Network Planning and Analysis Tools for MPLS Networks Dave Wang davew@wandl.com tel: (732) 868-0100 fax: (732) 868-0014 http://www.wandl.com 1
Company NPAT Profile About WANDL Has been modeling real world networks since 1987. Working closely with equipment vendors, carriers, government, and enterprise to solve a variety of network planning and analysis issues. 2
Company NPAT Profile MPLS Network Model Nodes Links LSP Tunnels Layer 3 Traffic Matrix 3
Basic Steps of Modeling 1. Path Placement for LSP Tunnels 2. Layer 3 Traffic Overlay 3. Info, Reports, such as Link utilization 4. Failure Simulation 5. Traffic load analysis 4
Physical Trunks Transmission type (T3, E3, OC3, OC12, OC48) Routing Metrics (Cost, Delay) Resource or Media Attributes Resilience Attributes (FAIL=0) 5
Resource or Media Attributes Fiber Preferred, Encryption Required Avoid Satellite Network Management only Business, Economy, Standby Red, Green, Blue Airport only, HOV Lane 6
Backbone link Example Link1 atl hou ATT 1 OC12 DIST=1438 Fiber Link2 atl wdc ATT 1 OC12 DIST=683 Ovbf=2.0 Link3 bos zdh ATT 1 OC12 DIST=100 Link4 bos nyc ATT 1 OC12 Link5 chi dal ATT 1 OC12 DIST=5080 7
LSP Tunnels Source, Dest, A2Z Bandwidth QoS requirements Resource or Media requirements Priority/Preemption Routing Method AutoRoute Preferred Routes Required Routes Force Routes 8
Tunnel Example Holland NY NJ 22M R,A2Z,PR 2,2 NY-NJ business SF NY 40M R,A2Z,PS 3,3 SF-DV-CH-DT-NY tunnel_10 SJC RST 13962800 R,A2Z,MER 1,3 tunnel_8 AT NY 20490000 R,A2Z 2,15 9
Constraint Based Routing for Tunnels Shortest Path Algorithm Bandwidth requirement Metric : Cost, Delay, Throughput, Load Balance Maximum hop count Equipment specific details priority/preemption Preferred or Required or Auto Routes Reroute 10
Routing for Layer 3 Traffic EIGRP, OSPF, ISIS, BGP4 Forwarding Equivalence Classes TOS Dijkstra or Bellman-Ford algorithms Influenced by LSP Tunnels 11
Company NPAT Profile Example Network without MPLS N1 Region 1 N3 N4 N8 Util 0.90 0.75 0.50 0.25 0.00 N2 N7 Region 2 N5 N6 N9 Vdr,Med From To Type # UsedBw UnusedBw Used% --------------------------------------------------------- DEF,T N3 N4 T3 1 41.150M -446.00K 101.10% DEF,T N5 N6 T3 1 17.850M 22.854M 43.85% Demands between Region 1 & Region 2 travel path N3-N4-N7 Path N3-N5-N6-N7 under-utilized 12
Company NPAT Profile Example Network using MPLS N1 Region 1 N3 N4 N8 Util 0.90 0.75 0.50 0.25 0.00 N2 LSP Tunnel N7 Region 2 N5 N6 N9 Vdr,Med From To Type # UsedBw UnusedBw Used% -------------------------------------------------------- DEF,T N3 N4 T3 1 30.500M 10.204M 74.93% DEF,T N5 N6 T3 1 28.713M 11.991M 70.54% LSP Tunnel added [N3-N5-N6-N7-N8] Demand load better balanced 13
Multi-Layer Modeling Routing LSP tunnels on links (Layer 2) Routing demand flows on LSP tunnels and links (Layer 3) add/delete/upgrade physical links change link attributes, metrics add/delete/change LSP tunnels change LSP tunnel preferred routes change LSP tunnel media requirements Network Element Failure 14
Multi-Layer Failure Simulation Fail any combination of nodes, physical links, and facilities Exhaustively fail every single node, physical link, and facility Create custom failure scenario scripts Simulate behavior of LSP tunnels according to equipment details Simulate loading of layer 3 demands based on IGP and LSP tunnels Detailed Reports, Peak Utilization Analysis 15
Failure Simulation Example Before Failure Region 1 Region 2 After Failure, LSP Tunnels Reroute : Region 1 Region 2 Link Failure Util 0.90 0.75 0.50 0.25 0.00 16
Example : Traffic Matrix 17
Example : Over Subscription Report # Over Subscription occurred at: # ATL-LAX: DEF OC3 AvailBw= 63.895M -6.58M # ATL-RST: DEF OC3 AvailBw= -41.31M 13.570M # LAX-SJC: DEF OC3 AvailBw= 37.870M -2.76M # NYC-PHI: DEF OC3 AvailBw= -20.05M -55.36M # PHI-RST.1: DEF OC3 AvailBw= -57.83M -71.91M 18
Modeling Example : Link Utilization 19
Example : using LSP Tunnels Holland NYC SJC 13962800 R,Z2A 02,02 NYC-BOS-ZDH-CHI-DEN-SFO-SJC (IGP) NYC-PHI-RST-ATL-LAX-SJC lincoln NYC SFO 11049600 R,Z2A 02,02 NYC-BOS-ZDH-CHI-DEN-SFO (IGP)NYC-PHI-RST-ATL-LAX-SJC-SFO callahan BOS LAX 8544000 R,Z2A 02,02 BOS-ZDH-CHI-DAL-HOU-SDG-LAX (IGP) BOS-NYC-PHI-RST-ATL-LAX george LAX NYC 8544000 R,A2Z 02,02 LAX-SDG-HOU-DAL-CHI-ZDH-BOS-NYC (IGP) LAX-ATL-RST-PHI-NYC 20
Example : Single Failure Simulation Failure simulation of tunnels and traffic * Max Avg..Info on Failed Demands.. #LkBw *LinkName Hop Hop Count Bandwidth BwRat HPr OvSub ATL-HOU down 7 2.9 0 0 0.0% 0 0 ATL-LAX down 7 3.1 0 0 0.0% 0 0 ATL-RST down 7 3.1 0 0 0.0% 0 0 BOS-ZDH down 7 3.0 0 0 0.0% 0 0 BOS-NYC down 6 2.9 0 0 0.0% 0 0 CHI-DAL down 7 3.1 0 0 0.0% 0 0 CHI-DEN down 8 3.4 0 0 0.0% 0 1 ** Reserved Bandwidth Violation at: # LAX-SJC: DEF OC3 AvailBw= 56.960M -3.08M CHI-ZDH down 8 3.3 0 0 0.0% 0 1 ** Reserved Bandwidth Violation at: # NYC-PHI: DEF OC3 AvailBw= 30.231M -12.61M 21
Path Placement for LSP Tunnels Generate Path Placement for LSP Tunnels Load Balancing and backtracking Diversity groups Network Grooming Bottleneck analysis 22
Traffic Trunk Bottleneck Analysis Bottlenecks for Path 286 (VDN031N081): 1 try:n31-*-n82-n81 2 try:n31-*-n42-n43-*-n81 3 try:n31-n32-n43-*-n81 4 try:n31-*-n41-n42-*-n82-n81 5 try:n31-n32-n43-n42-*-n82-n81 6 try:n31-n32-n43-*-n89--n81 7 try:n31--n24--n11-n41-*-n88-n89--n81 8 try:n31--n24--n11-*-n44-*-n85--n88-n89--n81 Bottlenecks for Path 286 (VDN031N081): 1 try:mg31-*-n82-n81 2 try:mg31--nj24--hq43-*-n81 3 try:mg31-*-hq42-*-n82-n81 4 try:mg31-*-hq41-hq42-*-n82-n81 5 try:mg31-mg32-hq43-hq42-*-n82-n81 6 try:mg31-mg32-hq43-*-sf89--n81 7 try:mg31--nj24--bk11-hq41-*-sf-sf89--n81 8 try:mg31--nj24--bk11-*-node-*-la85--sf-sf89--n81 23
Multi-Period Traffic Load Analysis Uses real traffic measurements from the network for multiple time periods Report trunk utilization according to IGP or LSP tunnels Extensive What if capabilities with failure scenarios 24
Traffic Load Analysis Peak provisioned bandwidth encountered during any single failure Peak traffic usage encountered during any single failure Provisioned Bandwidth Time interval of measured traffic usage Measured traffic usage 25
Tariff Integration Automatically price private lines U.S. Domestic Tariffs include IXC and LEC Prices International private line cost database Customize tariff database Integrated in the design process 26
Summary An integrated set of modeling capabilities Multi-Layer Simulation with equipment details Multi-Period Traffic Load Analysis LSP Tunnel Path Placements Tariff based Network Design 27
Conclusion Fast Comprehensive Strong working alliance with major equipment vendors, Carriers, and ISP Available now http://www.wandl.com info@wandl.com tel: (732) 868-0100 fax: (732) 868-0014 28