The ISP Column A monthly column on all things Internet

Size: px
Start display at page:

Download "The ISP Column A monthly column on all things Internet"

Transcription

1 The ISP Column A monthly column on all things Internet Just How Good are You? Measuring Network Performance February 2003 Geoff Huston If you are involved in the operation of an IP network, a question you may hear often these days is: How good is your network? Or, to put it another way, how can you measure and monitor the quality of the service that you are offering to your customers? And how can your customers monitor the quality of the service you provide to them? How can you describe and measure the performance of an Internet network? Of course if you are a customer of an Internet Service Provider the same question holds. How "good" is the service, and how can providers' service performance be compared on an equal basis? These questions have been lurking behind many public and enterprise IP networks for many years now. With the increasing levels of deployment of various forms of high speed broadband services within today's Internet there is new impetus to find some useable answers that allow both providers and customers to place some objective benchmarks against the service offerings. With the lift in access speed with broadband services there is an associated expectation on the part of the end user or service customer about the performance of the Internet service. A higher speed service should be better in some fashion, where better relates to the performance of the network and the service profile that is offered to network applications. And not only is there an expectation of better performance in somewhat nebulous terms, it should be a measurable artifact of the service. As well as technical motivations, there is also a business driver behind this question of how to measure a network's performance. In increasingly significant segment of the Internet market is moving away from a simple cost-driven undifferentiated commodity market into a market where there is a serious attempt to provide differentiation based on the performance of the delivered service. So it seems that performance measurement is now an important aspect of any ISP's operation. But what is Internet performance? How can you measure it? An informal functional approach to a definition of network performance is measuring the speed of the network. How fast is the network? Or, what s the elapsed time for a particular network transaction? Or, how quickly can I download a data file or a web page? This measurement of time for a network transaction to complete certainly relates to the speed of the network, and speed is a good network performance benchmark, but is speed all you need to measure? When looking at the broad spectrum of network performance, the answer is that speed is not everything. The ability of a network to support transactions that include the transfer of large volumes of data, as well as supporting a large number of simultaneous transactions are also part of the overall picture of network load and hence of network performance. Here a network must provide adequate bandwidth to provide throughput for these transactions. The IP protocol suite uses the Transmission Control Protocol (TCP) for managing such data transfer, and with TCP there are a number of network attributes that impact on TCP performance in addition to network bandwidth.

2 TCP uses a control feedback loop between the sender and the receiver, and, as a general rule, the lower the time lag for the feedback system the more accurately TCP can adapt to the constantly changing network conditions and operate efficiently. Therefore end-to-end delay, or latency, is an important consideration for network performance. But handling large data sets is not everything in performance. Consideration should also be given to the class of network applications where the data is implicitly clocked according to some external clock source. Such real time applications include interactive voice and video, and their performance requirements include the total delay between the end points, or latency, as well as the small scale variation of this latency, or jitter. Performance measurements also include the ratio of discarded packets to the total number of packets sent, or loss rate, as well as the extent to which a sequence of packets is reordered within the network, or even duplicated by the network. Taken together, this set of performance factors can be considered as a form of the amount of distortion of the original real time signal. Accordingly, a functional description of network performance encompasses a description of speed, capacity, latency and distortion of transactions that are carried across the network. This informal description of what constitutes network performance certainly feels to be on the correct path, given that if one knew the latency, available bandwidth, loss and jitter profile and packet reorder probability as a profile of network performance between two network end points, as well as the characteristics of the network transaction, it is possible to make a reasonable prediction relating to the performance of the transaction. Of course the tricky part is working out how to measure these quantities and then map them back to an overall picture of network capability and performance. Its here that service providers and customers often find themselves with entirely different motivations in service performance measurement. The service provider wants to measure the quality of the network itself. Normally this would relate the measurement of a transit path, commencing when a packet enters the provider's network, and taking the measurement outcome as the packet leaves the provider's network. The customer, on the other hand has less of an interest in the performance of the network, and more of an interest in the performance of the application itself, spanning the entire path from the client to the server and back again. IN the context of the Internet, such paths may transit a number of provider's networks, and its the cumulative picture rather than the profile of any individual network that is of interest to the customer. The service provider also measures different aspects of performance. As we've noted already, the service provider is interested in the per packet transit latency and the stability of the latency readings, the packet drop probability and the jitter profile. The end user has a somewhat different, and perhaps more fundamental set of interests: Will this voice over IP call have acceptable quality? How long should this download take? So what tools exist to help us to measure network performance? Many network performance management systems and customer performance management systems are based on a very simple tool: ping. The measurement system sender generates an IP ICMP echo request packet, and addresses it to a target system. As the packet is sent, the sender starts a timer. The target system simply reverses the IMCP headers and sends the packet back to the sender as an ICMP echo reply. When the packet arrives at the original sender s system the timer is halted and the elapsed time is reported. Ping is simple, efficient, widely used, and for network performance measurement, often terribly misleading. In measuring the elapsed time from the application sending the packet to the application receiving a matching response, there are a number of variables, including the

3 granularity of the sending system's clock, the scheduling algorithm used by the sender and the relative priority of the measurement application, the load on the target system and the relative scheduling priority given to responding to ICMP requests, all added to the transit time to send the packet through the network and the time to send the matching response. Surely we are talking only milliseconds? True, but in high speed networks where a transcontinental delay is only tens of milliseconds and jitter is sub-millisecond, then these additional sources of delay become a real factor in masking the true network measurement. As a performance diagnostic tool, ping is a relatively coarse and insensitive instrument. Can we do better? Yes, certainly. One of the most promising approaches in the One-Way synchronized measurement. The One-Way approach does not use a single network management system, and a set of targets, but relies on the deployment of a collection of probe senders and receivers using synchronized clocks. This moves beyond a simple and ubiquitous software tool that everyone, providers and customers alike can run, into a specialized environment that is specifically configured to measure the characteristics of particular network transit paths with very high accuracy. The One-Way methodology is relatively straightforward. The sender records the precise time a certain bit of the probe packet is transmitted into the network; the receiver records the precise time that same bit arrives at the receiver. The two clocks have to be in sync, and achieving this to microsecond accuracy is an interesting problem. Initial implementations of this approach have used Global Positioning System satellite receivers as a synchronized clock source. One of the noted problems with the use of GPS was that computers are generally located within machine rooms and a clear GPS signal is normally only available on a rooftop. Later implementations of this approach have used the clock associated with the CDMA mobile telephone network as a highly accurate synchronized distributed clock source, with the advantage that the time signal is usually available close to the measurement unit. Consequent correlation of the sender s and receiver s data from repeated probes can reveal the one-way delay and loss patterns between sender and receiver. For the service provider this system can provide a very accurate view of the behaviour of the active network elements within a select set of network transit paths, using the metrics of latency, jitter and loss as described above. As a real-time diagnostic tool it can allow a network operator to maintain a constant view of network behaviour and complement active polling as a means of managing the network. But can this help the customer in assessing the performance of their provider? There is some potential here, depending on how the reporting relationship is phrased between the provider and the customer. While many forms of performance reporting involve reporting on various averages of latency and loss, there is also the capability of providing more detailed data as a real time feed. There are other ways of manipulating ping to provide more information. One way is to vary the size of the packet. Larger packets take a longer amount of time to be passed along a constant size transmission path, and by comparing the latency times of various sized packets it is possible to build up a picture of the capacity of a transmission path using ping as a remote probe. Another method of ping manipulation is to vary the sending rate of the ICMP packets. If a TCP flow control algorithm is used to control the sending rate of ping packets it is possible to infer the likely TCP peak data transfer rate between two points. But perhaps in this we have lost sight of the original objective here, and it may be useful to return to the original question of how we can measure the performance of an IP network. The above techniques allow individual paths within a network to be measured for various characteristics, and, with some approximation, these results can relate to some measure of network performance. But

4 there is still a sense that there is something missing in all this. How "good" a network is, from a user's perspective, is equivalent to how well applications perform across the network. The basic Internet architecture is one of end-to-end data flows, where the network's task is one of simple packet switching. The Internet architecture does not manage the network resource by trying to 'protect' one application's use of the network from any other. This task is left to the application to attempt to sense the current state of use of the network and adapt its own demands to that of a fair share with all other applications who are undertaking a similar adaptation of their own. How can a network provider measure this form of adaptive cooperative behaviour and create a performance metric? Unfortunately this is a somewhat challenging question, and one without clear answers so far. One thing we do know, is that this is not an issue unique to the Internet. Measuring the performance of a metropolitan road network has similar properties of attempting to relate adaptive traffic components along specific paths to the performance of the system as a whole. Further Reading There is a wealth of material on the Internet on the topic of network measurement, and the major exercise is undertaking some filtering to get a broad collection of material that encompasses a range of perspectives on this topic. These sources have been used to prepare this article, and are recommended as starting points for further exploration of this topic. Internet Performance Survival Guide, Geoff Huston, Wiley Computer Publishing, IPPM Metrics for Measuring Connectivity, J. Mahdavi, V. Paxson, RFC 2678, September A One-way Delay Metric for IPPM, G. Almes, S. Kalidinki, M. Zeukuaskas, RFC2679, September A One-way Packet Loss Metric for IPPM,. Almes, S. Kalidinki, M. Zeukuaskas, RFC2680, September The RIPE Test Traffic Measurement service at Treno, online at Trends in Measurement and Monitoring of Internet Backbones, session at the 26th North American Network Operators Group, hosted by D. Meyer, 0210/measurement.html, October 2002 Some thoughts on CoS and Backbone Networks, D. Meyer, presentation to the IEPREP Working Group, IETF-55, November 2002 Netflow resource page: Netramet, and many other interesting measurement tools are referenced in a resource page at This is also an active area of research and there are a number of activities that are in the area of research group activities and workshops.

5 The Internet Research Task Force has an Internet Measurement Research Group. Further details can be found at ACM SIGCOMM, the ACM Special Interest Group on Data Communications sponsors an Internet Measurement Workshop. Proceeding of the November 2002 workshop can be found at The details of the 2003 Passive and Active Measurement Workshop can be found at Disclaimer The above views do not represent the views of the Internet Society, nor do they represent the views of the author s employer, the Telstra Corporation. They were possibly the opinions of the author at the time of writing this article, but things always change, including the author's opinions! About the Author GEOFF HUSTON holds a B.Sc. and a M.Sc. from the Australian National University. He has been closely involved with the development of the Internet for the past decade, particularly within Australia, where he was responsible for the initial build of the Internet within the Australian academic and research sector. Huston is currently the Chief Scientist in the Internet area for Telstra. He is also a member of the Internet Architecture Board, and is the Secretary of the APNIC Executive Committee. He was an inaugural Trustee of the Internet Society, and served as Secretary of the Board of Trustees from 1993 until 2001, with a term of service as chair of the Board of Trustees in He is author of The ISP Survival Guide, ISBN , Internet Performance Survival Guide: QoS Strategies for Multiservice Networks, ISBN , and coauthor of Quality of Service: Delivering QoS on the Internet and in Corporate Networks, ISBN , a collaboration with Paul Ferguson. All three books are published by John Wiley & Sons.

Measuring IP Performance. Geoff Huston Telstra

Measuring IP Performance. Geoff Huston Telstra Measuring IP Performance Geoff Huston Telstra What are you trying to measure? User experience Responsiveness Sustained Throughput Application performance quality Consistency Availability Network Behaviour

More information

Quality of Service in the Internet:

Quality of Service in the Internet: Quality of Service in the Internet: Fact, Fiction, or Compromise? Paul Ferguson, Cisco Systems, Inc. Geoff Huston, Telstra What is the Expectation? Today s Internet is plagued by sporadic poor performance

More information

Distributed monitoring of IP-availability

Distributed monitoring of IP-availability IPLU-II Seminar 08.02.2008 1 Distributed monitoring of IP-availability Jorma Kilpi, VTT February 8, 2008 IPLU-II Seminar 08.02.2008 2 Availability vs. IP-Availability In this presentation Availability

More information

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this

More information

Customer White paper. SmartTester. Delivering SLA Activation and Performance Testing. November 2012 Author Luc-Yves Pagal-Vinette

Customer White paper. SmartTester. Delivering SLA Activation and Performance Testing. November 2012 Author Luc-Yves Pagal-Vinette SmartTester Delivering SLA Activation and Performance Testing November 2012 Author Luc-Yves Pagal-Vinette Customer White paper Table of Contents Executive Summary I- RFC-2544 is applicable for WAN and

More information

VoIP / SIP Planning and Disclosure

VoIP / SIP Planning and Disclosure VoIP / SIP Planning and Disclosure Voice over internet protocol (VoIP) and session initiation protocol (SIP) technologies are the telecommunication industry s leading commodity due to its cost savings

More information

Internet Infrastructure Measurement: Challenges and Tools

Internet Infrastructure Measurement: Challenges and Tools Internet Infrastructure Measurement: Challenges and Tools Internet Infrastructure Measurement: Challenges and Tools Outline Motivation Challenges Tools Conclusion Why Measure? Why Measure? Internet, with

More information

STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT

STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT 1. TIMING ACCURACY The accurate multi-point measurements require accurate synchronization of clocks of the measurement devices. If for example time stamps

More information

Synchronization Essentials of VoIP WHITE PAPER

Synchronization Essentials of VoIP WHITE PAPER Synchronization Essentials of VoIP WHITE PAPER Synchronization Essentials of VoIP Introduction As we accelerate into the New World of VoIP we assume we can leave some of the trappings of wireline telecom

More information

An Introduction to VoIP Protocols

An Introduction to VoIP Protocols An Introduction to VoIP Protocols www.netqos.com Voice over IP (VoIP) offers the vision of a converged network carrying multiple types of traffic (voice, video, and data, to name a few). To carry out this

More information

Voice over Internet Protocol (VoIP) systems can be built up in numerous forms and these systems include mobile units, conferencing units and

Voice over Internet Protocol (VoIP) systems can be built up in numerous forms and these systems include mobile units, conferencing units and 1.1 Background Voice over Internet Protocol (VoIP) is a technology that allows users to make telephone calls using a broadband Internet connection instead of an analog phone line. VoIP holds great promise

More information

Your new VoIP Network is working great Right? How to Know. April 2012 WHITE PAPER

Your new VoIP Network is working great Right? How to Know. April 2012 WHITE PAPER Your new VoIP Network is working great Right? How to Know April 2012 Executive Summary This paper discusses the importance of measuring and monitoring the voice quality of VoIP calls traversing the data

More information

Requirements of Voice in an IP Internetwork

Requirements of Voice in an IP Internetwork Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.

More information

Using IPM to Measure Network Performance

Using IPM to Measure Network Performance CHAPTER 3 Using IPM to Measure Network Performance This chapter provides details on using IPM to measure latency, jitter, availability, packet loss, and errors. It includes the following sections: Measuring

More information

Voice Over IP Performance Assurance

Voice Over IP Performance Assurance Voice Over IP Performance Assurance Transforming the WAN into a voice-friendly using Exinda WAN OP 2.0 Integrated Performance Assurance Platform Document version 2.0 Voice over IP Performance Assurance

More information

About Firewall Protection

About Firewall Protection 1. This guide describes how to configure basic firewall rules in the UTM to protect your network. The firewall then can provide secure, encrypted communications between your local network and a remote

More information

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: j.cao@student.rmit.edu.au

More information

iface eth0 inet static address /24 gateway iface eth0 inet6 static address 2001:db8::2/64 gateway 2001:db8::1

iface eth0 inet static address /24 gateway iface eth0 inet6 static address 2001:db8::2/64 gateway 2001:db8::1 The ISP Column A monthly column on things Internet Joao Luis Silva Damas Geoff Huston September 2016 Binding to an IPv6 Subnet In the original framework of the IP architecture, hosts had network interfaces,

More information

Internet Protocol: IP packet headers. vendredi 18 octobre 13

Internet Protocol: IP packet headers. vendredi 18 octobre 13 Internet Protocol: IP packet headers 1 IPv4 header V L TOS Total Length Identification F Frag TTL Proto Checksum Options Source address Destination address Data (payload) Padding V: Version (IPv4 ; IPv6)

More information

Optimizing Converged Cisco Networks (ONT)

Optimizing Converged Cisco Networks (ONT) Optimizing Converged Cisco Networks (ONT) Module 3: Introduction to IP QoS Introducing QoS Objectives Explain why converged networks require QoS. Identify the major quality issues with converged networks.

More information

Network Simulation Traffic, Paths and Impairment

Network Simulation Traffic, Paths and Impairment Network Simulation Traffic, Paths and Impairment Summary Network simulation software and hardware appliances can emulate networks and network hardware. Wide Area Network (WAN) emulation, by simulating

More information

IP SLAs Overview. Finding Feature Information. Information About IP SLAs. IP SLAs Technology Overview

IP SLAs Overview. Finding Feature Information. Information About IP SLAs. IP SLAs Technology Overview This module describes IP Service Level Agreements (SLAs). IP SLAs allows Cisco customers to analyze IP service levels for IP applications and services, to increase productivity, to lower operational costs,

More information

1-800-CALL-H.E.P. - Experiences on a Voice-over-IP Test Bed.

1-800-CALL-H.E.P. - Experiences on a Voice-over-IP Test Bed. SLAC-PUB-8384 February 2000 1-800-CALL-H.E.P. - Experiences on a Voice-over-IP Test Bed. W. Matthews, L. Cottrell, R. Nitzan Presented at International Conference On Computing In High Energy Physics And

More information

Performance White Paper SkyPilot System Capacity and Performance (v1.4)

Performance White Paper SkyPilot System Capacity and Performance (v1.4) Performance White Paper SkyPilot System Capacity and Performance (v1.4) Performance White Paper (v1.4) 1 2006 SkyPilot Networks, Inc. Introduction This document details the performance of the SkyPilot

More information

Analysis of IP Network for different Quality of Service

Analysis of IP Network for different Quality of Service 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Analysis of IP Network for different Quality of Service Ajith

More information

Measurement of IP Transport Parameters for IP Telephony

Measurement of IP Transport Parameters for IP Telephony Measurement of IP Transport Parameters for IP Telephony B.V.Ghita, S.M.Furnell, B.M.Lines, E.C.Ifeachor Centre for Communications, Networks and Information Systems, Department of Communication and Electronic

More information

Fundamentals of VoIP Call Quality Monitoring & Troubleshooting. 2014, SolarWinds Worldwide, LLC. All rights reserved. Follow SolarWinds:

Fundamentals of VoIP Call Quality Monitoring & Troubleshooting. 2014, SolarWinds Worldwide, LLC. All rights reserved. Follow SolarWinds: Fundamentals of VoIP Call Quality Monitoring & Troubleshooting 2014, SolarWinds Worldwide, LLC. All rights reserved. Introduction Voice over IP, or VoIP, refers to the delivery of voice and multimedia

More information

Encapsulating Voice in IP Packets

Encapsulating Voice in IP Packets Encapsulating Voice in IP Packets Major VoIP Protocols This topic defines the major VoIP protocols and matches them with the seven layers of the OSI model. Major VoIP Protocols 15 The major VoIP protocols

More information

MINIMUM NETWORK REQUIREMENTS 1. REQUIREMENTS SUMMARY... 1

MINIMUM NETWORK REQUIREMENTS 1. REQUIREMENTS SUMMARY... 1 Table of Contents 1. REQUIREMENTS SUMMARY... 1 2. REQUIREMENTS DETAIL... 2 2.1 DHCP SERVER... 2 2.2 DNS SERVER... 2 2.3 FIREWALLS... 3 2.4 NETWORK ADDRESS TRANSLATION... 4 2.5 APPLICATION LAYER GATEWAY...

More information

Active traffic monitoring for heterogeneous environments

Active traffic monitoring for heterogeneous environments Active traffic monitoring for heterogeneous environments Hélder Veiga, Teresa Pinho, José Luis Oliveira, Rui Valadas, Paulo Salvador, and António Nogueira University of Aveiro/Institute of Telecommunications

More information

Real-time apps and Quality of Service

Real-time apps and Quality of Service Real-time apps and Quality of Service Focus What transports do applications need? What network mechanisms provide which kinds of quality assurances? Topics Real-time versus Elastic applications Adapting

More information

Preparing Your IP Network for High Definition Video Conferencing

Preparing Your IP Network for High Definition Video Conferencing WHITE PAPER Preparing Your IP Network for High Definition Video Conferencing Contents Overview...3 Video Conferencing Bandwidth Demand...3 Bandwidth and QoS...3 Bridge (MCU) Bandwidth Demand...4 Available

More information

18: Enhanced Quality of Service

18: Enhanced Quality of Service 18: Enhanced Quality of Service Mark Handley Traditional best-effort queuing behaviour in routers Data transfer: datagrams: individual packets no recognition of flows connectionless: no signalling Forwarding:

More information

Adaptive Sampling for Network Performance Measurement Under Voice Traffic

Adaptive Sampling for Network Performance Measurement Under Voice Traffic Sampling for Network Performance Measurement Under Voice Traffic Wenhong Ma and Changcheng Huang Optical Networks Laboratory Department of Systems and Computer Engineering, Carleton University 1125 Colonel

More information

The Data Replication Bottleneck: Overcoming Out of Order and Lost Packets across the WAN

The Data Replication Bottleneck: Overcoming Out of Order and Lost Packets across the WAN The Data Replication Bottleneck: Overcoming Out of Order and Lost Packets across the WAN By Jim Metzler, Cofounder, Webtorials Editorial/Analyst Division Background and Goal Many papers have been written

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Quality of Service In Internet Protocol (IP) Networks Prepared for the International Communications Industries Association To support Infocomm 2002

Quality of Service In Internet Protocol (IP) Networks Prepared for the International Communications Industries Association To support Infocomm 2002 Quality of Service In Internet Protocol (IP) Networks Prepared for the International Communications Industries Association To support Infocomm 2002 By E. Brent Kelly Senior Analyst and Consultant, Wainhouse

More information

Network Design and Management

Network Design and Management Fundamentals of Networking and Data Communications, Sixth Edition 13-1 Network Design and Management Chapter 13 Learning Objectives After reading this chapter, students should be able to: Recognize the

More information

VoIP QoS. Version 1.0. September 4, 2006. AdvancedVoIP.com. sales@advancedvoip.com support@advancedvoip.com. Phone: +1 213 341 1431

VoIP QoS. Version 1.0. September 4, 2006. AdvancedVoIP.com. sales@advancedvoip.com support@advancedvoip.com. Phone: +1 213 341 1431 VoIP QoS Version 1.0 September 4, 2006 AdvancedVoIP.com sales@advancedvoip.com support@advancedvoip.com Phone: +1 213 341 1431 Copyright AdvancedVoIP.com, 1999-2006. All Rights Reserved. No part of this

More information

Active Measurement Data Analysis Techniques

Active Measurement Data Analysis Techniques 3/27/2000: This work is an Authors version, and has been submitted for publication. Copyright may be transferred without further notice and the accepted version may then be posted by the publisher. Active

More information

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Overview of Network Measurement Tools

Overview of Network Measurement Tools Overview of Network Measurement Tools Jon M. Dugan Energy Sciences Network Lawrence Berkeley National Laboratory NANOG 43, Brooklyn, NY June 1, 2008 Networking for the Future of Science

More information

Application Note. Pre-Deployment and Network Readiness Assessment Is Essential. Types of VoIP Performance Problems. Contents

Application Note. Pre-Deployment and Network Readiness Assessment Is Essential. Types of VoIP Performance Problems. Contents Title Six Steps To Getting Your Network Ready For Voice Over IP Date January 2005 Overview This provides enterprise network managers with a six step methodology, including predeployment testing and network

More information

A Study of Internet Packet Reordering

A Study of Internet Packet Reordering A Study of Internet Packet Reordering Yi Wang 1, Guohan Lu 2, Xing Li 3 1 Department of Electronic Engineering Tsinghua University, Beijing, P. R. China, 100084 wangyi@ns.6test.edu.cn 2 China Education

More information

Ensuring Real-Time Traffic Quality

Ensuring Real-Time Traffic Quality Ensuring Real-Time Traffic Quality Summary Voice and video calls are traffic that must arrive without delay at the receiving end for its content to be intelligible. This real-time traffic is different

More information

Clearing the Way for VoIP

Clearing the Way for VoIP Gen2 Ventures White Paper Clearing the Way for VoIP An Alternative to Expensive WAN Upgrades Executive Overview Enterprises have traditionally maintained separate networks for their voice and data traffic.

More information

CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs

CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs CHAPTER 6 VOICE COMMUNICATION OVER HYBRID MANETs Multimedia real-time session services such as voice and videoconferencing with Quality of Service support is challenging task on Mobile Ad hoc Network (MANETs).

More information

ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; Suresh.Leroy@alcatel.be +32/3/240.7830; Guy.Reyniers@alcatel.

ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; Suresh.Leroy@alcatel.be +32/3/240.7830; Guy.Reyniers@alcatel. Contact: ALCATEL CRC Antwerpen Fr. Wellesplein 1 B-2018 Antwerpen +32/3/240.8550; Suresh.Leroy@alcatel.be +32/3/240.7830; Guy.Reyniers@alcatel.be Voice over (Vo) was developed at some universities to diminish

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com

More information

VoIP Performance Over different service Classes Under Various Scheduling Techniques

VoIP Performance Over different service Classes Under Various Scheduling Techniques Australian Journal of Basic and Applied Sciences, 5(11): 1416-1422-CC, 211 ISSN 1991-8178 VoIP Performance Over different service Classes Under Various Scheduling Techniques Ahmad Karim Bahauddin Zakariya

More information

Quality of Service (QoS)) in IP networks

Quality of Service (QoS)) in IP networks Quality of Service (QoS)) in IP networks Petr Grygárek rek 1 Quality of Service (QoS( QoS) QoS is the ability of network to support applications without limiting it s s function or performance ITU-T T

More information

Fixed Line Broadband Performance (ADSL) in New Zealand. April June 2013

Fixed Line Broadband Performance (ADSL) in New Zealand. April June 2013 Fixed Line Broadband Performance (ADSL) in New Zealand April June 213 Copyright Epitiro Group Limited, 213. No reproduction, copy, transmission or translation of this publication may be made without written

More information

Troubleshooting Common Issues in VoIP

Troubleshooting Common Issues in VoIP Troubleshooting Common Issues in VoIP 2014, SolarWinds Worldwide, LLC. All rights reserved. Voice over Internet Protocol (VoIP) Introduction Voice over IP, or VoIP, refers to the delivery of voice and

More information

Guide to TCP/IP, Third Edition. Chapter 4: Internet Control Message Protocol

Guide to TCP/IP, Third Edition. Chapter 4: Internet Control Message Protocol Guide to TCP/IP, Third Edition Chapter 4: Internet Control Message Protocol Objectives Understand the Internet Control Message Protocol Test and troubleshoot sequences for Internet Control Message Protocol

More information

TraceSim 3.0: Advanced Measurement Functionality. of Video over IP Traffic

TraceSim 3.0: Advanced Measurement Functionality. of Video over IP Traffic TraceSim 3.0: Advanced Measurement Functionality for Secure VoIP Networks and Simulation of Video over IP No part of this brochure may be copied or published by means of printing, photocopying, microfilm

More information

Per-Flow Queuing Allot's Approach to Bandwidth Management

Per-Flow Queuing Allot's Approach to Bandwidth Management White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth

More information

Network Design and Management

Network Design and Management Network Design and Management Chapter 13 Learning Objectives After reading this chapter, you should be able to: Recognize the systems development life cycle and define each of its phases Explain the importance

More information

Application Notes. Introduction. Sources of delay. Contents. Impact of Delay in Voice over IP Services VoIP Performance Management.

Application Notes. Introduction. Sources of delay. Contents. Impact of Delay in Voice over IP Services VoIP Performance Management. Application Notes Title Series Impact of Delay in Voice over IP Services VoIP Performance Management Date January 2006 Overview This application note describes the sources of delay in Voice over IP services,

More information

The Impact of QoS Changes towards Network Performance

The Impact of QoS Changes towards Network Performance International Journal of Computer Networks and Communications Security VOL. 3, NO. 2, FEBRUARY 2015, 48 53 Available online at: www.ijcncs.org E-ISSN 2308-9830 (Online) / ISSN 2410-0595 (Print) The Impact

More information

CiscoWorks Internetwork Performance Monitor 4.0

CiscoWorks Internetwork Performance Monitor 4.0 CiscoWorks Internetwork Performance Monitor 4.0 Product Overview The CiscoWorks Internetwork Performance Monitor (IPM) is a network response-time and availability troubleshooting application. Included

More information

Access the Test Here http://myspeed.visualware.com/index.php

Access the Test Here http://myspeed.visualware.com/index.php VoIP Speed Test Why run the test? Running a VoIP speed test is an effective way to gauge whether your Internet connection is suitable to run a hosted telephone system using VoIP technology. A number of

More information

Contents Introduction Why Fax over IP? How Real-time Fax over IP works Implementation with MessagePlus/Open Summary. About this document

Contents Introduction Why Fax over IP? How Real-time Fax over IP works Implementation with MessagePlus/Open Summary. About this document Fax over IP Contents Introduction Why Fax over IP? How Real-time Fax over IP works Implementation with MessagePlus/Open Summary About this document This document describes how Fax over IP works in general

More information

CONTROL SYSTEM FOR INTERNET BANDWIDTH BASED ON JAVA TECHNOLOGY

CONTROL SYSTEM FOR INTERNET BANDWIDTH BASED ON JAVA TECHNOLOGY CONTROL SYSTEM FOR INTERNET BANDWIDTH BASED ON JAVA TECHNOLOGY SEIFEDINE KADRY, KHALED SMAILI Lebanese University-Faculty of Sciences Beirut-Lebanon E-mail: skadry@gmail.com ABSTRACT This paper presents

More information

Corporate Network Services of Tomorrow Business-Aware VPNs

Corporate Network Services of Tomorrow Business-Aware VPNs Corporate Network Services of Tomorrow Business-Aware VPNs Authors: Daniel Kofman, CTO and Yuri Gittik, CSO Content Content...1 Introduction...2 Serving Business Customers: New VPN Requirements... 2 Evolution

More information

QoS issues in Voice over IP

QoS issues in Voice over IP COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This

More information

High Performance VPN Solutions Over Satellite Networks

High Performance VPN Solutions Over Satellite Networks High Performance VPN Solutions Over Satellite Networks Enhanced Packet Handling Both Accelerates And Encrypts High-Delay Satellite Circuits Characteristics of Satellite Networks? Satellite Networks have

More information

Reordering of IP Packets in Internet

Reordering of IP Packets in Internet Reordering of IP Packets in Internet Xiaoming Zhou and Piet Van Mieghem Delft University of Technology Faculty of Electrical Engineering, Mathematics, and Computer Science P.O. Box 5031, 2600 GA Delft,

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

Measurement of V2oIP over Wide Area Network between Countries Using Soft Phone and USB Phone

Measurement of V2oIP over Wide Area Network between Countries Using Soft Phone and USB Phone The International Arab Journal of Information Technology, Vol. 7, No. 4, October 2010 343 Measurement of V2oIP over Wide Area Network between Countries Using Soft Phone and USB Phone Mohd Ismail Department

More information

Preparing Your IP network for High Definition Video Conferencing

Preparing Your IP network for High Definition Video Conferencing White Paper Global Services April 2007 Table of Contents 1.0 OVERVIEW...3 2.0 VIDEO CONFERENCING BANDWIDTH DEMAND...3 3.0 AVAILABLE BANDWIDTH...5 3.1 Converged Network Links... 6 3.2 Dedicated Network

More information

IP Network Monitoring and Measurements: Techniques and Experiences

IP Network Monitoring and Measurements: Techniques and Experiences IP Network Monitoring and Measurements: Techniques and Experiences Philippe Owezarski LAAS-CNRS Toulouse, France Owe@laas.fr 1 Outline 4 Introduction 4 Monitoring problematic 8Only based on network administration

More information

Business case for VoIP Readiness Network Assessment

Business case for VoIP Readiness Network Assessment Business case for VoIP Readiness Network Assessment Table of contents Overview... 2 Different approaches to pre-deployment assessment:.......... 2 Other considerations for VoIP pre-deployment... 3 The

More information

End-to-End QoS Monitoring Tool Development and Performance Analysis for NGN

End-to-End QoS Monitoring Tool Development and Performance Analysis for NGN End-to-End QoS Monitoring Tool Development and Performance Analysis for NGN ChinChol Kim 1, SangChul Shin 1, SangYong Ha 1, SunYoung Han 2 and YoungJae Kim 2 1 National Computerization Agency Building

More information

A Passive Method for Estimating End-to-End TCP Packet Loss

A Passive Method for Estimating End-to-End TCP Packet Loss A Passive Method for Estimating End-to-End TCP Packet Loss Peter Benko and Andras Veres Traffic Analysis and Network Performance Laboratory, Ericsson Research, Budapest, Hungary {Peter.Benko, Andras.Veres}@eth.ericsson.se

More information

Perform: Monitor to Assure a Great User Experience

Perform: Monitor to Assure a Great User Experience Whitepaper Perform: Monitor to Assure a Great User Experience Introduction IP-based network infrastructures provide many benefits. They open the door to creating a Unified Communications (UC) environment

More information

A Review on Quality of Service Architectures for Internet Network Service Provider (INSP)

A Review on Quality of Service Architectures for Internet Network Service Provider (INSP) A Review on Quality of Service Architectures for Internet Network Service Provider (INSP) Herman and Azizah bte Abd. Rahman Faculty of Computer Science and Information System Universiti Teknologi Malaysia

More information

Network Traceability Technologies for Identifying Performance Degradation and Fault Locations for Dependable Networks

Network Traceability Technologies for Identifying Performance Degradation and Fault Locations for Dependable Networks Network Traceability Technologies for Identifying Performance Degradation and Fault Locations for SHIMONISHI Hideyuki, YAMASAKI Yasuhiro, MURASE Tsutomu, KIRIHA Yoshiaki Abstract This paper discusses the

More information

Blue 102. IP Service Architecture Futures. Geoff Huston May 2000

Blue 102. IP Service Architecture Futures. Geoff Huston May 2000 Blue 102 IP Service Architecture Futures Geoff Huston May 2000 Next Wave IP Services Service Requirements Connectivity service for customer-operated routers Service payload is IP packet High peak carriage

More information

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering Internet Firewall CSIS 4222 A combination of hardware and software that isolates an organization s internal network from the Internet at large Ch 27: Internet Routing Ch 30: Packet filtering & firewalls

More information

Application Note Telephony Service over Satellite

Application Note Telephony Service over Satellite Voice over Application Note Telephony Service over Satellite January 2012 Data Sells but Voice Pays In the early years of the industry, networks were deployed primarily for telephony services. As time

More information

Frequently Asked Questions

Frequently Asked Questions Frequently Asked Questions 1. Q: What is the Network Data Tunnel? A: Network Data Tunnel (NDT) is a software-based solution that accelerates data transfer in point-to-point or point-to-multipoint network

More information

Quality of Service (QoS) for Enterprise Networks. Learn How to Configure QoS on Cisco Routers. Share:

Quality of Service (QoS) for Enterprise Networks. Learn How to Configure QoS on Cisco Routers. Share: Quality of Service (QoS) for Enterprise Networks Learn How to Configure QoS on Cisco Routers Share: Quality of Service (QoS) Overview Networks today are required to deliver secure, measurable and guaranteed

More information

NETWORK LAYER/INTERNET PROTOCOLS

NETWORK LAYER/INTERNET PROTOCOLS CHAPTER 3 NETWORK LAYER/INTERNET PROTOCOLS You will learn about the following in this chapter: IP operation, fields and functions ICMP messages and meanings Fragmentation and reassembly of datagrams IP

More information

Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications

Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications Sarhan M. Musa Mahamadou Tembely Matthew N. O. Sadiku Pamela H. Obiomon

More information

Why is my FTP Slooow?

Why is my FTP Slooow? Why is my FTP Slooow? Agenda Throughput Sender delays Segment size Processing Receiver delays Bytes in flight Buffer size Congestion window SACK SSL A very practical look! How Does An FTP Work? Control

More information

Voice Over Internet Protocol(VoIP)

Voice Over Internet Protocol(VoIP) Voice Over Internet Protocol(VoIP) By Asad Niazi Last Revised on: March 29 th, 2004 SFWR 4C03 Major Project Instructor: Dr. Kartik Krishnan 1. Introduction The telecommunications companies around the world

More information

CS 520: Network Architecture I Winter Lecture 12: The Internet Control Message Protocol and Layering.

CS 520: Network Architecture I Winter Lecture 12: The Internet Control Message Protocol and Layering. CS 520: Network Architecture I Winter 2007 Lecture 12: The Internet Control Message Protocol and Layering. The previous lecture completed a discussion of the IP address space and the latest attempts to

More information

Everything You Ever Wanted to Know About Message Latency

Everything You Ever Wanted to Know About Message Latency Everything You Ever Wanted to Know About Message Latency David Wetherall (djw@uw.edu) 1. Message Latency The message latency L of sending a message over a link is defined to be the time from which the

More information

3. MONITORING AND TESTING THE ETHERNET NETWORK

3. MONITORING AND TESTING THE ETHERNET NETWORK 3. MONITORING AND TESTING THE ETHERNET NETWORK 3.1 Introduction The following parameters are covered by the Ethernet performance metrics: Latency (delay) the amount of time required for a frame to travel

More information

Communications and Computer Networks

Communications and Computer Networks SFWR 4C03: Computer Networks and Computer Security January 5-8 2004 Lecturer: Kartik Krishnan Lectures 1-3 Communications and Computer Networks The fundamental purpose of a communication system is the

More information

BITAG Publishes Report: Differentiated Treatment of Internet Traffic

BITAG Publishes Report: Differentiated Treatment of Internet Traffic 1550 Larimer Street, Suite 168 Denver, CO. 80202 BITAG Publishes Report: Differentiated Treatment of Internet Traffic Denver, CO (October 8, 2015): Today, the Broadband Internet Technical Advisory Group

More information

Technical Bulletin. Enabling Arista Advanced Monitoring. Overview

Technical Bulletin. Enabling Arista Advanced Monitoring. Overview Technical Bulletin Enabling Arista Advanced Monitoring Overview Highlights: Independent observation networks are costly and can t keep pace with the production network speed increase EOS eapi allows programmatic

More information

Duke University CS 356 Midterm Spring 2014

Duke University CS 356 Midterm Spring 2014 Duke University CS 356 Midterm Spring 2014 Name (Print):, (Family name) (Given name) Student ID Number: Date of Exam: March 6, 2014 Time Period: 3:05pm-4:20pm Number of Exam Pages: 14 (including this cover

More information

Performance of Cisco IPS 4500 and 4300 Series Sensors

Performance of Cisco IPS 4500 and 4300 Series Sensors White Paper Performance of Cisco IPS 4500 and 4300 Series Sensors White Paper September 2012 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of

More information

MOS Technology Brief Mean Opinion Score Algorithms for Speech Quality Evaluation

MOS Technology Brief Mean Opinion Score Algorithms for Speech Quality Evaluation MOS Technology Brief Mean Opinion Score Algorithms for Speech Quality Evaluation Mean Opinion Score (MOS) is commonly used to rate phone service speech quality, expressed on a scale from 1 to 5, where

More information

Voice over IP. Overview. What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP

Voice over IP. Overview. What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP Voice over IP Andreas Mettis University of Cyprus November 23, 2004 Overview What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP 1 VoIP VoIP (voice over IP - that is,

More information

TDM services over IP networks

TDM services over IP networks Keyur Parikh Junius Kim TDM services over IP networks 1. ABSTRACT Time Division Multiplexing (TDM) circuits have been the backbone of communications over the past several decades. These circuits which

More information

Bandwidth Measurement in xdsl Networks

Bandwidth Measurement in xdsl Networks Bandwidth Measurement in xdsl Networks Liang Cheng and Ivan Marsic Center for Advanced Information Processing (CAIP) Rutgers The State University of New Jersey Piscataway, NJ 08854-8088, USA {chengl,marsic}@caip.rutgers.edu

More information

OneSight Voice Quality Assurance

OneSight Voice Quality Assurance OneSight Voice Quality Assurance Benefits Proactively determine voice quality issues as well as other service impacting issues before users complain Comprehensively monitor communications systems with

More information

Lecture 2: Internet Protocol (IP)

Lecture 2: Internet Protocol (IP) Lecture 2: Internet Protocol (IP) Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4395 2-1 Network Layer Provides the upper layers with independence from the data

More information