Testosterone and Heart Disease



Similar documents
Testosterone; What s all the hype? KRISTEN WYRICK, LTCOL,USAFR, MC USUHS, FAMILY MEDICINE JOINT BASE LANGLEY-EUSTIS

Men Sexual Dysfunction Associated with Obesity and Metabolic Syndrome

A list of FDA-approved testosterone products can be found by searching for testosterone at

Your Life Your Health Cariodmetabolic Risk Syndrome Part VII Inflammation chronic, low-grade By James L. Holly, MD The Examiner January 25, 2007

Hypogonadism and Testosterone Replacement in Men with HIV

Risks of Testosterone?? Symptoms and Signs Suggestive of Hypogonadism

Cardiac Rehabilitation: An Under-utilized Resource Making Patients Live Longer, Feel Better

Neal Rouzier responds to the JAMA article on Men and Testosterone

Testosterone - Villain or Victor?

February 25, Dear Dr. Hamburg:

Protocol: Testosterone and cardiovasclar related events in men: a meta analysis of randomized controlled trials. Version: 1. Date: 5 th December 2011

TESTOSTERONE The Future?

Vitamin D and Cardiometabolic risk

DISCLOSURES RISK ASSESSMENT. Stroke and Heart Disease -Is there a Link Beyond Risk Factors? Daniel Lackland, MD

4/4/2013. Mike Rizo, Pharm D, MBA, ABAAHP THE PHARMACIST OF THE FUTURE? METABOLIC SYNDROME AN INTEGRATIVE APPROACH

COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE (CHMP) GUIDELINE ON THE EVALUATION OF MEDICINAL PRODUCTS FOR CARDIOVASCULAR DISEASE PREVENTION

Testosterone Treatment in Older Men

Listen to your heart: Good Cardiovascular Health for Life

Serum testosterone and short-term mortality in men with acute myocardial infarction

COULD IT BE LOW TESTOSTERONE?

Main Effect of Screening for Coronary Artery Disease Using CT

testosterone_pellet_implantation_for_androgen_deficiency_in_men 10/2015 N/A 11/ /2015 This policy is not effective until December 30, 2015

COMMITTEE FOR HUMAN MEDICINAL PRODUCTS (CHMP) DRAFT GUIDELINE ON THE EVALUATION OF MEDICINAL PRODUCTS FOR CARDIOVASCULAR DISEASE PREVENTION

Focus. Andropause: fact or fiction? Introduction. Johan Wilson is an Auckland GP KEY POINTS

Role of Body Weight Reduction in Obesity-Associated Co-Morbidities

Metabolic Syndrome Overview: Easy Living, Bitter Harvest. Sabrina Gill MD MPH FRCPC Caroline Stigant MD FRCPC BC Nephrology Days, October 2007

Plasma Testosterone Level in Male Patients with Metabolic Syndrome

Multiple comorbidities: additive and predictive of cardiovascular risk. Peter M. Nilsson Lund University University Hospital Malmö, Sweden

Cardiac Rehabilitation The Best Medicine for Your CAD Patients. James A. Stone

25-hydroxyvitamin D: from bone and mineral to general health marker

Cardiovascular Endpoints

Division of Dockets Management Food and Drug Administration Department of Health and Human Services 5630 Fishers Lane, Room 1061 Rockville, MD 20852

Cardiovascular disease physiology. Linda Lowe-Krentz Bioscience in the 21 st Century October 14, 2011

Testosterone for women, who when and how much?

The WHI 12 Years Later: What Have We Learned about Postmenopausal HRT?

MMM. Topic Diagnosis and Testosterone Replacement Therapy for Androgen Deficiency in the Aging Male (ADAM)

Cardiovascular Endpoints

Are Men Losing Their Gonads?

The Urological Institute of Northeastern New York

Prevalence and Characteristics of Low Serum Testosterone Levels in Men with Type 2 Diabetes Mellitus Naïve to Injectable Therapy

Guidance for Industry Diabetes Mellitus Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes

Male Health. The three major issues are: Cardiovascular Health Prostate Health Fertility & Sexual Performance

Management of Erectile Dysfunction and Cardiovascular Disease Princeton III Consensus Recommendations

Coronary Artery Disease leading cause of morbidity & mortality in industrialised nations.

Cardiovascular Disease Risk Factors Part XII Insulin Resistance By James L. Holly, MD Your Life Your Health The Examiner September 15, 2005

The Link Between Obesity and Diabetes The Rapid Evolution and Positive Results of Bariatric Surgery

Functional Medicine University s Functional Diagnostic Medicine Training Program INSIDER S GUIDE

Your healthcare provider has ordered a Boston Heart Cardiac Risk Assessment

Us TOO University Presents: Estrogen Deficiency Side Effects Due to Androgen Deprivation Therapy

ROLE OF LDL CHOLESTEROL, HDL CHOLESTEROL AND TRIGLYCERIDES IN THE PREVENTION OF CORONARY HEART DISEASE AND STROKE

ANDROPAUSE. Male Menopause

Scientific conclusions and detailed explanation of the scientific grounds for the differences from the PRAC recommendation

Obesity and the Menopause. Vanessa M. Barnabei, MD, PhD Professor and Chair Department of Obstetrics and Gynecology

Endocrine Responses to Resistance Exercise

HDL Cholesterol Subfractions and the Effect of Testosterone Replacement in Hypogonadism

Psoriasis Co-morbidities: Changing Clinical Practice. Theresa Schroeder Devere, MD Assistant Professor, OHSU Dermatology. Psoriatic Arthritis

Testosterone Replacement Therapy. Craig Ensign, MPAS, PA-C University of Utah School of Medicine Urology Division

Hormone Restoration: Is It Right for You? Patricia A. Stafford, M.D. Founder, Wellness ReSolutions

Statins and Risk for Diabetes Mellitus. Background

Therapeutic Approach in Patients with Diabetes and Coronary Artery Disease

Cardiovascular diseases. pathology

Summary HTA. HTA-Report Summary. Introduction

RATE VERSUS RHYTHM CONTROL OF ATRIAL FIBRILLATION: SPECIAL CONSIDERATION IN ELDERLY. Charles Jazra

LDL PARTICLE SIZE: DOES IT MATTER? Samia Mora, M.D., M.H.S., Brigham and Women s Hospital, Harvard Medical School, Boston, Massachusetts.

ESC/EASD Pocket Guidelines Diabetes, pre-diabetes and cardiovascular disease

Vitamin D und seine Bedeutung im Immunsystem und bei der Infektabwehr

Diabetes and Heart Disease

INSULIN RESISTANCE, POLYCYSTIC OVARIAN SYNDROME

Age Management Panel Male Fasting Panel

Shelley Alexander, D.O.

GARY S. DONOVITZ, M.D., F.A.C.O.G.

Type 1 Diabetes ( Juvenile Diabetes)

Historical Basis for Concern

Medical management of CHF: A New Class of Medication. Al Timothy, M.D. Cardiovascular Institute of the South

Testosterone. Testosterone For Women

CASE B1. Newly Diagnosed T2DM in Patient with Prior MI

Research Skills for Non-Researchers: Using Electronic Health Data and Other Existing Data Resources

The Influence of Infant Health on Adult Chronic Disease

Diabetes Mellitus. Melissa Meredith M.D. Diabetes Mellitus

Can Common Blood Pressure Medications Cause Diabetes?

NCD for Lipids Testing

NDA LABELING SUPPLEMENT AND PMR REQUIRED REMS MODIFICATION NOTIFICATION

Atherosclerosis of the aorta. Artur Evangelista

Transcription:

Testosterone and Heart Disease By Pamela W. Smith, M.D., MPH, MS Introduction Two recent trials suggest that testosterone replacement therapy may increase the risk of heart disease and/or stroke. 1, 2 These were poorly designed studies which conflict with numerous previous medical trials that show the beneficial effects of testosterone on the heart and that low testosterone levels in males are associated with an increased risk in the development of heart disease. The following is a comprehensive review of the medical literature on low testosterone being associated with an increased risk in the development of cardiovascular disease and that testosterone replacement at appropriate levels not only decreases the risk of heart disease but can also be used to treat coronary disease. Low Testosterone Levels and Increased Risk of Heart Disease Men with coronary heart disease had a significantly lower total testosterone, free testosterone, and bioavailable testosterone. 3 Low endogenous testosterone concentrations are related to mortality due to cardiovascular disease and other causes. 4, 5 Study showed a possible correlation between lower testosterone levels, erectile dysfunction and conditions associated with higher cardiovascular risk. 6 Study showed that men with coronary heart disease that were under the age of 45 had total and free testosterone levels significantly lower than controls. 7 Serum free testosterone levels were found to be inversely related to carotid intima-media thickness (IMT) and plaque score. 8 Low testosterone levels have been found to be associated with atherosclerosis in men. 9 Low Testosterone Levels and Increase Risk of Diabetes Type II and Metabolic Syndrome Low testosterone levels are associated with an increased risk for the development of type II diabetes and metabolic syndrome. 10, 11, 12, 13, 14 Page 1

Since low testosterone has been shown to lower blood sugar levels, the Endocrine Society now recommends measurement of testosterone in all male patients with type II diabetes mellitus. 15 Low Testosterone Levels Are Associated with an Increased Risk of Mortality Study showed that low testosterone predicts mortality from cardiovascular disease. 16 Study showed that low testosterone levels were associated with an increased risk of all-cause mortality independent of numerous risk factors. Serum testosterone levels were inversely related to mortality due to cardiovascular disease and cancer. 17 Low endogenous testosterone levels are associated with an increased risk of death from all causes and cardiovascular death. 18 Low Testosterone Levels and Increased Risk of Hypertension Study showed that low total testosterone concentrations are predictive of hypertension, suggesting total testosterone as a potential biomarker for increased cardiovascular risk. 19 Low Testosterone and Congestive Heart Failure In males with heart failure, low serum androgens were associated with an adverse prognosis. 20 In men with chronic heart failure, anabolic hormone depletion is common and deficiency of each anabolic hormone is an independent marker of poor prognosis. 21 Testosterone Replacement and Heart Disease Study showed that for all-cause mortality, for each increase of six nanomoles of testosterone per liter of serum was associated with an almost fourteen percent drop in the risk of death. 22 Study revealed that testosterone replacement was associated with a decrease in HDL-C and lipoprotein a. 23 The mechanism of testosterone replacement decreasing lipids may be due to testosterone s positive effects on abdominal fat and insulin resistance. 24 Short-term administration of testosterone induces a beneficial effect on exercise-induced myocardial ischemia in men with coronary heart disease. This effect may be related to a direct coronary-relaxing effect of testosterone. 25 Page 2

Short-term intracoronary administration of testosterone, at physiological concentrations, induces coronary artery dilatation and an increase in coronary blood flow in men with established coronary heart disease. 26 Low-dose supplementation with testosterone in men with chronic stable angina reduced exercise-induced myocardial ischemia. 27 Testosterone replacement has been shown to increase coronary blood flow in patients with coronary heart disease. 28, 29 Transdermal testosterone replacement has been shown to improve chronic stable angina by increasing the angina-free exercise tolerance vs. controls that were getting placebos. 30 Another study showed that testosterone replacement reduced exercise induced myocardial ischemia. 31 Testosterone is a coronary vasodilator by functioning as a calcium antagonistic agent. 32 Testosterone replacement therapy in hypogonadism moderates metabolic components associated with cardiovascular risk. 33 Testosterone replacement has been shown to decrease inflammation and lower total cholesterol. 34 Testosterone replacement in patients with congestive heart failure has been shown to improve exercise capacity, improve insulin resistance, and improve muscle performance. 35 Testosterone replacement has been shown to be helpful in patients with severe heart failure. 37 In this review of the medical literature one can see that numerous studies have shown that low testosterone levels are associated with an increased risk of heart disease and that testosterone replacement therapy is associated with a decreased risk of developing heart disease and is even beneficial in patients that already have coronary vascular disease. So why did the two recent studies show that there was an increased risk of developing heart disease in male patients that were prescribed testosterone replacement therapy? There are five serious flows associated with the two recent trials. Firstly, estrone and estradiol levels were not measure in the subjects in the studies. High estrogen levels in males have been found to be associated with an increase risk in the development of heart disease and stroke. Estrogen levels may elevate due to an increase in Page 3

aromatase activity, alteration in liver function, zinc deficiency, obesity, abuse of alcohol, druginduced estrogen imbalance, and ingestion of estrogen-containing foods or environmental estrogens. High Estrogens are Associated with an Increased Risk of Heart Disease and Stroke Study showed that high estradiol in males was associated with an increased risk of stroke. 38 Study showed that elevated circulating estradiol is a predictor of progression of carotid artery intima media thickness in middle age men. 39 High estradiol levels in men were associated with acute myocardial infarctions. 40 High estrone and low testosterone levels were associated with promoting the development of atherogenic lipid milieu in men with coronary heart disease. 41 Low testosterone and elevated estradiol was associated in this study with lower extremity peripheral artery disease in older men. 42 Men with myocardial infarction had high estradiol and low testosterone levels. 43 Elevated levels of estradiol in men were associated with an increase incidence of strokes, peripheral vascular disease, and carotid artery stenosis compared to subjects with lower estradiol levels. 44 Elevated levels of estrogen in men are associated with an increased risk of heart disease. 45 Secondly, having erythrocytosis is associated with an increased risk in the development of heart disease and thrombosis. 46 A major study on the risk and benefits of testosterone replacement suggests that a baseline hematocrit should be checked at three and six months and then every six to twelve months. If the hematocrit is more than fifty-four percent then testosterone therapy should be stopped until the hematocrit is at a safe level. 47 Hematocrit levels were not measure in these two trials. Thirdly, in both studies not all patients had follow-up testing of testosterone levels. Therefore, dosages of testosterone may have been higher than needed. Supraphysiologial levels of testosterone can induce nitric oxide production and cause oxidative stress which induces endothelial dysfunction. 48 Fourthly, some of the men in these trials were using testosterone injections, which are nonphysiologic since they have peak and trough levels over the weekly or biweekly dosing. This issue was wonderfully discussed by Cappola in her review of Vigen s study. 49 Page 4

Lastly, testosterone can convert to dihydrotestosterone (DHT) which has been shown to enhance early atherosclerosis. 50 The conclusion of the author of this trial was that the findings highlighted a new androgen receptor/nuclear factor-kappab mediated mechanism for vascular cell adhesion molecule-1 expression and monocyte adhesion operating in male endothelial cells that may represent an important unrecognized mechanism for the male predisposition to atherosclerosis. The higher the dose of testosterone that is prescribed the more it is converted by 5 alpha-reductase into DHT. In these two recent trials that suggest that testosterone replacement increases the risk of heart disease in men, DHT levels were not measured. Conclusion Given the plethora of medical studies indicating the beneficial effects of properly prescribed testosterone, one would have to conclude that these two recent medical trials are poorly designed and their conclusion is flawed. Some of the patients did not have repeat testosterone levels measured. Consequently, the patients may have had supraphysiological levels of testosterone. In addition DHT, estrone, estradiol, and HCT levels were not addressed. Furthermore, the medical literature has shown that hormones in the body are a symphony and this web of interconnection was not considered. References 1. Vigen, R., et al., Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels, JAMA 2013; 310(17):1829-36. 2. Finkle, W., et al., Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men, PLOS January 29, 2014. 3. English, K., et al., Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms, Eur Heart Jour 2000; 21(11):890-4. 4. Vermeulen, A., Androgen replacement therapy in the aging male---a critical evaluation, Jour Clin Endocrinol Metabol 2001; 86:2380-90. 5. Malkin, C., et al., Low serum testosterone and increased mortality in men with coronary heart disease, Heart 2010; 96:1821-25. 6. Ma, R., et al., Erectile dysfunction predicts coronary heart disease in type 2 diabetes, Jour Amer Coll Cardiol 2008; 51:2045-50. 7. Turhan, S., et al., The association between androgen levels and premature coronary artery disease in men, Coron Artery Dis 2007; 18(3):159-62. Page 5

8. Bhasin, S., et al., Serum free testosterone is inversely related to carotid intima-media thickness (IMT) and plaque score, Diabetes Care 2003; 26:1869-73. 9. Svartberg, J., et al., Low testosterone levels are associated with carotid atherosclerosis in men, Jour Int Med 2006; 269(6):576-82. 10. Ding, E., et al., Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis, JAMA 2006; 295:1288-99. 11. Laaksonen, D., et al., Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-age men, Diabetes Care 2004; 27:1036-41. 12. Pasquali, R., et al., Effects of acute hyperinsulinemia on testosterone serum concentrations in adult obese and normal-weight men, Metabolism 1997; 46(5):526-9. 13. Rizza, R., et al., Androgen effect on insulin action and glucose metabolism, Mayo Clin Proc 2000; 75(Suppl):S61-S64. 14. Stellato, R., et al., Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study, Diabetes Care 2000; 23(4):490-94. Rizza, R., et al., Androgen effect on insulin action and glucose metabolism, Mayo Clin Proc 2000; 75(Suppl):S61-S64. 15. Dardona, P., et al., Update: hypogonadotropic hypogonadism in type 2 diabetes and obesity, Jour Clin Endo and Met 2011; 96(9):2643. 16. Hyde, Z., et al., Low free testosterone predicts mortality from CVD but not other causes: The Health in Men Study, Jour of Clin Endocriol and Met 2012; 97(1):179. 17. Haring, R., et al., Low serum testosterone levels are associated with increased risk of mortality in a population-based cohort of men aged 20-79, European Heart Jour 2010; 31(12):1494-1501. 18. Araujo, A., et al., Endogenous testosterone and mortality in men: a systematic review and meta-analysis, Jour Clin Endocrinol Metab 2011; 90:3007-19. 19. Torkler, S., et al., Inverse association between total testosterone concentrations, incident hypertension and blood pressure, Aging Male 2011; 14(3):176-82. 20. Guder, G., et al., Low circulating androgens and mortality risk in heart failure, Heart 2010; 96:504-09. 21. Jankowska, E., et al., Anabolic deficiency in men with chronic heart failure: prevalence and detrimental impact on survival, Circulation 2006; 114:1829-37. 22. Khaw, K., et al., Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) Prospective Population study, Circulation 2007; December 4 th. 23. Baum, N., et al., Testosterone replacement in elderly men, Geriatrics 207; 62:15-8. 24. Marin, P., et al., Androgen treatment of abdominally obese men, Obes Res 1993; 1:245-48. Page 6

25. Rosano, G., et al., Acute anti-ischemic effect of testosterone in men with coronary artery disease, Circulation 1999; 99:166-70. 26. Webb, C., et al., Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease, Circulation 1999 100(16):1690-96. 27. English, K., et al., Low dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina, Circulation 2000; 102:1906-11. 28. Haffner, J., et al., Sex hormones and DHEASO4 in relation to ischemic heart disease in diabetic subjects, The WESDR Study. Diabetes Care 1996; 19:1045-50. 29. Channer, K., et al., Cardiovascular effects of testosterone: implications of the male menopause? Heart 2003; 89(2):121-22. 30. Whitsel, E., et al., Intramuscular testosterone esters and plasma lipids in hypogonadal men: a meta-analysis, Amer Jour Med 2001; 111:261-69. 31. English, K., et al., Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: A randomized, double-blind, placebocontrolled study, Circulation 2000; 102(16):1906-11. 32. English, K., et al., Testosterone acts as a coronary vasodilator by a calcium antagonistic action, Jour Endocrinol Invest 2002; 25(5):455-58. 33. Corona, G., et al., Hypogonadism as a risk factor for CV mortality in men: a metaanalytic study, Eur Jour Endocrinol 2011; 165:687-701. 34. Malkin, C., et al., The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men, Jour Clin Endocrinol Metab 2004; 89(7):3313-18. 35. Carminiti, G., et al., Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study, Jour Amer Coll Cardiol 2009; 54(10):919-27. 36. Malkin, C., et al., Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial, Eur Hear Jour 2006; 27:57-64. 37. Toma, M., et al., Testosterone supplementation in heart failure, Circulation 2012; 5:315-21. 38. Abbott, R., et al., Serum estradiol and risk of stroke in elderly men, Neurology 2007; 68(8):563-68. 39. Tivesten, A., et al., Circulating estradiol is an independent predictor of progression of carotid artery intima-media thickness in middle-aged men, Jour Clin Endocrinol Met 2006; 91(11):4433-37. 40. Mohamad, M., Serum levels of sex hormones in men with acute myocardial infarction, Neuro Endocrinol Lett 2007; 28(2):182-86. Page 7

41. Dunajska, K., et al., Evaluation of sex hormone levels and some metabolic factors in men with coronary atherosclerosis, Aging Male 2004; 7(3):197-204. 42. Tivesten, A., et al., Low serum testosterone and high serum estradiol associated with lower extremity peripheral arterial disease in elderly men. The MrOS Study in Sweden, Jour Amer Coll Cardiol 2007; 50(11):1070-76. 43. Tripathi, Y., et al., Serum estradiol and testosterone levels following acute myocardial infarction in men, Jour Physiol harmacol 1998; 42(2):291-94. 44. Lerchbaum, E., et al., High estradiol levels are associated with an increase in mortality in older men referred to coronary angiography, Exp Clin Endocrinol Diabetes 2011; 119(8):490-96. 45. Sudhir, K., et al., Cardiovascular actions of estrogens in men, Jour Clin Endocrinol Metab 1999; 84(10):3411-15. 46. Merchant, S., et al., Erythrocytosis. In Hematopathology. 2 nd Ed. His, E., (Ed.) Philadelphia: Elsevier/Saunders, 2012. 47. Bassil, N., et al., The benefits and risk of testosterone replacement: a review, Ther Clin Risk Manag 2009: 5:427-48. 48. Skogastiema, C., et al., A supraphysiological dose of testosterone induces nitric oxide production and oxidative stress, Eur Jour Prev Cariol March 7, 2013. 49. Cappola, A., Testosterone therapy and risk of cardiovascular disease in men, JAMA 2013; 310(17):1805-06. 50. Death, A., et al., DHT promotes vascular cell adhesion molecule-1 expression in male human endothelial cells via a nuclear factor-kappa-b-dependent pathway, Endocrinology 2004; 145(4):1889-97. 51. Page 8