BUYING PROCESS FOR ALL-FLASH SOLID-STATE STORAGE ARRAYS



Similar documents
HOW TO SELECT THE BEST SOLID- STATE STORAGE ARRAY FOR YOUR ENVIRONMENT

FIVE PERVASIVE FLASH-BASED STORAGE MYTHS

TIPS TO HELP EVALUATE AND DEPLOY FLASH STORAGE

Essentials Guide CONSIDERATIONS FOR SELECTING ALL-FLASH STORAGE ARRAYS

WHAT S INSIDE NEW HYPER- CONVERGED SYSTEMS

Data warehouse software bundles: tips and tricks

3 common cloud challenges eradicated with hybrid cloud

Hybrid cloud computing explained

Solutions Brief. Unified All Flash Storage. FlashPoint Partner Program. Featuring. Sustainable Storage. S-Class Flash Storage Systems

Top 10 Myths About Flash Storage

Flash Memory Technology in Enterprise Storage

Managing Virtual Desktop Environments

Deploying Flash in the Enterprise Choices to Optimize Performance and Cost

E-Guide CLOUD COMPUTING FACTS MAY UNCLENCH SERVER HUGGERS HOLD

E-Guide THE LATEST IN SAN AND NAS STORAGE TRENDS

Advanced analytics key component for decision management systems

E-Guide GROWING CYBER THREATS CHALLENGING COST REDUCTION AS REASON TO USE MANAGED SERVICES

Flash In The Enterprise

Total Cost of Solid State Storage Ownership

E-Guide HOW THE VMWARE SOFTWARE DEFINED DATA CENTER WORKS: AN IAAS EXAMPLE

HPe in Datacenter HPe3PAR Flash Technologies

The Flash Based Array Market

Business white paper Invest in the right flash storage solution

FLASH STORAGE SOLUTION

The skinny on storage clusters

5 ways to leverage the free VMware hypervisor Key tips for working around the VMware cost barrier

New economies of storage with the Compellent Flash-optimized solutions. Flash at the price of disk for I/O-intensive applications

LTO tape technology continues to evolve with LTO 5

Social channels changing contact center certification

Optimizing enterprise data storage capacity and performance to reduce your data footprint

2013 Cloud Storage Expectations

Hyper-V 3.0: Creating new virtual data center design options Top four methods for deployment

E-Guide CONSIDERATIONS FOR EFFECTIVE SOFTWARE LICENSE MANAGEMENT

Evaluating SaaS vs. on premise for ERP systems

Microsoft SQL Server 2014 Fast Track

Flash Memory Arrays Enabling the Virtualized Data Center. July 2010

Mixed All-Flash Array Delivers Safer High Performance

E-Guide to Mobile Application Development

Data Center Solutions

All-Flash Storage Solution for SAP HANA:

E-Guide BEST PRACTICES FOR CLOUD BASED DISASTER RECOVERY

6 Point SIEM Solution Evaluation Checklist

Securing the SIEM system: Control access, prioritize availability

E-Guide NETWORKING MONITORING BEST PRACTICES: SETTING A NETWORK PERFORMANCE BASELINE

Everything you need to know about flash storage performance

Journey to the All-Flash Data Center

HP Flash Storage as part of the Converged Infrastructure

Driving Big Data with OCZ Enterprise SSDs

Solid State Drive vs. Hard Disk Drive Price and Performance Study

Accelerating Server Storage Performance on Lenovo ThinkServer

Lab Evaluation of NetApp Hybrid Array with Flash Pool Technology

Expert guide to achieving data center efficiency How to build an optimal data center cooling system

Benefits of virtualizing your network

How it can benefit your enterprise. Dejan Kocic Netapp

MaxDeploy Ready. Hyper- Converged Virtualization Solution. With SanDisk Fusion iomemory products

HP and SanDisk Partner for the HP 3PAR StoreServ 7450 All-flash Array

How to Develop Cloud Applications Based on Web App Security Lessons

Measuring Interface Latencies for SAS, Fibre Channel and iscsi

A Guide to MAM and Planning for BYOD Security in the Enterprise

High Performance Server SAN using Micron M500DC SSDs and Sanbolic Software

E-Guide MANAGING AND MONITORING HYBRID CLOUD RESOURCE POOLS: 3 STEPS TO ENSURE OPTIMUM APPLICATION PERFORMANCE

Software Defined Storage Needs a Platform. Piotr Biskupski. Storage Solutions Technical Leader - IBM Flash System, IBM CEE

Best Practices for Optimizing SQL Server Database Performance with the LSI WarpDrive Acceleration Card

VIOLIN CONCERTO 7000 ALL FLASH ARRAY

Streamlining the move to the cloud. Key tips for selecting the right cloud tools and preparing your infrastructure for migration

IBM FlashSystem storage

Discover how customers are taking a radical leap forward with flash

Guide to the Flash Storage Revolution

Cloud Storage: Top Concerns, Provider Considerations, and Application Candidates

Aligning Public Cloud Strategies to Improve Server Efficiency

Preparing for the cloud: Understanding the infrastructure impacts Eight essential tips for a successful cloud migration

E-Guide VIDEO CONFERENCING SOFTWARE AND HARDWARE: HYBRID APPROACH NEEDED

STORAGE SOLID-STATE STORAGE ARRAYS BUYER S CHECKLIST

Managing Data Center Growth Explore Your Options

Capitalizing on Smarter and Faster Insight with Flash

Why AFA Architecture Matters as Enterprises Pursue Dense Mixed Workload Consolidation

Virtualization backup tools: How the field stacks up

EMC XTREMIO EXECUTIVE OVERVIEW

Flash-optimized Data Progression

Is Your Data Safe in the Cloud?

Desktop virtualization: Best practices for a seamless deployment

Advantages of Intel SSDs for Data Centres

The changing face of scale-out networkattached

Why Hybrid Storage Strategies Give the Best Bang for the Buck

Data Center Storage Solutions

Optimizing SQL Server Storage Performance with the PowerEdge R720

Worldwide All-Flash Array and Hybrid Flash Array Forecast and 1H14 Vendor Shares

NEXSAN NST STORAGE FOR THE VIRTUAL DESKTOP

Deep Dive on SimpliVity s OmniStack A Technical Whitepaper

What Sellers Need to Know. IBM FlashSystem

BEYOND TOOLS: BUSINESS INTELLIGENCE MEETS ANA FLASH-OPTIMIZED STORAGE IS TRANSFORMING THE DATA CENTER

5 free Exchange add-ons you should consider Eliminating administration pain points on a budget

How To Use All Flash Storage In Education

FAS6200 Cluster Delivers Exceptional Block I/O Performance with Low Latency

W H I T E P A P E R D e l i v e r i n g C u s t o m e r V a l u e w i t h E n t e r p r i s e F l a s h D e p l o y m e n t s

Deploying Affordable, High Performance Hybrid Flash Storage for Clustered SQL Server

EMC XtremSF: Delivering Next Generation Storage Performance for SQL Server

Intel RAID SSD Cache Controller RCS25ZB040

Solution Spotlight BEST PRACTICES FOR DEVELOPING MOBILE CLOUD APPS REVEALED

Data Center Solutions

Transcription:

E-Guide BUYING PROCESS FOR ALL-FLASH SOLID-STATE STORAGE ARRAYS SearchSolidState Storage

A ll-flash storage arrays are becoming Tier-1 storage for mission-critical data. This e-guide showcases the progression of all-flash storage arrays and walks you through the buying process for all-flash solid-state storage arrays. Learn why IT shops are considering all-flash arrays for Tier-1 storage and which applications benefit the most from flash performance improvements. PAGE 2 OF 11

IS ALL-FLASH ARRAY STORAGE RIGHT FOR YOU? All-flash storage arrays are becoming well known, and their adoption rate in IT shops is increasing. At Demartek, we are even hearing that some large IT shops are including all-flash array storage in their future purchase plans, and that all-flash arrays are becoming their standard for Tier-1 storage platforms for mission-critical active data. This article is the first in a series that walks you through the buying process for all-flash solid-state storage arrays. You'll learn why IT shops are considering all-flash arrays for Tier-1 storage and which applications benefit the most from flash performance improvements. THE PROGRESSION OF ALL-FLASH STORAGE ARRAYS Shops are now considering flash storage arrays for Tier-1 use because designers have added management and other features that put them on par with today's external hard disk drive (HDD) storage systems. Initially, all-flash arrays lacked enterprise-class capacity and functionality; they were used to accelerate performance of niche applications. Today's all-flash array capacities, physical PAGE 3 OF 11

characteristics, application, features and endurance now rival those of marketleading HDD arrays. Individual solid-state drives (SSDs) used in some enterprise all-flash arrays are available today in 1.6 TB or 1.9 TB capacities. These exceed the capacities of enterprise 10,000 rpm or 15,000 rpm HDDs. Although today's 7,200 rpm HDDs are available in larger capacities, SSDs are gaining capacity fairly rapidly. The physical characteristics of all-flash array storage are also becoming appealing for IT managers. Many all-flash arrays consume significantly less than 1,000 watts per 2U storage system. In many cases, data centers are finding that increased amounts of power are simply not available from the local electric utility, so any technology that reduces power consumption is beneficial. Because all-flash arrays consume less power and do not require as much cooling as HDDs, they produce less heat overall, thereby reducing the air conditioning requirement in a data center. Also, many all-flash arrays run quieter than HDD arrays in the same amount of rack space. MULTIPLE APPLICATIONS There is an interesting workload trend emerging with all-flash array storage. Initially, IT shops may deploy an all-flash array for a single workload or PAGE 4 OF 11

application. They often notice an all-flash array performs very well for a single application and that there is room for growth of that application in terms of performance. As a result, these shops begin to add a second workload to the same all-flash array, then a third workload and so on. For example, we have run multiple online transaction processing (OLTP) and data warehousing workloads on the same all-flash array and obtained very good performance. We have not been able to run those same multiple OLTP and data warehousing workloads on a HDD array of the same capacity and achieve the same performance. ENTERPRISE FEATURES Many of today's all-flash arrays have incorporated advanced features such as compression, data deduplication, thin provisioning, replication, snapshots and encryption technologies. Some of the data reduction technologies, such as compression and data deduplication, help to drive down the price by increasing the effective usable capacity for a given amount of raw flash. However, this also can become a point of confusion because the various vendors may not compute their prices on the same effective data rate, and the effective capacity varies by the type of data stored. There is also some debate PAGE 5 OF 11

among product vendors about whether one should perform compression before data deduplication or vice versa. The optimal answer depends in part on the architecture of the particular all-flash array. In general, it seems that management of all-flash solid-state storage arrays is simpler than traditional HDD arrays. In older HDD arrays, there were limitations on the way logical volumes could be created. Disk groups had to be created with a fixed number of disks in the group, and a specific RAID type associated with that disk group. Storage administrators had to keep track of these disk groups, and in a large array, this could be time-consuming. It was also a serious amount of work to change the disk group. Most all-flash arrays today use a variation of wide-striping or variable-striping that allows volumes to be built across many or all of the drives or flash modules in the system. The endurance of all-flash arrays has been a perennial topic of discussion. With improvements in wear-leveling, error correction code and other related features at the flash controller level, many of these endurance-related issues have been solved. Products have been in the field long enough to see that failure rates are quite low; in some cases, lower than HDD failure rates. This is why it is not uncommon to see five-year warranties from all-flash array vendors. Pricing discussions are always interesting when it comes to all-flash arrays. PAGE 6 OF 11

A couple of years ago, $5 per gigabyte (GB) seemed to be a target price for allflash array storage. This price has dropped due to capacity improvements in NAND flash technology and advances in data reduction features such as compression and data deduplication. We are now hearing of prices dropping to approximately $2 per GB for effective usable capacity, assuming a fairly large capacity model is purchased. I have even heard that prices are expected to get down to $1 per GB within the next year or two for the larger-capacity models of all-flash arrays. One of the selling points is for customers to buy enough flash for today, then purchase capacity upgrades in a year or two as the prices drop. This can be done by planning to purchase a certain size of drive or flash module now, and then buy a larger size of drive or module next year. PERFORMANCE IMPROVEMENTS As an independent test lab, we spend the majority of our time measuring various aspects of performance for servers, networking and storage systems. For storage systems, we usually capture three basic metrics of storage performance: Input/output operations per second (IOPS) PAGE 7 OF 11

Throughput measured in megabytes per second (MBps) Latency measured in milliseconds (ms) or microseconds (µs) in addition to other metrics from the application host server. When we tested all-flash arrays, the first thing we noticed compared to HDD-based arrays is the significant difference in the three basic metrics and performance consistency. Although it is workload dependent, all-flash arrays generally have more consistent overall performance than HDD-based arrays, and we especially see this in the latency measurements. Many workloads -- OLTP database, virtual desktop infrastructure and Web server workloads, to name a few -- benefit from latency improvements. When these workloads are moved to all-flash arrays, the end-user experience is dramatically improved because response time is reduced, and the increased performance is consistent. Many all-flash arrays can reduce average latency to less than 1 ms, depending on the workload. IOPS Most transaction-based workloads are also sensitive to improvements in IOPS. Individual HDDs can deliver hundreds of IOPS, while individual SSDs can PAGE 8 OF 11

deliver thousands of IOPS in the same form factor. When these types of drives (2.5-inch) are placed in an all-flash array, it is not uncommon to obtain 100,000 to 400,000 IOPS in a 2U system, depending on the workload. Other all-flash arrays use flash in different form factors, such as PCI Express (PCIe) cards or some proprietary form factors. These are often called modules. Many of these non-drive form factors have a higher performance per module than SSDs because they use interfaces such as PCIe. Several of these systems deliver even higher IOPS than the drive form-factor systems. For some customers, this is more than enough to handle their transactional workloads. For other customers, this type of performance opens up new application opportunities. Some large customers are taking advantage of all-flash array storage because of the increased throughput available. Some of the extract, transform and load workloads, analytics processes, application-specific replication tasks, backup tasks and streaming tasks for large databases can be performed in significantly less time. We typically see time savings measured in hours or sometimes days with all-flash arrays, depending on the specific workload. When repeated daily or weekly, these time savings can help to offset the higher cost of a storage system. PAGE 9 OF 11

All-flash arrays have been in the field for a while, and with many of them now offering the advanced features and high performance required by enterprises, it's hard to find a reason not to purchase one. All-flash arrays are also much more affordable than they were a few years ago, and their reliability is quite good. PAGE 10 OF 11

FREE RESOURCES FOR TECHNOLOGY PROFESSIONALS TechTarget publishes targeted technology media that address your need for information and resources for researching products, developing strategy and making cost-effective purchase decisions. Our network of technology-specific Web sites gives you access to industry experts, independent content and analysis and the Web s largest library of vendor-provided white papers, webcasts, podcasts, videos, virtual trade shows, research reports and more drawing on the rich R&D resources of technology providers to address market trends, challenges and solutions. Our live events and virtual seminars give you access to vendor neutral, expert commentary and advice on the issues and challenges you face daily. Our social community IT Knowledge Exchange allows you to share real world information in real time with peers and experts. WHAT MAKES TECHTARGET UNIQUE? TechTarget is squarely focused on the enterprise IT space. Our team of editors and network of industry experts provide the richest, most relevant content to IT professionals and management. We leverage the immediacy of the Web, the networking and face-to-face opportunities of events and virtual events, and the ability to interact with peers all to create compelling and actionable information for enterprise IT professionals across all industries and markets. PAGE 11 OF 11