Clinical Study Minimizing Surgically Induced Astigmatism at the Time of Cataract Surgery Using a Square Posterior Limbal Incision



Similar documents
EUROPEAN JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

Incision along Steep Axis

Premium IOL Implantation Calculations in Post-LASIK Cataract Eyes Using ASCRS IOL Calculator

Phacoemulsification: Considerations for Astigmatism Management Jason P. Brinton, MD and Thomas A. Oetting, MS, MD June 10, 2011

A STUDY ON SURGICALLY INDUCED ASTIGMATISM FOLLOWING SMALL INCISION CATARACT SURGERY

final corrected draft

What are your options for correcting astigmatism?

AcrySof IQ Toric IOL (SN6ATT) Surgeon Keys for Success & Acknowledgement

Research Article Inconsistencies Exist in National Estimates of Eye Care Services Utilization in the United States

Research Article. Dr. Snehal P. Gade, Assistant Professor, Department of Ophthalmology, Government Medical College Aurangabad, Maharashtra, INDIA.

What is the main target for all phaco surgeons?

IN TORIC IOLS ADVANCEMENTS. Supplement to MARCH 25, 2015


Informed Consent for Cataract Surgery and/or Implantation of an Intraocular Lens (IOL)

Posterior Corneal Astigmatism: Is It Important? MP Weikert, MD Baylor College of Medicine October 23, 2011

LASIK. Complications. Customized Ablations. Photorefractive Keratectomy. Femtosecond Keratome for LASIK. Cornea Resculpted

Simple regression formula for intraocular lens power adjustment in eyes requiring cataract surgery after excimer laser photoablation

OMNI EYE SPECIALISTS. The Intraocular Lens

Incisional techniques still have a place in the era of toric intraocular lenses

Managing Astigmatism in your Cataract Practice

Management of Astigmatism in Cataract Surgery

Curtin G. Kelley, M.D. Director of Vision Correction Surgery Arena Eye Surgeons Associate Clinical Professor of Ophthalmology The Ohio State

Minimally Invasive Surgery: Femtosecond Lasers and Other Innovative Microsurgical Techniques

Optimizing outcomes with toric IOLs

IBRA Professional. Leading Technology for Refractive Outcome Analysis. Brochure 2015

Is there a fundamental limit of efficacy when aberrations arising from one point along visual axis (lens) are corrected at another point (cornea)?

Your one stop vision centre Our ophthalmic centre offers comprehensive eye management, which includes medical,

Clinical Study Visual and Refractive Outcomes of a Toric Presbyopia-Correcting Intraocular Lens

IOL Power Calculation After Myopic LASIK. Hany Helaly, Lecturer of Ophthalmology, Faculty of Medicine, Alexandria University.

Case Report Laser Vision Correction on Patients with Sick Optic Nerve: A Case Report

Call today at

the corneal incision s role in the apparition of

Timothy D. McGarity, M.D.

Standardized Analyses of Correction of Astigmatism With the Visian Toric Phakic Implantable Collamer Lens

LASIK and Refractive Surgery. Laser and Lens Vision Correction Options

KERATOCONUS IS A BILATERAL, ASYMMETRIC, CHRONIC,

VA high quality, complications low with phakic IOL

VISION PATTERN. What Can you Expect from the ReSTOR procedure?

Astigmatism and vision: Should all astigmatism always be corrected? 1 Ophthalmic Research Group, Aston University, Birmingham, UK

Residents Research Forum

Kerry D. Solomon, MD, is Director of the Carolina Eyecare Research Institute at Carolina Eyecare Physicians in Charleston, S.C.

Providing Optimal Optics For Your Astigmatic Cataract Patients. While the cornea remains relatively stable and prolate throughout life

ACRI_Comfort_8Englisch_ :07 Uhr Seite 1. The bitoric intraocular lens for the improvement of visual acuity and contrast sensitivity

COS Statement on Values for Uninsured Services in Canada

Cataract Surgical Packages

The Toric Solution: Exceeding Expectations in Patients with Astigmatism. Saturday 5 October XXXI Congress of the ESCRS Amsterdam, The Netherlands

The ASCRS Clinical Survey revealed

ADDENDUM to the Informed Consent for Cataract Surgery with Intraocular Lens Implant

EVALUATING ASTIGMATISM

5/24/2013 ESOIRS Moderator: Alaa Ghaith, MD. Faculty: Ahmed El Masri, MD Mohamed Shafik, MD Mohamed El Kateb, MD

Informed Consent for Refractive Lens Exchange (Clear Lens Replacement)

Tucson Eye Care, PC. Informed Consent for Cataract Surgery And/Or Implantation of an Intraocular Lens


Surgery induced Astigmatism following Nonphaco Manual Small incision Cataract Surgery in relation to different Postoperative period

Clinical Study Prevalence of Corneal Astigmatism in Patients before Cataract Surgery in Northern China

ReLEx smile Minimally invasive vision correction Information for patients

Supplement to October Master Your Toric Planning and Improve Refractive Outcomes With the LENSTAR LS 900. Sponsored by

Maximizing Your Cataract Surgery Outcomes in Corneal Disease

Laser Refractive Cataract Surgery with the LenSx Laser

What afe yoll' options fon cofnecting astigrnatisrn?

WHAT IS A CATARACT, AND HOW IS IT TREATED?

FIRST EXPERIENCE WITH THE ZEISS FEMTOSECOND SYSTEM IN CONJUNC- TION WITH THE MEL 80 IN THE US

Financial Disclosure. So what s the problem? 7/13/12 FEMTOSECOND LASER CATARACT SURGERY: FAD OR FUTURE? Laser Cataract Surgery: the claim

LASIK & Refractive Surgery

Cataract Testing. What a Patient undergoes prior to surgery

IOLMaster with Software Version V 3.0

The Digital Microscope Platform. Heads-up Surgery with Integrated Applications

JRS Standard for Reporting Astigmatism Outcomes of Refractive Surgery

Current Trends in Modern Cataract Surgery. Jose Ivan Quiceno, MD Division of Ophthalmology Scripps Clinic Medical Group

If You Receive a Monofocal Lens During your Cataract Operation You Can Get Rid of Astigmatism at the Same Time

The pinnacle of refractive performance.

CATARACT SURGICAL PACKAGES

The Bladeless Laser Cataract Surgery

Custom Cataract Surgery. Laser and Lens Options

SARAH PHYLLIPS. Now, a cataract procedure as unique as your eye itself. TABLE 1. Age: Depth (ACD) Axial LengTH

CONSENT FOR CATARACT SURGERY REQUEST FOR SURGICAL OPERATION / PROCEDURE AND ANAESTHETIC

Overview. Addressing Astigmatism with Toric IOL Implantation: Pre-Operative and Operative Considerations. Where are we now? How have we progressed?

Correction of Keratometric Astigmatism: Incisional Surgery

Correspondence should be addressed to Heinz-Jakob Langen;

Uncorrected astigmatism can cause visual

Oregon Eye Specialists, PC YOUR GUIDE CATARACT SURGERY. Improving VISION. Improving LIFE.

INFORMED CONSENT FOR CATARACT AND LENS IMPLANT SURGERY

Long-Term Outcomes of Flap Amputation After LASIK

Astigmatism in cataract surgery

To determine the effectiveness of correcting astigmatism. Astigmatism analysis by the Alpins method. Noel Alpins, FRACO, FRCOphth, FACS ABSTRACT

Pre-Operative Laser Surgery Information

How do we use the Galilei for cataract and refractive surgery?

LASER CATARACT SURGERY

Management of Corneal Astigmatism by Limbal Relaxing Incisions during Cataract Surgery

Refractive Surgery. Common Refractive Errors

Dr. Booth received his medical degree from the University of California: San Diego and his bachelor of science from Stanford University.

Toric pseudophakic intraocular lenses (IOLs) and toric

How To Implant A Keraring

The Calhoun adjustable IOL breaks new ground

Examination and optical correction of the vision system following the procedure of cataract removal

BACKGROUND INFORMATION AND INFORMED CONSENT FOR CATARACT SURGERY AND IMPLANTATION OF AN INTRAOCULAR LENS

Advanced Eyecare of Orange County Kim Doan, M.D. Eye Physician & Surgeon

Pseudophakic Residual Astigmatism

Increasing cost of health care 2010 Prevalence of Cataract Patients: 24.4 M (NEI/NIH) of patients age 40+

Informed Consent For Cataract Surgery And/Or Implantation of an Intraocular Lens

Transcription:

Ophthalmology Volume 2011, Article ID 243170, 4 pages doi:10.1155/2011/243170 Clinical Study Minimizing Surgically Induced Astigmatism at the Time of Cataract Surgery Using a Square Posterior Limbal Incision Paul Ernest, 1 Warren Hill, 2 and Richard Potvin 3 1 TLC Eyecare & Laser Centers, 1116 W. Ganson, Jackson, MI 49202, USA 2 East Valley Ophthalmology, Mesa, AZ 85206, USA 3 Science in Vision, Burleson, TX 76028, USA Correspondence should be addressed to Paul Ernest, paul.ernest@tlcmi.com Received 9 January 2011; Accepted 25 August 2011 Academic Editor: G. L. Spaeth Copyright 2011 Paul Ernest et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Purpose. To compare the surgically induced astigmatism from clear corneal and square posterior limbal incisions at the time of cataract surgery. Methods. Surgically induced astigmatism was calculated for a set of eyes after cataract surgery using a temporal 2.2 mm square posterior limbal incision. Results were compared to similar available data from surgeons using clear corneal incisions of similar size. Results. Preoperative corneal astigmatism averaged 1.0 D and was not significantly different between the incision types. Surgically induced astigmatism with the 2.2 mm posterior limbal incision averaged 0.25±0.14 D, significantly lower in magnitude than the aggregate surgically induced astigmatism produced by the 2.2 mm clear corneal incision (0.68 ± 0.49 D). Conclusion. The 2.2 mm square posterior limbal incision induced significantly less, and significantly less variable, surgically induced astigmatism relative to a similar-sized clear corneal incision. This is likely to improve refractive outcomes, particularly important with regard to premium intraocular lenses. 1. Introduction Sutureless clear corneal incisions are now arguably the most common incisions made to perform cataract surgery with phacoemulsification, replacing scleral tunnel and limbal incisions. There are significant differences in the effects of clear corneal and scleral or limbal incisions, related to anatomical and physiological differences in the respective structures where the incisions are made. The cornea is comprised of a regular lamellar structure of collagen fibrils that stretch from limbus to limbus, arranged in a lattice formation; this is what provides the primary structural support of the cornea and accounts for its transparency. The cornea is also avascular. In contrast, at the limbus, this regular structure is no longer evident. Vascular arcades are present, providing a potential source of fibroblasts [1]. The differences in the healing effects of incisions at the limbus and the cornea have been previously discussed in the literature [2 4]. Limbal incisions appear to heal more quickly and are more resistant to deformation pressure than those in the cornea. Clear corneal incisions also appear to increase the likelihood of endophthalmitis, potentially for the reasons above [5]. In short, there are no disadvantages to a limbal incision in terms of surgical safety. From a structural point of view it is known that incisions for cataract surgery will induce a flattening effect when made on (or near) the steep axis of the cornea. This is termed surgically induced astigmatism (SIA). This effectis positively correlated with incision size (larger incisions generating more astigmatism, all other things being equal) and location (scleral or limbal incision inducing less astigmatism than clear corneal), though for small incisions the effect of location appearsless critical [6, 7]. Wound construction also appears to have an effect, with square incisions reported to affect astigmatism the least [8]. Data related to surgically induced astigmatism in the recent literature is primarily related to clear corneal incisions. The data reported here summarize the astigmatic changes produced with a small (2.2 mm) square posterior limbal incision. These results are compared to a sample of results from clear corneal incisions.

2 Ophthalmology (a) (b) (c) (d) Figure 1: Construction of a posterior limbal incision. 2. Patients and Methods 2.1. Patients. A retrospective patient chart review was conducted at one site (PE) for a study of toric and spherical IOLs [9]. Those eyes with preoperative and postoperative keratometry results were identified and the relevant data were extracted from the files. Eyes were excluded if they had irregular (nonorthogonal) corneal astigmatism or if they had previous corneal surgery. The retrospective review of data included no protected health information (PHI). This obviated the need for a specific informed consent or IRB approval for the data collection undertaken here. In addition, all patients sign an acknowledgement that their deidentified PHI data may be used for research purposes when they are seen in the practice. Comparative surgically induced astigmatism data were obtained from one of the authors (W. Hill) from a website specifically designed to collect preoperative and postoperative keratometry data for the purposes of calculating surgically induced astigmatism [10]. This site provides the necessary spreadsheet and instructions to surgeons for the calculation of SIA. An option allows any surgeon who uses the spreadsheet to upload their data to the website for the purposes of aggregate analysis. Again, no PHI was collected so informed consent was not required for this data set. Results from PH and the aggregate data from WH were tabulated in Microsoft Excel and analyzed using STATISTICA statistical software [11]. Differences between groups were calculated with t-tests and analysis of variance (ANOVA) tests, with significance at P < 0.05. 2.2. Surgery. For the patients at one site (P. Ernest) the preoperative corneal astigmatism was measured using a manual keratometer. The data were corroborated with an automated keratometry reading and the automated keratometry feature of the IOLMaster (Carl Zeiss Meditec, Jena, Germany). The automated keratometry readings were repeated on all patients postoperatively, and the comparison to the preoperative automated keratometry was used to calculate SIA. This eliminated potential variability based on different technicians performing manual keratometry. Postoperative readings were all taken more than 6 months after surgery. The surgical technique employed in the time period in which the retrospective data were collected was constant for all patients. All incisions were temporal, 2.2 mm square posterior limbal incisions, using a technique previously described in the literature [12]. An illustration of the technique is shown in Figure 1.

Ophthalmology 3 Table 1: Surgically induced astigmatism with 2.2 mm incisions. Surgeon Eyes Incision type Surgically induced astigmatism (D) Mean SD Median Surgeon 1 40 Clear corneal 0.88 0.60 0.72 Surgeon 2 20 Clear corneal 0.80 0.41 0.73 Surgeon 3 52 Clear corneal 0.57 0.41 0.41 Surgeon 4 28 Clear corneal 0.52 0.43 0.41 Surgeon 5 106 Clear corneal 0.38 0.23 0.34 Ernest 38 Posterior limbal 0.25 0.14 0.26 Surgical technique was not described in the aggregate SIA data collected off the web, but incision type (e.g., clear corneal, limbal) was generally indicated, and the size of the incision was noted. These variables were collected so that surgeons could submit different preoperative and postoperative data sets for different incision sizes and locations. 3. Results The review of available clinical records from PE yielded a total of 38 eyes that both met the criteria for inclusion and had available postoperative keratometry data for analysis. Surgically induced astigmatism was calculated as the vector difference between preoperative and postoperative anterior corneal astigmatism as measured with automated keratometry. The SIA in this cohort averaged 0.25 D with a standard deviation of 0.14 D. A total of 1,712 eyes were available in the aggregate SIA data from W. Hill, from 51 different surgeons. The data were filtered to remove duplicates, include only incision sizes of 2.2 mm, and exclude those records where the incision type was not indicated. Where there were not at least 20 surgeries in any incision category (size and location) for a surgeon, those data were also deleted. After this data-screening step, 246 surgeries from 5 surgeons remained for comparative analysis. Average preoperative keratometry was not statistically significantly different between surgeons (P = 0.41); means ranged from 43.8 D to 44.5 D. The magnitude of preoperative corneal cylinder was also not statistically significantly different between surgeons (P = 0.13); means ranged from 0.79 D to 1.04 D. Table 1 contains a summary of the surgically induced astigmatism by surgeon. Looking at the aggregate clear corneal incision data versus the Ernest posterior limbal data, there was a statistically significant difference in the surgically induced astigmatism by incision type (P < 0.001). Inside the clear corneal group, there was a statistically significant difference by surgeon (P = 0.003). As a post hoc test, the Ernest data were compared to the surgeon with the lowest average SIA from the clear corneal incision group (Surgeon 5); there was a statistically significantly lower mean SIA in the Ernest cohort (P = 0.001). Note, too, that the standard deviation of the Ernest cohort is less than half that of the cohorts of 4 of the 5 other surgeons, and 40% lower than Surgeon 5 despite having less than half the sample size. Magnitude of surgically induced astigmatism (D) 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Surgeon 1 Vertical bars denote 0.95 confidence intervals Surgeons 1 5: clear corneal incision Ernest: posterior limbal incision Surgeon 2 Surgeon 3 Figure 2: Surgically induced astigmatism with 2.2 mm incisions. Figure 2 shows the calculated surgically induced astigmatism for the 5 surgeons. Surgeons 1 to 5 used 2.2 mm clear corneal incisions, while PE used a 2.2 mm square posterior limbal incision. There was a statistically significant difference in SIA by surgeon (P <0.001). Post hoc testing showed that the Ernest data yielded a statistically significantly lower SIA than the other surgeons data. 4. Discussion The results suggest that the magnitude and the variability of surgically induced astigmatism with small incision surgery (2.2 mm) is significantly lower if a posterior limbal incision is used instead of a clear corneal incision. Results for the clear corneal incisions used here as comparative data are consistent with those recently reported in the literature. Wilczynski et al. reported SIA values of 0.50 ± 0.25 D with 1.7 mm and 1.8 mm surgical incisions [13]. Holland reported SIA values of 0.6 ± 0.4 D for 2.4 mm clear corneal incisions [14]. Masket reported that SIA results were somewhat lower with his 2.2 mm clear corneal incisions (0.35 ± 0.21 D) but it is worth noting that his incision was started with a groove at the temporal limbus [6]. Some of the variability of SIA data from surgeons other than Ernest is likely related to differences in technique Surgeon 4 Surgeon 5 Ernest

4 Ophthalmology between surgeons. In addition, intrasurgeon variability may be slightly higher if surgeons did not measure their postoperative keratometry 1 month or more after surgery, as there is some change in keratometry expected in that first month. The minimization of the magnitude (and variability) of surgically induced astigmatism is important for modern day cataract surgery, particularly with the use of toric and multifocal intraocular lenses lenses for which patients pay a premium, expecting premium vision. The success in effectively reducing astigmatism with toric lenses is affected by SIA [15]. Residual astigmatism after surgery will reduce the likelihood of spectacle independence for distance vision for these patients [16]. Minimizing astigmatism for multifocal IOLs is equally important, as even small amounts of residual astigmatism can compromise the outcome with regard to uncorrected visual acuity at distance [17]. Surgeons interested in reducing the magnitude and variability of induced astigmatism at the time of cataract surgery may want to consider the use of a 2.2 mm square posterior limbal incision. Disclosure No author has any proprietary or financial interest in the products or methods discussed. [10] Surgically Induced Astigmatism Calculator, http://www.doctor-hill.com/physicians/download.htm#sia, accessed 12/ 18/10. Uploaded data aggregated by Warren Hill, MD. [11] StatSoft, Inc., STATISTICA (data analysis software system), version 9.1., 2010, http://www.statsoft.com/. [12] P. H. Ernest and T. Neuhann, Posterior limbal incision, Cataract and Refractive Surgery, vol.22,no.1,pp. 78 84, 1996. [13] M. Wilczynski, E. Supady, L. Piotr, A. Synder, D. Palenga- Pydyn, and W. Omulecki, Comparison of surgically induced astigmatism after coaxial phacoemulsification through 1.8 mm microincision and bimanual phacoemulsification through 1.7 mm microincision, Cataract and Refractive Surgery, vol. 35, no. 9, pp. 1563 1569, 2009. [14] P. H. Ernest and E. J. Holland, Acrylic toric IOL in eyes with low levels of preoperative corneal astigmatism, in Proceedings of the American Society of Cataract and Refractive Surgery (ASCRS 10), 2010. [15] W. Hill and R. Potvin, Monte Carlo simulation of expected outcomes with the AcrySof R toric intraocular lens, BMC Ophthalmology, vol. 8, article 22, 2008. [16] A. D. Miller, M. J. Kris, anda. C. Griffiths, Effectofsmall focal errors on vision, Optometry and Vision Science, vol. 74, no. 7, pp. 521 526, 1997. [17] K. Hayashi, S. Manabe, M. Yoshida, and H. Hayashi, Effect of astigmatism on visual acuity in eyes with a diffractive multifocal intraocular lens, Cataract and Refractive Surgery, vol. 36, no. 8, pp. 1323 1329, 2010. References [1]R.S.SnellandM.A.Lemp,Clinical Anatomy of the Eye, Blackwell Science, Malden, Mass, USA, 2nd edition, 1998. [2] P. Ernest, R. Tipperman, R. Eagle et al., Is there a difference in incision healing based on location? Cataract and Refractive Surgery, vol. 24, no. 4, pp. 482 486, 1998. [3] P. H. Ernest, K. T. Lavery, and L. A. Kiessling, Relative strength of scleral corneal and clear corneal incisions constructed in cadaver eyes, Cataract and Refractive Surgery, vol. 20, no. 6, pp. 626 629, 1994. [4] P. H. Ernest, R. Fenzl, K. T. Lavery, and A. Sensoli, Relative stability of clear corneal incisions in a cadaver eye model, Cataract and Refractive Surgery, vol.21,no.1,pp. 39 42, 1995. [5] ESCRS Endophthalmitis Study Group, Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors, Cataract and Refractive Surgery, vol. 33, no. 6, pp. 978 988, 2007. [6] S. Masket, L. Wang, and S. Belani, Induced astigmatism with 2.2- and 3.0-mm coaxial phacoemulsification incisions, Refractive Surgery, vol. 25, no. 1, pp. 21 24, 2009. [7] K. Hayashi, M. Yoshida, and H. Hayashi, Corneal shape changes after 2.0-mm or 3.0-mm clear corneal versus scleral tunnel incision cataract surgery, Ophthalmology, vol. 117, no. 7, pp. 1313 1323, 2010. [8] T. Pfleger, C. Skorpik, R. Menapace, U. Scholz, H. Weghaupt, and M. Zehetmayer, Long-term course of induced astigmatism after clear corneal incision cataract surgery, Cataract and Refractive Surgery, vol. 22, no. 1, pp. 72 77, 1996. [9] P. Ernest and R. Potvin, Effects of preoperative corneal astigmatism orientation on results with a low-cylinder-power toric intraocular lens, Cataract & Refractive Surgery, vol. 37, no. 4, pp. 727 732, 2011.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity