible. SimTraffic does not have this limitation AIMSUN AIMSUN (Advanced Interactive Micro-Simulation for Urban and Non-Urban Networks) is a full function microscopic simulation tool with a broad range of simulation capabilities. Like CORSIM and SimTraffic, it can simulate surface street networks, freeways, interchanges, weaving sections, pre-timed and actuated signals, stop controlled intersections, and roundabouts. It also has features not contained in either CORSIM or SimTraffic, such as full trip distribution capabilities, dynamic traffic assignment, real-time vehicle guidance, and 3-D animations. AIMSUN is used in conjunction with the traffic network graphical editor (TEDI) and is part of the Generic Environment for Traffic Analysis and Modeling (GETRAM) open simulation environment. The basic structure of AIMSUN is similar to both CORSIM and SimTraffic. Vehicles enter the network at entry points and their movements through the network are determined by car following, lane changing, and gap acceptance algorithms. Each vehicle is assigned a set of vehicle and driver attributes which are used by these algorithms to model vehicle movement. These algorithms differ slightly from CORSIM and SimTraffic, with key differences discussed below. Vehicle attributes such as length, width, maximum speed, and normal and maximum acceleration are assigned when a vehicle enters the network. Users can select from a wide variety of vehicle types, and within each type there will be some variation in these parameters based on statistical distributions. This differs from CORSIM, which uses discrete attributes for each vehicle type, in that there is a greater variation of performance characteristics within the vehicle stream. The same is true for driver characteristics such as desired minimum headways and speed acceptance (obedience to the speed limit). Whereas CORSIM has 10 discrete driver types, AIMSUN simply establishes mean driver performance values and varies driver behavior for each vehicle about the mean (within specified minimum and maximum values). Turning speeds also vary by driver, whereas they are fixed for all driver types in CORSIM and based on roadway geometry in SimTraffic. The result is again greater variation of driver characteristics within the vehicle stream. The gap acceptance algorithms are again similar to CORSIM but with one key difference. CORSIM has fixed gap acceptance values, based on driver type, that are maintained throughout the duration of a turning maneuver. This does not necessarily reflect how drivers behave in real life. In fact, after some period of waiting for an acceptable gap, most drivers will begin to accept shorter and shorter gaps as their wait time increases. AIMSUN attempts to replicate this behavior with initial gap values that decrease after a specified wait time. AIMSUN can function as either a stochastic model, where vehicles travel through the network based on turn probabilities, or a traffic assignment model using O/D tables. It is also capable of dynamic traffic assignment, where optimum vehicle paths between centroids are computed at the 11

20 beginning of the simulation and then updated based on feedback from the network. Thus, route choice is based on actual traffic conditions and may vary at different points in the simulation. This is more advanced than either SimTraffic, which is purely stochastic, or CORSIM, which offers only limited O/D capabilities. The current version of CORSIM does not permit O/D trip assignment on combined freeway and surface networks (FRESIM and NETSIM). CORSIM s trip assignment is also static throughout the simulation. Finally, AIMSUN can simulate the effects of ITS systems, providing active vehicle guidance (either variable message signs or in-vehicle systems) to modify route choice during a simulated incident. Its diversion algorithms are more complex than those found in CORSIM, which limit the impacts of VMS to the next interchange. Lane changing algorithms are similar in principle to both CORSIM and SimTraffic, with drivers executing discretionary, positioning, and mandatory lane changes. AIMSUN s look ahead distance for lane changes is essentially 2 links (or segments ), similar to that for CORSIM and one less than that of Synchro. It has been found that AIMSUN is sensitive to lane changing parameters just like CORSIM and SimTraffic. Overall, AIMSUN is the most sophisticated of the three models, providing advanced features not found in either CORSIM or SimTraffic. The dynamic traffic assignment and ITS features would likely prove useful for larger regional networks Summary of Packages A detailed comparison of the three packages is presented in the following sections. The purpose of the comparison is to highlight the different as well as common capabilities and features among the packages. No attempt is made to rank the packages. A brief comparison of the features for all three models is provided in Table 3-1. A summary of default values assumed in each model for key parameters is shown in Table 3-2 and Table 3-3 shows how the MOEs are determined in each package. The variation in computational methods described in Table 3-3 and the default parameters shown in Table 3-2 can lead to significant differences in how each model simulates a given set of traffic conditions. Table 3-4 provides a comparison of how each package relates to other transportation software. 12

21 Table 3-1. Summary of general software capabilities. Feature/Capability CORSIM SimTraffic GETRAM Network Surface Streets Freeways HOV Lanes Two-way left turn lanes Control Unsignalized Intersections Actuated Signals All-Way Stop Coordination Roundabouts Ramp Metering Signal Priority Operations Weaving Sections U-turns Transit Operations Pedestrians Parking Other Incidents Spillback Time Varying Demand O/D Assignment Dynamic Traffic Assignment Variable Message Signs Detection/Surveillance 2-D Animation 3-D Animation Signal Optimization Legend: = full capability, = partial capability, [blank] = no capability Table 3-2. Comparison of default parameters CORSIM SimTraffic AIMSUN Vehicle Length Car = 19.5 ft (with spacing) Car = 19.5 ft (with spacing) Car = 16.5 ft (with spacing) Max. Acceleration Rate Car = 10 fps 2 (at 0 mph) Car = 10 fps 2 (at 0 mph) Car = 9.91 fps 2 Vehicle Headways Deceleration Rates (Car) Gap Times 1.0 sec, with variance by driver type (all speeds) 15 fps 2 (emergency) 8 fps 2 (typical) 4 fps 2 (turns) Main Right = s Main Left = s Cross Left = s Cross Thru = s Cross Right = s 0.5 s at 0 mph 1.3 s at 30 mph 1.5 s at 50 mph, with variance by driver type 12 fps 2 (emergency) 7-12 fps 2 (typical) 4 fps 2 (turns) Main Right = 3.0 s Main Left = 3.6 s Cross Left = 3.9 s Cross Thru = 3.4 s Cross Right = 2.9 s * vary according to turn length. Net gaps average s. NA fps 2 (emergency) fps 2 (typical) NA (turns) Main Right = 3.0 s Main Left = 3.6 s Cross Left = 3.9 s Cross Thru = 3.4 s Cross Right = 2.9 s Driver Types 10 discrete types 10 discrete types Probabilistic Queue Discharge Mean Headway = 1.8 s Reaction Time = s Reaction Time = 1.0 s Mean Lost Time = 2.0 s Free Flow Speeds x coded speed x coded speed 1.0 x coded speed (car), but can be modified by user. Turn Speeds Left = 22 fps ( 15 mph) Right = 13 fps ( 9 mph) Left = 22 fps ( 15 mph) Right = 13 fps ( 9 mph) Calculated based on geometry (range: 12 fps to free flow speed) 13

Massachusetts Department of Transportation, Highway Division Ten Park Plaza, Boston, MA 02116-3973. A Guide on Traffic Analysis Tools

Massachusetts Department of Transportation, Highway Division Ten Park Plaza, Boston, MA 02116-3973. A Guide on Traffic Analysis Tools Massachusetts Department of Transportation, Highway Division Ten Park Plaza, Boston, MA 02116-3973 A Guide on Traffic Tools Revised October 5, 2012 1. PURPOSE The Massachusetts Department of Transportation,

More information

CAPACITY AND LEVEL-OF-SERVICE CONCEPTS

CAPACITY AND LEVEL-OF-SERVICE CONCEPTS CHAPTER 2 CAPACITY AND LEVEL-OF-SERVICE CONCEPTS CONTENTS I. INTRODUCTION...2-1 II. CAPACITY...2-2 III. DEMAND...2-2 IV. QUALITY AND LEVELS OF SERVICE...2-2 Service Flow Rates...2-3 Performance Measures...2-3

More information

Simulating Traffic for Incident Management and ITS Investment Decisions

Simulating Traffic for Incident Management and ITS Investment Decisions 1998 TRANSPORTATION CONFERENCE PROCEEDINGS 7 Simulating Traffic for Incident Management and ITS Investment Decisions MICHAEL D. ANDERSON AND REGINALD R. SOULEYRETTE UTPS-type models were designed to adequately

More information

Traffic. Analysis. Traffic Operations Analysis Tool Guidebook Version 1.1. Traffic Engineering Division

Traffic. Analysis. Traffic Operations Analysis Tool Guidebook Version 1.1. Traffic Engineering Division Traffic Analysis Traffic Engineering Division August 2013 Traffic Operations Analysis Tool Guidebook Copyright 2013 by the Virginia Department of Transportation All rights reserved VDOT Traffic Engineering

More information

Current Use of Traffic Simulation and Dynamic Traffic Assignment (DTA) Models by MPOs. November 16, 2007

Current Use of Traffic Simulation and Dynamic Traffic Assignment (DTA) Models by MPOs. November 16, 2007 Metropolitan Washington Council of Governments National Capital Region Transportation Planning Board Current Use of Traffic Simulation and Dynamic Traffic Assignment (DTA) Models by MPOs November 16, 2007

More information

PROGRAM FOR ARTERIAL SYSTEM SYNCHRONIZATION (PASS) STANDARD SCOPE OF WORK, SCHEDULE AND BUDGET

PROGRAM FOR ARTERIAL SYSTEM SYNCHRONIZATION (PASS) STANDARD SCOPE OF WORK, SCHEDULE AND BUDGET PROGRAM FOR ARTERIAL SYSTEM SYNCHRONIZATION (PASS) STANDARD SCOPE OF WORK, SCHEDULE AND BUDGET The purpose of the Program for Arterial System Synchronization (PASS) is to provide technical and financial

More information

Microscopic Simulation of Traffic at a Suburban Interchange

Microscopic Simulation of Traffic at a Suburban Interchange Microscopic Simulation of Traffic at a Suburban Interchange Roger V. Lindgren and Sutti Tantiyanugulchai Abstract Recent advances in computer hardware and software technology have led to the increased

More information

Traffic Simulation Modeling: VISSIM. Koh S.Y Doina 1 and Chin H.C 2

Traffic Simulation Modeling: VISSIM. Koh S.Y Doina 1 and Chin H.C 2 Traffic Simulation Modeling: VISSIM Koh S.Y Doina 1 and Chin H.C 2 Faculty of Engineering, Civil Engineering Department, National University of Singapore ABSTRACT This Undergraduate Research Opportunity

More information

SIMULATION AND EVALUATION OF THE ORLANDO- ORANGE COUNTY EXPRESSWAY AUTHORITY (OOCEA) ELECTRONIC TOLL COLLECTION PLAZAS USING TPSIM, PHASE II

SIMULATION AND EVALUATION OF THE ORLANDO- ORANGE COUNTY EXPRESSWAY AUTHORITY (OOCEA) ELECTRONIC TOLL COLLECTION PLAZAS USING TPSIM, PHASE II Final Report SIMULATION AND EVALUATION OF THE ORLANDO- ORANGE COUNTY EXPRESSWAY AUTHORITY (OOCEA) ELECTRONIC TOLL COLLECTION PLAZAS USING TPSIM, PHASE II University of Central Florida Account No.: 494-16-21-722

More information

A Review of Traffic Simulation Software

A Review of Traffic Simulation Software Res. Lett. Inf. Math. Sci., 2009, Vol. 13, pp. 35 54 Available online at http://iims.massey.ac.nz/research/letters/ 35 A Review of Traffic Simulation Software G. Kotusevski and K.A. Hawick Computer Science

More information

Two-Way Street Networks: More Efficient than Previously Thought?

Two-Way Street Networks: More Efficient than Previously Thought? Two-Way Street Networks: More Efficient than Previously Thought? V I K A S H V. G A Y A H N E - WAY S T R E E T S I N D W N T W N A R E A S A R E R E C E I V I N G A critical look. City officials and urban

More information

TRANSPORTATION RESEARCH. Traffic Analysis Software Tools

TRANSPORTATION RESEARCH. Traffic Analysis Software Tools TRANSPORTATION RESEARCH CIRCULAR Number E-CO14 September 2000 Traffic Analysis Software Tools TRANSPORTATION RESEARCH BOARD / NATIONAL RESEARCH COUNCIL FOREWORD This Transportation Research Circular is

More information

Goals & Objectives. Chapter 9. Transportation

Goals & Objectives. Chapter 9. Transportation Goals & Objectives Chapter 9 Transportation Transportation MISSION STATEMENT: TO PROVIDE A TRANSPORTATION NETWORK CAPABLE OF MOVING PEOPLE AND GOODS EFFICIENTLY AND SAFELY. T he transportation system

More information

Author: Hamid A.E. Al-Jameel (Research Institute: Engineering Research Centre)

Author: Hamid A.E. Al-Jameel (Research Institute: Engineering Research Centre) SPARC 2010 Evaluation of Car-following Models Using Field Data Author: Hamid A.E. Al-Jameel (Research Institute: Engineering Research Centre) Abstract Traffic congestion problems have been recognised as

More information

Section 6 Traffic Analysis

Section 6 Traffic Analysis Section 6 Traffic Analysis Traffic Operations of the Preferred Network Alternative After the Preferred Network was identified and confirmed by local policy makers and area residents, detailed traffic analysis

More information

Transportation Education Series: Travel Demand Modeling. David Reinke November 2012

Transportation Education Series: Travel Demand Modeling. David Reinke November 2012 Transportation Education Series: Travel Demand Modeling David Reinke November 2012 Presentation overview What are travel demand models? Why use them? How do they work? What goes into building them? What

More information

California Department of Transportation. Guidelines for Applying Traffic Microsimulation Modeling Software

California Department of Transportation. Guidelines for Applying Traffic Microsimulation Modeling Software California Department of Transportation Guidelines for Applying Traffic Microsimulation Modeling Software 3.8 3.2 3.8 3.5 3.1 2.1 Mean Headway 0 Default 1.3 Optimal Headway 1.6 1 2.8 2 3.2 3 3.4 Contours

More information

88.1 Traffic Signals at Roundabouts 213

88.1 Traffic Signals at Roundabouts 213 System Considerations 88.1 Traffic Signals at Roundabouts 213 8.1.1 Metered entrance 214 8.1.2 Nearby vehicular and pedestrian signals 214 8.1.3 Full signalization of the circulatory roadway 215 8.2 At-Grade

More information

A Short Course on Techniques for Determining Construction Related Road User Costs

A Short Course on Techniques for Determining Construction Related Road User Costs TEXAS TRANSPORTATION INSTITUTE A Short Course on Techniques for Determining Construction Related Road User Costs prepared by TEXAS TRANSPORTATION INSTITUTE THE TEXAS A&M UNIVERSITY SYSTEM 701 NORTH POST

More information

FHWA Minnesota Division Guidance for the Preparation of a FHWA INTERSTATE ACCESS REQUEST

FHWA Minnesota Division Guidance for the Preparation of a FHWA INTERSTATE ACCESS REQUEST FHWA Minnesota Division Guidance for the Preparation of a FHWA INTERSTATE ACCESS REQUEST August 2003 Background: The Federal Highway Administration (FHWA) has retained all approval rights to the control

More information

FHWA Colorado Division Control of Access to the Interstate and its Right-of-Way February 2005

FHWA Colorado Division Control of Access to the Interstate and its Right-of-Way February 2005 FHWA Colorado Division Control of Access to the Interstate and its Right-of-Way February 2005 Background: It is in the national interest to maintain the Interstate System to provide the highest level of

More information

Intersection Cost Comparison Spreadsheet User Manual ROUNDABOUT GUIDANCE VIRGINIA DEPARTMENT OF TRANSPORTATION

Intersection Cost Comparison Spreadsheet User Manual ROUNDABOUT GUIDANCE VIRGINIA DEPARTMENT OF TRANSPORTATION Intersection Cost Comparison Spreadsheet User Manual ROUNDABOUT GUIDANCE VIRGINIA DEPARTMENT OF TRANSPORTATION Version 2.5 i Virginia Department of Transportation Intersection Cost Comparison Spreadsheet

More information

THE BENEFITS OF SIGNAL GROUP ORIENTED CONTROL

THE BENEFITS OF SIGNAL GROUP ORIENTED CONTROL THE BENEFITS OF SIGNAL GROUP ORIENTED CONTROL Authors: Robbin Blokpoel 1 and Siebe Turksma 2 1: Traffic Engineering Researcher at Peek Traffic, robbin.blokpoel@peektraffic.nl 2: Product manager research

More information

3. DESCRIPTION OF THE COMPUTER MODEL USED

3. DESCRIPTION OF THE COMPUTER MODEL USED EVALUATION OF IMPROVEMENTS IN ROAD INFRASTRUCTURE, TRAFFIC OPERATION AND ACCESSIBILITY FOR PEDESTRIANS TO THE FORTALEZA CITY STADIUM, DURING THE FIFA WORLD CUP 2014, USING MICROSIMULATION. Daniel Lustosa

More information

PRIORITIZATION PROCESSES

PRIORITIZATION PROCESSES PROJECT SELECTION & PRIORITIZATION PROCESSES STIP Workshop Presented by: Bill Lawrence April 2011 Purpose and Review Overview of Project Selection Process Review Various Prioritization Processes Tk Take

More information

The Use of GPS and GIS to Analyze Access Near Intersections

The Use of GPS and GIS to Analyze Access Near Intersections Huffman 1 The Use of GPS and GIS to Analyze Access Near Intersections Presented to the Urban Street Symposium July 28 th 30 th, 2003 Anaheim, CA Chris Huffman, P.E. Corridor Management Administrator Kansas

More information

Transportation Policy and Design Strategies. Freight Intensive. Level of Freight Presence

Transportation Policy and Design Strategies. Freight Intensive. Level of Freight Presence Appendix G Transportation Policy and Design Strategies CONTEXT SENSITIVE SOLUTIONS To address the need to describe freight systems which account for the population distress which may result, an analysis

More information

The Use of ITS for Improving Bus Priority at Traffic Signals

The Use of ITS for Improving Bus Priority at Traffic Signals The Use of ITS for Improving Bus Priority at Traffic Signals Camilla Morellato M.Sc. Student Department of Transport, Technical University of Denmark Mathias Sdun Projects and Infrastructure Movia Traffic

More information

These "rules of the road" are based on Texas Transportation Code statutes. Find the complete bicycle code at the bottom of the page

These rules of the road are based on Texas Transportation Code statutes. Find the complete bicycle code at the bottom of the page Texas Bicycle Laws These "rules of the road" are based on Texas Transportation Code statutes. Find the complete bicycle code at the bottom of the page Bicyclists have the rights and duties of other vehicle

More information

TRACKING DRIVER EYE MOVEMENTS AT PERMISSIVE LEFT-TURNS

TRACKING DRIVER EYE MOVEMENTS AT PERMISSIVE LEFT-TURNS TRACKING DRIVER EYE MOVEMENTS AT PERMISSIVE LEFT-TURNS Michael A. Knodler Jr. Department of Civil & Environmental Engineering University of Massachusetts Amherst Amherst, Massachusetts, USA E-mail: mknodler@ecs.umass.edu

More information

2013 QUALITY/ LEVEL OF SERVICE HANDBOOK

2013 QUALITY/ LEVEL OF SERVICE HANDBOOK 2013 QUALITY/ LEVEL OF SERVICE HANDBOOK STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION 2013 TABLE OF CONTENTS 1 Executive Summary... 1 2 Q/LOS Handbook Purpose and Scope... 3 2.1. Levels of Analysis...4

More information

MEMORANDUM. Robert Nichols, Acting Corridor Design Manager Northgate Link Extension

MEMORANDUM. Robert Nichols, Acting Corridor Design Manager Northgate Link Extension MEMORANDUM DATE: September 23, 2014 TO: Robert Nichols, Acting Corridor Design Manager Northgate Link Extension FROM: SUBJECT: COPIES: Katherine Casseday, PE, PTOE, Casseday Consulting Tony Lo, PE, Parsons

More information

TECHNIQUES FOR MANUALLY ESTIMATING ROAD USER COSTS ASSOCIATED WITH CONSTRUCTION PROJECTS

TECHNIQUES FOR MANUALLY ESTIMATING ROAD USER COSTS ASSOCIATED WITH CONSTRUCTION PROJECTS TECHNIQUES FOR MANUALLY ESTIMATING ROAD USER COSTS ASSOCIATED WITH CONSTRUCTION PROJECTS by Ginger Daniels, P.E. Associate Research Engineer Texas Transportation Institute David R. Ellis, Ph.D. Associate

More information

Integrated Data System Structure for Active Traffic Management - Planning and Operation

Integrated Data System Structure for Active Traffic Management - Planning and Operation Integrated Data System Structure for Active Traffic Management - Planning and Operation NATMEC 2010 Dr. Xiao-Yun Lu, Research Engineer California PATH, U. C. Berkeley J. Palen, Caltrans DRI 1 Outlines

More information

Development of a Traffic Management Center- Intelligent Transportation Systems Lab

Development of a Traffic Management Center- Intelligent Transportation Systems Lab Development of a Traffic Management Center- Intelligent Transportation Systems Lab By Daniel S. Turner Professor of Civil Engineering and Director of UTCA Department of Civil and Environmental Engineering

More information

How To Design A Crash Investigation Site

How To Design A Crash Investigation Site CHAPTER 7 CRASH INVESTIGATION SITES December, 2000 7. Crash Investigation Sites (CIS) 7.1. Introduction and Usage The idea of "crash investigation sites" or areas outside of the freeway mainline where

More information

Transit Pass-Through Lanes at Freeway Interchanges: A Life-Cycle Evaluation Methodology

Transit Pass-Through Lanes at Freeway Interchanges: A Life-Cycle Evaluation Methodology Transit Pass-Through Lanes at Freeway Interchanges: A Life-Cycle Evaluation Methodology Michael Mandelzys and Bruce Hellinga University of Waterloo Abstract Transit pass-through lanes provide transit vehicle

More information

Highway Capacity and Quality of Service

Highway Capacity and Quality of Service A3A10: Committee on Highway Capacity and Quality of Service Secretary: Richard G. Dowling, Dowling Associates Highway Capacity and Quality of Service WAYNE K. KITTELSON, Kittelson & Associates, Inc. This

More information

Chapter Forty-seven. RURAL TWO-LANE/MULTILANE STATE HIGHWAYS (New Construction/Reconstruction) BUREAU OF DESIGN AND ENVIRONMENT MANUAL

Chapter Forty-seven. RURAL TWO-LANE/MULTILANE STATE HIGHWAYS (New Construction/Reconstruction) BUREAU OF DESIGN AND ENVIRONMENT MANUAL Chapter Forty-seven RURAL TWO-LANE/MULTILANE STATE HIGHWAYS (New Construction/Reconstruction) BUREAU OF DESIGN AND ENVIRONMENT MANUAL Illinois RURAL TWO-LANE/MULTILANE STATE HIGHWAYS December 2009 2 Illinois

More information

Guidelines for the Preparation of Transportation Impact Studies 8 th Revision

Guidelines for the Preparation of Transportation Impact Studies 8 th Revision Guidelines for the Preparation of Transportation Impact Studies 8 th Revision Halifax Regional Municipality Traffic and Right of Way Transportation and Public Works P.O. Box 1749 Halifax, Nova Scotia B3J

More information

The Economic Cost of Traffic Congestion in Florida. Final Document Contract FDOT BDK75 977-19 (UF # 00072256)

The Economic Cost of Traffic Congestion in Florida. Final Document Contract FDOT BDK75 977-19 (UF # 00072256) August 2010 The Economic Cost of Traffic Congestion in Florida Final Document Contract FDOT BDK75 977-19 (UF # 00072256) Prepared for: Florida Department of Transportation Project Manager J. Darryll Dockstader

More information

A Case for Real-Time Monitoring of Vehicular Operations at Signalized Intersections

A Case for Real-Time Monitoring of Vehicular Operations at Signalized Intersections White Paper A Case for Real-Time Monitoring of Vehicular Operations at Signalized Intersections 10 1 0 1 0 TRAFINFO.COM TrafInfo Communications, Inc. 556 Lowell Street Lexington, MA 02420 www.trafinfo.com

More information

Bicycle Safety Enforcement Action Guidelines

Bicycle Safety Enforcement Action Guidelines Introduction Bicycle Safety Enforcement Action Guidelines People ride bicycles for many different reasons: fitness, recreation, or for transportation. Regardless of the reason for riding, bicyclists young

More information

Walkable Communities Florida Department of Transportation State Safety Office Pedestrian and Bicycle Program April 1995 www.dot.state.fl.us/safety Twelve Steps for an Effective Program Page 1 Twelve Steps

More information

Access Management Manual

Access Management Manual Access Management Manual July 2011 2011 by Texas Department of Transportation (512) 302-2453 all rights reserved Manual Notice 2011-1 From: Manual: Mark A Marek, P.E. Access Management Manual Effective

More information

7.0 Transportation Management

7.0 Transportation Management 7.0 Transportation Management I. Introduction The Kansas City region has invested considerable effort and resources in the design and implementation of its regional multimodal transportation system. As

More information

7.2 Warrants and Planning Considerations

7.2 Warrants and Planning Considerations Chapter 7 Interchanges 7.1 Introduction As discussed in Chapter 6, it is important that designers consider the needs and activities of the pedestrians, cyclists, and motorists to comprehensively plan for

More information

Advantages and Disadvantages of One Way Streets October 30, 2007

Advantages and Disadvantages of One Way Streets October 30, 2007 Advantages and Disadvantages of One Way Streets October 30, 2007 0 P age Background As the revitalization of the Central Waterfront area moves forward, one issue that might need closer analysis is the

More information

0.0 Curb Radii Guidelines Version 1.0.2

0.0 Curb Radii Guidelines Version 1.0.2 Background In early 2014, Transportation Services initiated a review of the Division's design guidelines and standards to move our organization in a direction consistent with the transportation departments

More information

analysis needs be met at the push of a button?

analysis needs be met at the push of a button? can all of your traffic analysis needs be met at the push of a button? A SOLUTION FOR ALL TRAFFIC ANALYSIS NEEDS How do you conduct traffic studies, evaluate new development impacts, and time your signals

More information

Traffic Signal Priority (TSP) and Automatic Vehicle Tracking System (AVTS) For Calgary Transit Buses

Traffic Signal Priority (TSP) and Automatic Vehicle Tracking System (AVTS) For Calgary Transit Buses Traffic Signal Priority (TSP) and Automatic Vehicle Tracking System (AVTS) For Calgary Transit Buses (Project #2001-06) Calgary Transit Transit Planning 2004 July Introduction The purpose of this report

More information

TABLE OF CONTENTS. 1 Overview... 1-1. 1.1 Introduction... 1-1 1.2 Timing Goals... 1-1 Review of Signal Timing... 1-1

TABLE OF CONTENTS. 1 Overview... 1-1. 1.1 Introduction... 1-1 1.2 Timing Goals... 1-1 Review of Signal Timing... 1-1 May 2013 MnDOT Traffic Signal Timing and Coordination Manual TABLE OF CONTENTS 1 Overview... 1-1 1.1 Introduction... 1-1 1.2 Timing Goals... 1-1 Review of Signal Timing... 1-1 2 Data Collection and Information

More information

Roads Task Force - Technical Note 10 What is the capacity of the road network for private motorised traffic and how has this changed over time?

Roads Task Force - Technical Note 10 What is the capacity of the road network for private motorised traffic and how has this changed over time? Roads Task Force - Technical Note 10 What is the capacity of the road network for private motorised traffic and how has this changed over time? Introduction This paper forms one of a series of thematic

More information

Capacity and Level of Service

Capacity and Level of Service CHAPTER 10 Capacity and Level of Service Determination of the capacities of transportation systems and facilities is a major issue in the analysis of transportation flow. The capacity of a transportation

More information

TRAFFIC IMPACT ANALYSIS (TIA)

TRAFFIC IMPACT ANALYSIS (TIA) GUIDELINES FOR TRAFFIC IMPACT ANALYSIS (TIA) FOR REZONING APPLICATIONS AND OTHER DEVELOPMENT APPROVALS REQUIRING TRANSPORTATION IMPACT ANALYSIS IN SUMTER COUNTY, FLORIDA July 17, 2007 PURPOSE AND APPLICABILITY

More information

Highway Maintenance Scheduling Using Genetic Algorithm with Microscopic Traffic Simulation

Highway Maintenance Scheduling Using Genetic Algorithm with Microscopic Traffic Simulation Wang, Cheu and Fwa 1 Word Count: 6955 Highway Maintenance Scheduling Using Genetic Algorithm with Microscopic Traffic Simulation Ying Wang Research Scholar Department of Civil Engineering National University

More information

ENGINEERING REPORT. College Street: Interstate 85 to Donahue Drive Traffic Signal System Feasibility Study Auburn, Alabama

ENGINEERING REPORT. College Street: Interstate 85 to Donahue Drive Traffic Signal System Feasibility Study Auburn, Alabama ENGINEERING REPORT College Street: Interstate 85 to Donahue Drive Traffic Signal System Feasibility Study Auburn, Alabama Prepared for: The City of Auburn Prepared by: 3644 Vann Road Suite 100 Birmingham,

More information

9988 REDWOOD AVENUE PROJECT TRAFFIC IMPACT ANALYSIS. April 24, 2015

9988 REDWOOD AVENUE PROJECT TRAFFIC IMPACT ANALYSIS. April 24, 2015 9988 REDWOOD AVENUE PROJECT TRAFFIC IMPACT ANALYSIS April 24, 2015 Kunzman Associates, Inc. 9988 REDWOOD AVENUE PROJECT TRAFFIC IMPACT ANALYSIS April 24, 2015 Prepared by: Bryan Crawford Carl Ballard,

More information

BEFORE-AND-AFTER STUDY OF THE EFFECTIVENESS OF RECTANGULAR RAPID-FLASHING BEACONS USED WITH SCHOOL SIGN IN GARLAND, TEXAS

BEFORE-AND-AFTER STUDY OF THE EFFECTIVENESS OF RECTANGULAR RAPID-FLASHING BEACONS USED WITH SCHOOL SIGN IN GARLAND, TEXAS BEFORE-AND-AFTER STUDY OF THE EFFECTIVENESS OF RECTANGULAR RAPID-FLASHING BEACONS USED WITH SCHOOL SIGN IN GARLAND, TEXAS Marcus A. Brewer (corresponding author) Associate Research Engineer Texas Transportation

More information

SAN DIEGO - A BICYCLE FRIENDLY CITY

SAN DIEGO - A BICYCLE FRIENDLY CITY SAN DIEGO - A BICYCLE FRIENDLY CITY MANY OPPORTUNITIES FOR IMPROVEMENT SUMMARY The designated bicycle paths and lanes in the City of San Diego (City) are often substandard because of their location and

More information

CHAPTERTWO. Alternatives 2.1 ALTERNATIVES DEVELOPMENT PROCESS

CHAPTERTWO. Alternatives 2.1 ALTERNATIVES DEVELOPMENT PROCESS 2. Section 2 TWO CHAPTERTWO 2.1 ALTERNATIVES DEVELOPMENT PROCESS This EIS has been prepared in compliance with the Council on Environmental Quality (CEQ) regulations for implementing NEPA (40 CFR 1500-1508).

More information

Comment #1: Provide an interchange at Route 7 and Farm Market Road/White Gate Road. This was studied in the late 1990 s.

Comment #1: Provide an interchange at Route 7 and Farm Market Road/White Gate Road. This was studied in the late 1990 s. Proposed Truck Climbing Lane Route 7 Westbound Between West Market Street and Route 9 UPC# 58599, Project # 6007-053-133, P101 Date of Meeting: August 24, 2010 Time: 6:00PM to 8:00PM Location: Rust Library

More information

Traffic Analysis Handbook

Traffic Analysis Handbook CORSIM Traffic Analysis Handbook A Reference for Planning and Operations Systems Planning Office 2014 F L O R I D A D E P A R T M E N T O F T R A N S P O R T A T I O N TRAFFIC ANALYSIS HANDBOOK Florida

More information

The partnership has selected three intersections where enforcement, education, and engineering initiatives are being implemented to improve safety:

The partnership has selected three intersections where enforcement, education, and engineering initiatives are being implemented to improve safety: Hamilton-Finn Suite 310 Tel. (403) 207-6000 Road Safety 3016 5th Avenue N.E. Fax. (403) 273-3440 Consultants Ltd. Calgary, Alberta dawatt.dawatt.com www.hamiltonfinn.ca January 19, 2005 Mr. Don Szarko,

More information

SIGHT DISTANCE. Presented by Nazir Lalani P.E. Traffex Engineers Inc. N_lalani@hotmail.com WHY IS SIGHT DISTANCE SO IMPORTANT?

SIGHT DISTANCE. Presented by Nazir Lalani P.E. Traffex Engineers Inc. N_lalani@hotmail.com WHY IS SIGHT DISTANCE SO IMPORTANT? SIGHT DISTANCE Presented by Nazir Lalani P.E. Traffex Engineers Inc. N_lalani@hotmail.com WHY IS SIGHT DISTANCE SO IMPORTANT? Drivers must be able to: Stop for objects in the roadway Stop for stationary

More information

FINAL REPORT DEVELOPMENT OF CONGESTION PERFORMANCE MEASURES USING ITS INFORMATION. Sarah B. Medley Graduate Research Assistant

FINAL REPORT DEVELOPMENT OF CONGESTION PERFORMANCE MEASURES USING ITS INFORMATION. Sarah B. Medley Graduate Research Assistant FINAL REPORT DEVELOPMENT OF CONGESTION PERFORMANCE MEASURES USING ITS INFORMATION Sarah B. Medley Graduate Research Assistant Michael J. Demetsky, Ph.D., P.E. Faculty Research Scientist and Professor of

More information

Areas of expertise in transportation engineering at UAB include:

Areas of expertise in transportation engineering at UAB include: UAB Transportation Research Updated August 2012 UAB Transportation ti Research Areas Areas of expertise in transportation engineering at UAB include: Incident and emergency management Congestion management

More information

Route Optimisation / Traffic Signals Efficiency

Route Optimisation / Traffic Signals Efficiency Route Optimisation / Traffic Signals Efficiency Glossary Auckland Council Advanced Real-time Traffic Information System Auckland Transport Closed Circuit Television (Traffic cameras) Full Time Equivalent

More information

14-97. 14-97.002 Definitions. For the purposes of this rule chapter the following definitions shall apply unless the context clearly shows otherwise:

14-97. 14-97.002 Definitions. For the purposes of this rule chapter the following definitions shall apply unless the context clearly shows otherwise: 14-97 14-97.001 Purpose. This rule chapter sets forth an access control classification system and access management standards to implement the State Highway System Access Management Act of 1988. The implementation

More information

How To Improve Safety

How To Improve Safety Collision Diagrams Collision diagrams are used to display and identify similar accident patterns. They provide information on the type and number of accidents; including conditions such as time of day,

More information

Appendix E Traffic Impact Analysis

Appendix E Traffic Impact Analysis Appendix E Traffic Impact Analysis 2010 Facility Master Plan Factoria Recycling and Transfer Station November 2010 2010 Facility Master Plan Factoria Recycling and Transfer Station November 2010 Department

More information

A SPECIAL APPLICATION OF A VIDEO-IMAGE SYSTEM FOR VEHICLE TRACKING AND SPEED MEASUREMENT

A SPECIAL APPLICATION OF A VIDEO-IMAGE SYSTEM FOR VEHICLE TRACKING AND SPEED MEASUREMENT A SPECIAL APPLICATION OF A VIDEO-IMAGE SYSTEM FOR VEHICLE TRACKING AND SPEED MEASUREMENT Zong Tian (Corresponding Author) Texas Transportation Institute The Texas A&M University System College Station,

More information

Delineation. Section 4 Longitudinal markings

Delineation. Section 4 Longitudinal markings Delineation Section 4 Longitudinal markings The delineation guidelines have been developed to assist in designing and maintaining a quality delineation system. The guidelines are to comprise 19 sections

More information

INTELLIGENT TRANSPORTATION SYSTEMS IN WHATCOM COUNTY A REGIONAL GUIDE TO ITS TECHNOLOGY

INTELLIGENT TRANSPORTATION SYSTEMS IN WHATCOM COUNTY A REGIONAL GUIDE TO ITS TECHNOLOGY INTELLIGENT TRANSPORTATION SYSTEMS IN WHATCOM COUNTY A REGIONAL GUIDE TO ITS TECHNOLOGY AN INTRODUCTION PREPARED BY THE WHATCOM COUNCIL OF GOVERNMENTS JULY, 2004 Whatcom Council of Governments 314 E. Champion

More information

Back to School Car Safety. Direct Buy Warranty Staff September 19, 2014

Back to School Car Safety. Direct Buy Warranty Staff September 19, 2014 Back to School Car Safety Direct Buy Warranty Staff September 19, 2014 It s back to school season, and that means kids are picking out new clothes, putting on their backpacks, and hitting the road to get

More information

Word Count: Body Text = 5,500 + 2,000 (4 Figures, 4 Tables) = 7,500 words

Word Count: Body Text = 5,500 + 2,000 (4 Figures, 4 Tables) = 7,500 words PRIORITIZING ACCESS MANAGEMENT IMPLEMENTATION By: Grant G. Schultz, Ph.D., P.E., PTOE Assistant Professor Department of Civil & Environmental Engineering Brigham Young University 368 Clyde Building Provo,

More information

ENGINEERING SOLUTIONS FOR DESIGNING YOUR SAFE ROUTES

ENGINEERING SOLUTIONS FOR DESIGNING YOUR SAFE ROUTES How to Get Started ENGINEERING SOLUTIONS FOR DESIGNING YOUR SAFE ROUTES Design Elements Selecting appropriate design treatments for school neighborhoods creates environments that address the needs of all

More information

Alternatives to the Circ Project Prioritization Methodology Prepared for Circ Task Force July 28, 2011

Alternatives to the Circ Project Prioritization Methodology Prepared for Circ Task Force July 28, 2011 Alternatives to the Circ Project Prioritization Methodology Prepared for Circ Task Force July 28, 2011 CCRPC staff has developed a draft methodology described below and detailed in the attached pages for

More information

Transportation Management Plan Template

Transportation Management Plan Template DATE: TO: FROM: SUBJECT: Date Name Position Transportation Service Center Name Position Transportation Service Center Transportation Management Plan Job Number(s) Control Section(s) Route Details County

More information

Boston Traffic Management Center Activity Report for FY 2013 Real-time Traffic Signal Adjustments

Boston Traffic Management Center Activity Report for FY 2013 Real-time Traffic Signal Adjustments Boston Traffic Management Center Activity Report for FY 2013 Real-time Traffic Signal Adjustments The mission of the Traffic Management Center (TMC) within the Boston Transportation Department is to monitor,

More information

ITS Deployment Analysis System (IDAS) Version 2.2, developed by Cambridge Systematics under contract to the Federal Highway Administration, 2002.

ITS Deployment Analysis System (IDAS) Version 2.2, developed by Cambridge Systematics under contract to the Federal Highway Administration, 2002. Chapter 8: BENEFITS ANALYSIS 8.1 INTRODUCTION Historically, benefits associated with ITS have been reported based on results of previous ITS deployments either within the particular region or around the

More information

Chapter Thirty-five ACCESS CONTROL/ ACCESS MANAGEMENT BUREAU OF DESIGN AND ENVIRONMENT MANUAL

Chapter Thirty-five ACCESS CONTROL/ ACCESS MANAGEMENT BUREAU OF DESIGN AND ENVIRONMENT MANUAL Chapter Thirty-five ACCESS CONTROL/ ACCESS MANAGEMENT BUREAU OF DESIGN AND ENVIRONMENT MANUAL Chapter Thirty-five ACCESS CONTROL/ACCESS MANAGEMENT Table of Contents Section Page 35-1 GENERAL CONCEPTS...

More information

Disputed Red Light Accidents: A Primer on Signal Control. Jon B. Landerville, MSME, PE Edward C. Fatzinger, MSME, PE Philip S.

Disputed Red Light Accidents: A Primer on Signal Control. Jon B. Landerville, MSME, PE Edward C. Fatzinger, MSME, PE Philip S. Disputed Red Light Accidents: A Primer on Signal Control Jon B. Landerville, MSME, PE Edward C. Fatzinger, MSME, PE Philip S. Wang, MSME Intersection Accident Statistics Intersection accidents occur on

More information

POLARIS: Planning and Operations Language for Agentbased Regional Integrated Simulation

POLARIS: Planning and Operations Language for Agentbased Regional Integrated Simulation POLARIS: Planning and Operations Language for Agentbased Regional Integrated Simulation Dr. Kuilin Zhang klzhang@mtu.edu Department of Civil and Environmental Engineering Michigan Technological University

More information

Appendix 1 Washington State Department of Transportation (WSDOT)

Appendix 1 Washington State Department of Transportation (WSDOT) Appendix 1 Washington State Department of Transportation (WSDOT) Challenges Facing Washington State Freight Systems Across all modes and systems, freight shipments are growing, which reflects positive

More information

CHAPTER 2B. REGULATORY SIGNS

CHAPTER 2B. REGULATORY SIGNS December 2000 Page 2B-1 CHAPTER 2B. REGULATORY SIGNS Section 2B.01 Application of Regulatory Signs Regulatory signs shall be used to inform road users of selected traffic laws or regulations and indicate

More information

Development of a Dynamic Traffic Assignment and Simulation Model for Incident and Emergency Management Applications in the Birmingham Region

Development of a Dynamic Traffic Assignment and Simulation Model for Incident and Emergency Management Applications in the Birmingham Region 1 Development of a Dynamic Traffic Assignment and Simulation Model for Incident and Emergency Management Applications in the Birmingham Region Research Proposal Principal Investigators Virginia P. Sisiopiku,

More information

CHAPTER 13. Transportation Systems Management & Operations

CHAPTER 13. Transportation Systems Management & Operations CHAPTER 13 TABLE OF CONTENTS Overview / Summary... 1 Introduction... 2 System Management Strategies used in the ROCOG area... 2 Key Management Strategies / Access Management... 12 Implementation Directions

More information

Life-cycle Benefit-Cost Analysis of Alternatives for Accommodating Heavy Truck Traffic in the Las Vegas Roadway Network

Life-cycle Benefit-Cost Analysis of Alternatives for Accommodating Heavy Truck Traffic in the Las Vegas Roadway Network Life-cycle Benefit-Cost Analysis of Alternatives for Accommodating Heavy Truck Traffic in the Las Vegas Roadway Network Alexander Paz 1, Naveen Veeramisti 2, and Pankaj Maheshwari 3 1 Asssitant Professor,

More information

Traffic Signal Operations and Maintenance Staffing Guidelines

Traffic Signal Operations and Maintenance Staffing Guidelines Traffic Signal Operations and Maintenance Staffing Guidelines Prepared by: Dunn Engineering Associates, P.C. in cooperation with Kittelson and Associates, Inc. Prepared for: Federal Highway Administration

More information

APPLICATION LAFAYETTE METROPOLITAN PLANNING ORGANIZATION (MPO) SURFACE TRANSPORTATION PROGRAM (STP) FUNDS TRANSPORTATION IMPROVEMENT PROGRAM (TIP)

APPLICATION LAFAYETTE METROPOLITAN PLANNING ORGANIZATION (MPO) SURFACE TRANSPORTATION PROGRAM (STP) FUNDS TRANSPORTATION IMPROVEMENT PROGRAM (TIP) APPLICATION LAFAYETTE METROPOLITAN PLANNING ORGANIZATION (MPO) SURFACE TRANSPORTATION PROGRAM (STP) FUNDS TRANSPORTATION IMPROVEMENT PROGRAM (TIP) To be considered for STP funding, a proposed project must

More information

Modeling Cooperative Lane-changing and Forced Merging Behavior

Modeling Cooperative Lane-changing and Forced Merging Behavior Modeling Cooperative Lane-changing and Forced Merging Behavior Charisma Choudhury, Anita Rao, Gunwoo Lee Advisors: Moshe Ben-Akiva, Tomer Toledo ITS Program February 10, 2006 Outline Motivation Model structure

More information

GUIDELINES FOR DESIGNING AND IMPLEMENTING TRAFFIC CONTROL SYSTEMS FOR SMALL- AND MEDIUM-SIZED CITIES IN IDAHO

GUIDELINES FOR DESIGNING AND IMPLEMENTING TRAFFIC CONTROL SYSTEMS FOR SMALL- AND MEDIUM-SIZED CITIES IN IDAHO GUIDELINES FOR DESIGNING AND IMPLEMENTING TRAFFIC CONTROL SYSTEMS FOR SMALL- AND MEDIUM-SIZED CITIES IN IDAHO Final Report KLK257 ITD Contract SPR-0003(014) N06-18 Prepared for Idaho Department of Transportation

More information

APPENDIX A Dallas-Fort Worth Region Transportation System Management Strategies and Projects

APPENDIX A Dallas-Fort Worth Region Transportation System Management Strategies and Projects APPENDIX A Transportation System Management Strategies and Projects Transportation System Transportation System Management Projects Management Strategies Traffic Signalization and Control New Signal Installation

More information

DESIGN AND EVALUTION OF A NEW-GENERATION FUEL-EFFICIENCY SUPPORT TOOL. Mascha van der Voort and Martin van Maarseveen

DESIGN AND EVALUTION OF A NEW-GENERATION FUEL-EFFICIENCY SUPPORT TOOL. Mascha van der Voort and Martin van Maarseveen DESIGN AND EVALUTION OF A NEW-GENERATION FUEL-EFFICIENCY SUPPORT TOOL Mascha van der Voort and Martin van Maarseveen Department of Civil Engineering & Management University of Twente P.O. Box 217, 7500

More information

Chapter 4 DEFENSIVE DRIVING

Chapter 4 DEFENSIVE DRIVING Chapter 4 DEFENSIVE DRIVING Chapter 4 Table of Contents Chapter 4 DEFENSIVE DRIVING... 4-1 DEFENSIVE DRIVING... 4-3 Positioning The Bus... 4-3 When Making a Turn at an Intersection... 4-3 Making the perfect

More information

GEOMETRIC DESIGN CIVL 3161

GEOMETRIC DESIGN CIVL 3161 GEOMETRIC DESIGN CIVL 3161 Reading Assignment: p. 45-72 (4 th ed.) p.45-75 (previous ed.) in Mannering textbook. Geometric design of highway facilities deals with the proportion of physical elements of

More information

Transportation Management Toolbox Strategies

Transportation Management Toolbox Strategies Transportation Management Toolbox Strategies Introduction This transportation management toolbox is being developed to provide the Kansas Department of Transportation (KDOT), Mid-America Regional Council

More information

SU R F A C E T R A N S P O R T A T I O N I N T H E U N I T E D S T A T E S I S A

SU R F A C E T R A N S P O R T A T I O N I N T H E U N I T E D S T A T E S I S A TRAFFIC CONGESTION AND GREENHOUSE GA SES B Y M AT T H E W B A R T H A N D K A N O K B O R I B O O N S O M S I N SU R F A C E T R A N S P O R T A T I O N I N T H E U N I T E D S T A T E S I S A LARGE source

More information

Railway Crossing Information System

Railway Crossing Information System Railway Crossing Information System ITS Canada Presentation June 2, 2014 Ian Steele, P.Eng Agenda Click to edit Master title style RBRC Program Project Background Concept of Operations Design Process Design

More information