How To Randomize A Program

Similar documents
Randomized Evaluations of Interventions in Social Service Delivery

Andhra Pradesh School Choice Project Proposal

Planning sample size for randomized evaluations

Workshop on Impact Evaluation of Public Health Programs: Introduction. NIE-SAATHII-Berkeley

Formal Insurance, Informal Risk Sharing, and Risk-Taking. A. Mushfiq Mobarak Mark Rosenzweig Yale University

Household Survey Data Basics

SOCIAL EXPERIMENTATION

Typology of Microfinance Service Providers Version 1.3 1

The economic crisis has demonstrated how critical informed and effective decision-making is for

TIPS DATA QUALITY STANDARDS ABOUT TIPS

OUTLINE OF PRINCIPLES OF IMPACT EVALUATION

JAMAICA. Agricultural Insurance: Scope and Limitations for Weather Risk Management. Diego Arias Economist. 18 June 2009

Health Financing in Vietnam: Policy development and impacts

ECON 3240 Session 3. Instructor: Dr. David K. Lee

This document is a revised draft based on comments received on the May 2011 draft.

THE COMMODITY RISK MANAGEMENT GROUP WORLD BANK

Concept Note: Impact evaluation of vocational and entrepreneurship training in Nepal

Review Jeopardy. Blue vs. Orange. Review Jeopardy

State of Alaska Health and Social Services Medicaid Study

THE MASTERCARD FOUNDATION: RURAL AND AGRICULTURAL FINANCE STRATEGY

How much would it cost to cover the uninsured in Minnesota? Preliminary Estimates Minnesota Department of Health, Health Economics Program July 2006

Alaska Broadband Audit Report May 2015 Page 62

IMPACT EVALUATION: INSTRUMENTAL VARIABLE METHOD

Using Monitoring and Evaluation to Improve Public Policy

Use of Randomization in the Evaluation of Development Effectiveness 1

Terms of Reference Concurrent Monitoring of Mid Day Meal (MDM) in Odisha

Contra Costa Community College District Human Resources Procedure HIRING OF CONTRACT ADMINISTRATORS

Step 6: Report Your PHDS-PLUS Findings to Stimulate System Change

Randomized Evaluations of Educational Programs in Developing Countries: Some Lessons. Michael Kremer *

The Demand for Health care

Fast Forward Employer Mandate: Pay or Play?

Online Reading Support London School of Economics Sandra McNally

The Large Business Guide to Health Care Law

IMPACT OF VILLAGE SAVINGS AND LOAN ASSOCIATIONS

IMPACT OF MICROFINANCE ON HOUSEHOLD WELFARE: ASSESSING THE CASE OF SAMURDHI PROGRAM IN SRI LANKA

2005 SCHOOL FINANCE LEGISLATION Funding and Distribution

CHAPTER 2 AGRICULTURAL INSURANCE: A BACKGROUND 9

Policy Implications of School Management and Practices

LOCAL FOOD CONSUMERS: HOW MOTIVATIONS AND PERCEPTIONS TRANSLATE TO BUYING BEHAVIOR

Q&A from Assurex Global Webinar. Employer ACA Reporting Requirements. Q: Where will these forms come from? will the IRS provide them?

Detroit Land Bank Authority Request for Qualifications:

Basic Skills Teachers Intervention Specialists & Instructional Assistants Support Services Handbook Audubon Public Schools

Summary of Significant Spending and Fiscal Rules in the Every Student Succeeds Act

Making the Case for Mobile Money: A Look at Social Cash Transfers for Development

Center on Education Policy, Reading First: Locally appreciated, nationally troubled

China s experiences in domestic agricultural support. Tian Weiming China Agricultural University

YEAR 3 REPORT: EVOLUTION OF PERFORMANCE MANAGEMENT ALBANY NY CHARTER SCHOO CHARTER SCHOOL PERFORMANCE IN NEW YORK CITY. credo.stanford.

What Works Clearinghouse

Public private partnerships in agricultural insurance

HEALTH INSURANCE MARKETPLACE SURVIVAL GUIDE FOR SMALL BUSINESS. New York Edition

the Affordable Care Act: What Colorado Businesses Need to Know

Index Insurance for Climate Impacts Millennium Villages Project A contract proposal

Software Customer Satisfaction

Sampling Procedures Y520. Strategies for Educational Inquiry. Robert S Michael

UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE. Admissions Committee Procedures and Criteria

Negros Women For Tomorrow Foundation (NWTF): Progress out of Poverty Index (PPI ) Case Study Series

Study Design and Statistical Analysis

Impact of Business Training on the Success of Start-ups by Women Entrepreneurs in Lebanon

Child Care Center Facility Development Checklists

The Impact of Distributing School Uniforms on Children s Education in Kenya

Scaling Up and Evaluation

PUBLIC HEALTH OPTOMETRY ECONOMICS. Kevin D. Frick, PhD

Alaska Employer Health-Care Benefits: A Survey of Alaska Employers

Frequently Asked Questions

COMMUNITY SCORE CARD PROCESS - A Short Note on the General Methodology for Implementation 1

Patient Protection and Affordable Care Act Compliance Checklist for Employers

Flipped Learning Evaluation Institute for Effective Education (University of York) Peter Rudd, PhD

Elementary Middle High School

Brief 1 The State of North Carolina: Jobs, Poverty and Family. Jeannine Sato, Center for Child and Family Policy

The Education Service Contracting (ESC) Program of the Philippines

Annex 6 BEST PRACTICE EXAMPLES FOCUSING ON SAMPLE SIZE AND RELIABILITY CALCULATIONS AND SAMPLING FOR VALIDATION/VERIFICATION. (Version 01.

Transcription:

How to Randomize Nassreena Sampaco-Baddiri Innovations for Poverty Action Philippines 3 rd September, 2014

Lecture Overview Unit and method of randomization Real-world constraints Revisiting unit and method Variations on simple treatment-control

UNIT AND METHOD OF RANDOMIZATION

Unit of Randomization: Options 1. Randomizing at the individual level 2. Randomizing at the group level- Cluster Randomized Trial Which level to randomize?

Unit of Randomization: Considerations What unit does the program target for treatment? Groups in microfinance. Political constituencies for governance projects. Schools for education projects. What is the unit of analysis? What are the outcomes we care about? At what level are we able to measure them? Examples- Test scores for school children. Health outcomes for individuals. Vote shares for politicians.

Unit of Randomization: Individual?

Unit of Randomization: Individual?

Unit of Randomization: Clusters? Groups of individuals : Cluster Randomized Trial

Unit of Randomization: Class?

Unit of Randomization: Class?

Unit of Randomization: School?

Unit of Randomization: School?

How to Choose the Level Nature of the Treatment How is the intervention administered? What is the catchment area of each unit of intervention? How wide is the potential impact? Aggregation level of available data Power requirements Generally, best to randomize at the level at which the treatment is administered.

Example: Deworming School-based deworming program in Kenya: Treatment of individuals affects untreated (spillovers) by interrupting oral-fecal transmission Cluster at school instead of individual Outcome measure: school attendance Want to find cost-effectiveness of intervention even if not all children are treated Findings: 25% decline in absenteeism

What would you do? Suppose an intervention tests the effect of textbooks on student learning outcomes (test scores). At what level should you randomize the treatment? A. At the level of the child B. At the level of the classroom C. At the level of the school D. At the level of the district

REAL-WORLD CONSTRAINTS

Constraints: Fairness Randomizing at the individual level within a farmers association o Non-treated farmers might be unhappy Randomizing at the household-level within the community o Non-recipient households or the village chief might be unhappy Randomizing at the community or farmers association level o Ministry of Agriculture might be unhappy

Constraints: Political, Fairness Not as severe as often claimed Lotteries are simple, common and transparent Randomly chosen from applicant pool Participants know the winners and losers Simple lottery is useful when there is no a priori reason to discriminate Perceived as fair and transparent

Constraints: Resources Most programs have limited resources Farmer Training Programs Results in more eligible recipients than resources will allow services for. More often than not, a lot of resources are spent on programs that are never evaluated. Randomized experiments are usually no more costly than other methods.

Constraints: Contamination Spillovers/Crossovers Remember the counterfactual! If control group is different from the counterfactual, our results can be biased Can occur due to- Spillovers Crossovers

Constraints: Logistics Need to recognize logistical constraints in research designs. For example- Individual de-worming treatment by health workers Many responsibilities. Not just de-worming. Serve members from both T/C groups Different procedures for different groups?

Constraints: Sample Size The program has limited scale Primarily an issue of statistical power

What would you do? Suppose an intervention targets health outcomes of children through information on handwashing. What is the appropriate level of randomization? A. Child level B. Household level C. Classroom level D. School level E. Village level

REVISITING UNIT AND METHOD

Phase-in: Takes Advantage of Expansion Extremely useful for experiments where everyone will / should get the treatment Natural approach when expanding program faces resource constraints What determines which schools, branches, etc. will be covered in which year?

Phase-in Design Round 1 Treatment: 1/3 Control: 2/3 Round 2 Treatment: 2/3 Control: 1/3 Round 3 Treatment: 3/3 Control: 0 Randomized evaluation ends 2 3 3 1 2 3 2 1 2 3 3 2 3 2 1 3 2 1 1 1 3 1 3 2 3 1 1 3 3 2 2 1 1 2 3 2 3 2 3 2 2 2 3 1 1 3 1

Phase-in Designs Advantages Everyone gets the treatment eventually Provides incentives to maintain contact Concerns Can complicate estimating long-run effects Care required with phase-in windows Do expectations change actions today?

Phase-in: Primary School De-Worming Logistical and Resource Constraints: Coverage could not be extended to all at once For some schools, treatment was delayed Three phase-in groups with 25 schools each Mass-deworming treated 30,000 students in 75 primary schools in Kenya

Rotation Design Groups get treatment in turns: Group A benefits from the program in period 1 but not in in period 2 Group B does not have the program in period 1 but receives it in period 2 Question: What happens to people during the time they have access to the program? Measure seasonal influences

Rotation Design Round 1 Treatment: 1/2 Control: 1/2 Round 2 Treatment from Round 1 Control Control from Round 1 Treatment

Rotation Design Advantages Perceived as fairer Easier to get accepted (at least initially). Concerns Control group anticipates future eligibility AND Treatment group anticipates the loss of eligibility Impossible to estimate a long term impact.

Rotation Design: Balsakhi Remedial Education In 2000, Pratham expanded their program to primary schools in Vadodara, western India Not enough resources to cover all schools at once Municipal authorities requested that all eligible schools receive the program

Encouragement Design: What to do When you Can t Randomize Access Sometimes it s practically or ethically impossible to randomize program access But most programs have less than 100% take-up Randomize encouragement to receive treatment

What is Encouragement? Something that makes some folks more likely to use program than others Not itself a treatment For whom are we estimating the treatment effect? Think about who responds to encouragement

Question Which two groups would you compare in an encouragement design? A. Encouraged vs. Not encouraged B. Participants vs. Non-participants C. Compliers vs. Non-compliers D. Don t know

Encouragement Design Encourage Compare encouraged to not encouraged Do not encourage Participated Did not participate These must be correlated Do not compare participants to nonparticipants Complying Not complying Adjust for non-compliance in analysis phase

SEED: A Commitment Savings Product Commitment savings products create withdrawal restrictions to incentivize long-term savings SEED is a product of the Green Bank, a rural bank in the Philippines with the following characteristics: Withdrawal restriction Deposit incentive Same interest rate as regular savings account

Encouragement

Study design: sample frame Sample frame: 4,000 existing (or former) bank clients 3,154 individuals randomly chosen to be surveyed 1,777 surveys completed Participants randomized individually into: Treatment (Offered SEED), 50% Marketing(Encouraged to Save), 25% Control (Nothing), 25% Marketing team from Bank visited one-on-one with T & M groups 28% of Treatment group took-up

Randomization «In the Bubble» Sometimes there are as many eligible as treated individuals Suppose there are 2000 applicants Screening of applications produces 500 «worthy» candidates There are 500 slots: you can t do a simple lottery.

Randomization «In the Bubble» Consider the screening rules Selection procedures may only exist to reduce eligible candidates in order to meet a capacity constraint It may be interesting to test the relevance of the selection procedure and evaluate the program at the same time. Randomization in the bubble: Among individuals who are just below the threshold

Control Randomization in The Bubble Within the bubble, compare treatment to control Treatment Non-participants (scores < 500) Participants (scores > 700)

To Summarize: Possible designs Simple lottery Randomized phase-in Rotation Encouragement design Note: These are not mutually exclusive. Randomization in the bubble Partial lottery with screening

Methods of Randomization: Recap Design Most useful when Advantages Disadvantages Basic Lottery Program over subscribed Familiar Easy to understand Easy to implement Can be implemented in public Control group may not cooperate Differential attrition

Methods of Randomization: Recap Design Most useful when Advantages Disadvantages Phase-In Expanding over time Everyone must receive treatment eventually Easy to understand Constraint is easy to explain Control group complies because they expect to benefit later Anticipation of treatment may impact short-run behavior Difficult to measure long-term impact

Methods of Randomization: Recap Design Most useful when Advantages Disadvantages Rotation Everyone must receive something at some point Not enough resources per given time period for all More data points than phase-in Difficult to measure long-term impact

Methods of randomization: Recap Design Most useful when Advantages Disadvantages Encouragement Program has to be open to all comers When takeup is low, but can be easily improved with an incentive Can randomize at individual level even when the program is not administered at that level Measures impact of those who respond to the incentive Need large enough inducement to improve take-up Encouragement itself may have direct effect

What would you do? What randomization method would you choose if your partner requires that everyone receives treatment at some point in time? A. Basic lottery B. Phase-in C. Rotation D. Randomization in the bubble E. Encouragement

VARIATIONS ON SIMPLE TREATMENT-CONTROL

Multiple Treatments Sometimes core question is deciding among different possible interventions You can randomize these programs Does this teach us about the benefit of any one intervention? Do you have a control group?

Multiple Treatments Control Treatment 1 Treatment 2

Cross-cutting Treatments Test different components of treatment in different combinations Test whether components serve as substitutes or complements What is most cost-effective combination? Advantage: win-win for operations, can help answer questions for them, beyond simple impact! An example?

Varying Levels of Treatment Some villages are assigned full treatment All households get double fortified salt Some villages are assigned partial treatment 50% of households get double fortified salt Testing subsidies, prices and cost-effectiveness!

Stratification Objective: balancing your sample when you have a small sample What is it? Dividing the sample into different subgroups Assign treatment and control within each subgroup

When to Stratify Stratify on variables that could have important impact on outcome variable Stratify on subgroups that you are particularly interested in (where may think impact of program may be different) Stratification more important when small data set Can get complex to stratify on too many variables Makes the draw less transparent the more you stratify

Mechanics of Randomization Need sample frame Pull out of a hat/bucket Use random number generator in spreadsheet program to order observations randomly Stata program code What if no existing list?

THANK YOU nbaddiri@poverty-action.org