What perceptions electrical engineers have on expertise and scientific thinking and how these perceptions are related to learning



Similar documents
REVISED RESOLUTION ON THE ROLE OF COMMUNICATION IN GENERAL EDUCATION ADOPTED BY THE NCA LEGISLATIVE ASSEMBLY NOVEMBER 17, 2012

Emphasizing Soft Skill Learning and Training as Part of an Engineering Curriculum Revision

MASTER S DEGREE PROGRAMME IN LEARNING, EDUCATION AND TECHNOLOGY (LET)

Changes in educational and economic environment require continuing academic curriculum development

Information technology in medical education: a nationwide project on the opportunities of the new technology

Research into competency models in arts education

Masters in Education - College Teachers Program

ORGANIZATIONAL FRAMEWORK

REGULATIONS FOR THE DEGREE OF MASTER OF EDUCATION (MEd)

TEACHERS USING COMPUTERS IN MATHEMATICS: A LONGITUDINAL STUDY

Curriculum Development for Doctoral Studies in Education

Council on Social Work Education. Curriculum Policy Statement for Baccalaureate Degree Programs in Social Work Education

THE UNIVERSITY OF EDINBURGH. PROGRAMME SPECIFICATION M.A. Honours in Psychology and Business Studies1

Which elements of digital competence should be acquired at school?

REGULATIONS AND CURRICULUM FOR THE MASTER S PROGRAMME IN INFORMATION ARCHITECTURE FACULTY OF HUMANITIES AALBORG UNIVERSITY

PROFESSIONAL DEVELOPMENT: A VISION FOR SAUDI SCIENCE TEACHERS

REGULATIONS FOR THE DEGREE OF MASTER OF EDUCATION (MEd)

The DTU PhD programme: Results from a survey among PhD graduates and recruiters. Technical University of Denmark. Report.

SYLLABUS COUN 509 Action Research in Education A SOLES-Global Course School of Leadership & Education Sciences University of San Diego.

Drafting Program Educational Objectives for Undergraduate Engineering Degree Programs

The situation of psychology publications in Lithuania

Social Presence Online: Networking Learners at a Distance

National assessment of foreign languages in Sweden

The analysis of the frequency of performance appraisal methods use in businesses

MASTER S DEGREE PROGRAMME IN LEARNING, EDUCATION AND TECHNOLOGY (LET)

1 Issue 18. Year 9 students views towards their careers and technology education. Pamela Tolich

Defining core competencies of an instructional technologist

BA Psychology ( )

AN INNOVATIVE INTEGRATED MATHEMATICS, SCIENCE, AND TECHNOLOGY EDUCATION TEACHER CERTIFICATION PROGRAM: CHARACTERISTICS AND FORMATIVE EVALUATION

Hospitality Major Vocational High School Students Expectations on University Education

Service Quality Value Alignment through Internal Customer Orientation in Financial Services An Exploratory Study in Indian Banks

Turku School of Economics: Strategy for

MiraCosta Community College District programs are consistent with the college mission, vision, and core values.

School Psychology Program Goals, Objectives, & Competencies

On the attributes of a critical literature review. Saunders, Mark N. K. 1 & Rojon, Céline 2. United Kingdom.

Research Project. Abstracts AAP ACADEMY ADMINISTRATION PRACTICE. Growth Starts With Knowledge

Programme Curriculum for Master Programme in Managing People, Knowledge and Change

The importance of introducing a course on information and communication technologies for development into the information technology curriculum

HUMAN RESOURCES DEVELOPMENT NEEDS IN HIGHER EDUCATION

Educating the Health Librarians in Africa today: Competencies, Skills and Attitudes required in a Changing Health Environment

Science teachers pedagogical studies in Finland

Assuring Educated Educators through the New York State Liberal Arts and Sciences Test

Kindergarten to Grade 4 Manitoba Foundations for Scientific Literacy

UNH Graduate Education Department. Quarterly Assessment Report

GIS and Cartography at DGUC

Why major in linguistics (and what does a linguist do)?

EXCELLENCE AND DYNAMISM. University of Jyväskylä 2017

2. Educational Policy and Accreditation Standards

STUDY AT ONE OF THE WORLD S BEST UNIVERSITIES

How To Study Engineering In Global And Manufacturing

(27) credit hours as follows: Code Subject Credit Hours

THE ASSESSMENT OF GRADUATE PROGRAMS IN ART AND DESIGN. National Association of Schools of Art and Design

Creative Education and New Learning as Means of Encouraging Creativity, Original Thinking and Entrepreneurship

DEPARTMENT OF EDUCATION SCHOOL PSYCHOLOGY PROGRAM

Information Visualization WS 2013/14 11 Visual Analytics

STUDENTS PERCEPTIONS OF ONLINE LEARNING AND INSTRUCTIONAL TOOLS: A QUALITATIVE STUDY OF UNDERGRADUATE STUDENTS USE OF ONLINE TOOLS

Comparative Analysis of PhD programs in Engineering Education

SUBJECT-SPECIFIC CRITERIA

Forensic Psychology Major Learning Objectives (adapted from APA)

Neuve_Communiqué_April_2009.pdf

Examining Science and Engineering Students Attitudes Toward Computer Science

Industrial Engineering Definition of Tuning

Programme description for Master s programme in Social Work and Human Rights 120 higher education credits. Second Cycle

Equality in Aalto University

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES

Analysis of Experience of Designing the Professional Master Study Programme Career Counselling in Latvia Ilze MIKELSONE *

Master of Applied Social Science (mass)

MSU Departmental Assessment Plan

Cognitive Area Program Requirements 10/4/12 1

EAPRIL Best Research and Practice Award

Leader Succession and Collective Efficacy: Conditions that Create Continuity in Transition

The American College of Greece: Academic Vision. David G. Horner, Ph.D. President The American College of Greece April 14, 2011 (Edited July 2013)

Bachelor Program in Analytical Finance, 180 credits

GRADUATE PROGRAMS IN EDUCATIONAL PSYCHOLOGY STUDENT HANDBOOK (REVISED 02/2009)

Brand Loyalty in Insurance Companies

The Degree Qualifications Profile

Determining Future Success of College Students

Technology Use, Technology Views: Anticipating ICT Use for Beginning Physical and Health Education Teachers

A. The master of arts, educational studies program will allow students to do the following.

ANALYZING THE SIGNIFICANCE OF RE-ENGINEERING THE BUSINESS PROCESS IN CORPORATE STRATEGY

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

Concept Paper. II. Abstract

Appendix A. Educational Policy and Accreditation Standards

METACOGNITIVE AWARENESS OF PRE-SERVICE TEACHERS

ACTUAL PROBLEMS AND GOOD PRACTICES IN ACCOUNTANCY TEACHING TO STUDENTS IN ALBANIA

International Master s Program in Comparative Social Work. Kyösti Urponen

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES KEY FACTS. School of Arts and Social Sciences Department or equivalent Department of Psychology

MA Psychology ( )

Informed Design: A Contemporary Approach to Design Pedagogy Design as The Core Process in Technology Design as an Instructional Strategy

Learning about the influence of certain strategies and communication structures in the organizational effectiveness

Performance Improvement Competencies for Instructional Technologists

Educational Policy and Accreditation Standards

Determining Students Language Needs in a Tertiary Setting

Chapter 2. Education and Human Resource Development for Science and Technology

Summary of the Research on the role of ICT related knowledge and women s labour market situation

D.P. Abeysooriya a, P.A.P. Samantha Kumara b a Faculty of Information Technology, ICBT Campus, Sri Lanka. deloosha@icbtcampus.edu.lk.

PROGRAMME SPECIFICATION

Health services management education in South Australia

The Critical Skills Students Need

Transcription:

What perceptions electrical engineers have on expertise and scientific thinking and how these perceptions are related to learning Kirsti Keltikangas Helsinki University of Technology TKK, Faculty of Electronics, Communications and Automation 02015 TKK, Finland (kirsti.keltikangas@tkk.fi) Abstract This paper outlines a part of research underway at Helsinki University of Technology TKK. The research is focused on electrical engineers and their perceptions on engineering expertise, scientific thinking and how these perceptions are related to learning. Qualitative data collected in an Internet survey were analysed using a content analysis method, and three categories were found: a learning view category, a status category, and an individual/collective category. Furthermore, some common competencies describing engineering expertise were found. These research results serve as a basis for further research on engineering education. Keywords: electrical engineers, expertise, scientific thinking, learning 1 INTRODUCTION The purpose of this paper is to introduce a part of an on-going research project on electrical engineers and their perceptions on expertise and scientific thinking, and how these perceptions are related to learning. This research is currently underway at Helsinki University of Technology TKK at the Faculty of Electronics, Communications and Automation. The aim of this paper is to understand how engineers expertise in engineering and scientific thinking is related to learning and developing their own competencies. There is clearly a need to review the role of engineers and engineering education because they have in general changed much during recent decades. Bordogna [1] has claimed that tomorrow s engineers will need to use abstract and experiental learning, to work independently and in teams, and to meld engineering science and engineering practice. He adds that engineers must exhibit more than first-rate technical and scientific skills, and also have a broad, holistic background. [1] Meier, Williams and Humphreys [2] state that the workers of the 21 st century must possess cross-functional inter-disciplinary knowledge, skills, and attitudes, which extend well beyond the traditional scope of technological training. TKK s Strategy 2015-document claims that one of the ideals of higher education at TKK is to appreciate creativity, critical thinking and high-standard expertise [3]. This will be attained by providing top-level teaching linked with research. This ideal is, without doubt, related to the current structural transformation of the information society [see 4, 5] For instance, societies are confronting rapid social and technological changes, economic and cultural globalization which furthermore have an influence on an individual s competencies and maintaining his or hers expertise in working life [6] Engineering is a typical example of a profession performing symbolic-analytic or knowledge-intensive work. In this type of work, creating and maintaining expertise and scientific thinking skills is particularly crucial. 2 THEORETICAL BACKGROUND AND EARLIER RESEARCH Expertise in general refers to the characteristics, skills, and knowledge that distinguish experts from novices and less experienced people [7]. One encyclopaedia describes an expert as someone who has a special skill or special knowledge of a subject, gained as a result of training or experience [8]. Expertise has usually been defined as the ability to successfully execute problem-solving tasks related to one s professional field [9]. It can also be related to knowledge which has been researched, for example, at the University of Technology, Denmark

- Ahmed, Hacker & Wallace [10] have studied what the role of knowledge and experience plays in engineering design. They argue that knowledge and experience play an important role in engineering design. They continue that knowledge provides the capacity to make decisions and adopt courses of action. [10] Combining theoretical knowledge with practice will lead to a deeper learning and understanding in order to gain in expertise. In more current research, Ahmed [11] states that competence is related to the level of ability to apply knowledge. Therefore, an understanding of different levels of expertise is necessary in order to understand competence [11]. Competencies achieved during engineering education and later in working life, can be divided into key technical and non-technical competencies [12, 2]. Another way of viewing engineering competencies is to divide them into two distinctive areas the science of engineering and the practice of engineering. The science of engineering is the set of mathematical and scientific tools used to solve engineering problems. However, the practice of engineering may be defined as the recognition and formulation of a problem and its solution. [13]. Davis, Beyerlein & Davis [5] have been researching how an engineer profile is developed. Their results showed that 50 American engineers in the research group gave high importance to the following engineering attributes: technical competence communication profound thinking solution orientation professionalism, and client orientation. In their results, continuous learning was ranked lower. The respondent group in this research consisted of both academic and non-academic engineers. [5] Mäkinen and Olkinuora [14] have researched academic expertise at Finnish universities. They conclude that regardless of branch, academic expertise should include IT skills, flexibility, social skills and especially, an ability to choose the most relevant knowledge from flood of information. Furthermore, they state that the ability to continuously renew knowledge and skills according to the ideals of lifelong learning is crucial for knowledgeintensive work. Mäkinen and Olkinuora [14] have challenged the question where expertise can be or should be built up in higher education or in working life. According to Kuhn, Amsel & O Loughlin, scientific thinking can include the notion of logical thinking, problem solving, induction and inductive thinking skills. It is very unlikely that thinking skills are either entirely general or entirely domain specific. These writers pose a question whether instruction (in higher education) in thinking skills can be undertaken in domain-specific or in a more general form [15]. Scientific thinking skills have been researched to a large extent among children and youth [see 16]. However, students in higher education, in particular engineering students, have not yet much covered in research. In this research learning, expertise and scientific thinking form the basic components when studying electrical engineers perceptions. Research related to this field has been done, for example, with graduates from computer sciences, teacher education, general educational sciences and pharmacy [17], as well as into expertise in software design [see 18]. Empirical studies on learning, expertise and scientific thinking, focused on electrical engineering are, however, rare. 3 RESEARCH AIMS The aim of this study was to explore the perceptions of electrical engineering students on expertise and scientific thinking. Data were examined from two different viewpoints: 1) whether engineers perceptions had a connection to learning skills and their development, and 2) what kind of aims for engineering education, the engineering students perceived. Electrical engineers were chosen for, to the sample group of the research because of my earlier experience as a teacher at the Department of Electrical and Communications. This group was also chosen because this department has the largest number of students at TKK (approximately 3 000 compared to a total of 15 000 at TKK). Thus, results can represent a rather large share of students and graduates at TKK. The first viewpoint emphasizes learning in particular, lifelong learning. Learning to learn can be regarded as a key competence for engineers, and professionals in every field. The second viewpoint derives from the changing information society around us, and how electrical engineers perceive themselves as a part of the society and

working life. The second viewpoint includes a notion of the value of the engineering studies are engineering studies a means for reaching something, or are they providing students with engineering expertise in general? 4 DATA COLLECTION AND DATA ANALYSIS 4.1 Data collection The qualitative date for this research was gathered in October-November 2007 with a quantitative Internet survey. The survey was sent to 626 electrical engineering students, and their addresses were received from TKK Student registration office. The students in this sample group are delayed in their studies (studied 7 years or more at TKK), had more than 80 study weeks and were registered in autumn 2007at the Department of Electrical and Communications Engineering (after TKK s organizational change on 1 st Jan. 2008 the Faculty of Electronics, Communications and Automation). This sample group was selected because of their current study situation. Their perceptions on studies and learning may support the development of education at the Faculty of Electronics, Communications and Automation. The Internet survey in all consisted of 36 question items, of which two were optional, open-ended metaphor-type qualitative questions. The metaphor question type was adapted from surveys of the Finnish Association of Graduate Engineers TEK. The respondents were asked to continue a phrase with as many words or sentences as possible. The open-end questions to answer were as follows: o o Engineering expertise is Would you please continue this with as many words as possible Scientific thinking is Would you please continue this with as many words as possible 4.2 Description of the respondent group Altogether 120 respondents completed the Internet survey. The respondent rate of the entire survey was 19, 2 per cent. 109 respondents of the entire group answered the open-ended qualitative questions. This can be regarded as a fairly satisfactory return in comparison with the entire sample of respondents, especially when considering that answering these two questions was optional. Research studies [19] claim that response rates to e-mail surveys have significantly decreased since 1986. One of the reasons for lower response rates can be the enormous increase in unsolicited e-mail to Internet users. The response rate to the qualitative questions was 91 per cent. The average age of the respondent group was 32, 6 years. Thirteen of them were women (12 %), and the rest 96 men (88 %, see Table 1.) This represents well the share of women studying at the Faculty of Electronics, Communications and Automation. The share of women studying at the entire TKK is approximately 25 per cent. Description of the respondent group freq. % Gender Female 13 12 Male 96 88 Total 109 100 Work experience from 1 to 5 years 70 64 from 6 to 9 years 17 16 from 10 to 14 years 11 10 over 15 years 11 10 TABLE 1. Description of the respondent group The largest proportion of the respondents had work experience from one to five years (see Table 1) My preliminary expectation was that this group of students would not be active, full-time students any more, but in working life. 10 respondents of the total 120 answered that they were full-time students, which supported this expectation. One of the major reasons for their delayed studies and graduation was going to work and their financial situation. The survey had one question on graduation plan from TKK. The majority of the respondents (97 % of 120) replied that they are planning to graduate in a two or three years time.

4.3 Method of analysis The collected qualitative data - the answers of the respondents - were collected into one document. The collected data of the two open-end questions consisted of 22 pages of text transformed into Windows Word Table-form from the original Internet survey file.the data were analysed using a content analysis method. Krippendorf [20] defines content analysis as a research technique for making replicable and valid inferences from texts to the contexts of their use. Content analysis is one of several qualitative research approaches used in educational and social sciences. In this research, content analysis is derived from the collected data. It can be regarded as a wide theoretical framework which is possible to be incorporated within several, different analysis contexts. The texts were read and examined over and over again, and combining categories were found in them. Most of the respondents had written at least three or four longer sentences. Quite a few had written a longer chapter. After having read the body of text several times, it was possible to find categories describing respondents perceptions. Three different categories were found based on the collected data. Respondents answers were numbered per each person in the data. Numbers used with quotations in the Research findings section refer to persons and their perception describing each category. The numbers are combined with a letter R referring to a word respondent. 5 RESEARCH FINDINGS The data and the results showed that most of the respondents were aware of the demands of the information society. Furthermore, they were also aware of the requirements for knowledge-intensive work. The majority of the respondents mentioned information, knowledge, its creation or processing in some ways in their answers. Referring to the first research aim, learning skills and their development were rarely mentioned. However, respondents mentioned learning in different forms. Three different categories were found based on the collected data and content analysis. The first category can be named as a learning view category. According to the analysed data, this divided engineering students most. Only a small minority mentioned lifelong learning, continuous learning, or learning in general as a means for maintaining expertise, competencies or skills. This minority was also able to identify daily work tasks as a means of learning. However, learning to learn is a key competence for a knowledgeintensive work profile. Even fewer respondents answered that learning could be a common way of learning with others, for example, sharing new knowledge in working places or in other communities. Some did mention that engineering expertise is continuous learning. However, the idea of learning was hidden tacitly in their opinions that studies at TKK were not enough; it was just the beginning, they had to grow gradually into experts at work. The following examples describe the first category: [it is] updating your own skills continuously, that is continuous learning. You have to tackle new things and ideas with enthusiasm, and study them at least in general level, in order to follow development R39 Engineering expertise at its best is diverse learning, developing and knowledge in a dynamic work environment. Engineering expertise requires also competencies in business and social skills. R59 The second category can be named as a status category. There were clearly two types of respondents in this category: those who saw engineering education and the Master s degree as a means of achieving something of merit or benefit in their lives. Several things were named: a better job, better wages, work possibilities abroad (outside Finland), better chances to achieve a more respected position etc. One respondent even mentioned a beautiful wife. These respondents very seldom mentioned the connection to the first category, the idea of learning. The other group regarded engineering education as a way to better understand for example the society, links to other scientific disciplines, colleagues at work, or the work context itself. This group had a more systemic and holistic approach to engineering expertise. Western society, for example in Scandinavia, can be regarded as somewhat emphasizing material values of life. This naturally reflects also engineering education students. Engineering education in Finland is, to some extent, renowned as promising a good, well paid career with high status. Persons in the other group mentioned that engineering expertise as very important or essential for the whole society. This category is to a certain extent related to the areas which Martin et al. [13] has presented (the science and practice of engineering). Here there are two examples of this category as follows. The first one describes the answers of those with more materialistic values and the second the latter part. A significant professional skill which is less appreciated in Finland compared to other European countries. Engineering expertise is an important factor when filling up work positions R62

Has to be based on a wide outlook of own branch before you can go deeper into the details of your own field of expertise. You must be able to see connections between different things, also outside the technical field R55 The third category divides the respondents also into two smaller groups. It is named as an individual/collective category. This category has links to the two earlier described categories. Its name relates to how the respondent sees the connection to his/her surroundings or context. In this category those having a collective perception, can see links in both asked questions to their colleagues, clients, work environment, and society in general. Some of these respondents mentioned in their answers that expertise is knowledge sharing, or it can be an ability to communicate with others and guide them. Those respondents, who had a somewhat materialistic way of seeing expertise and scientific thinking, may be categorized in the individual category. The following quotations represent this category from both viewpoints. The first one is an example of a collective thinking category: [it is] using knowledge and competencies in your daily work. It is ability to analytical problem solving with others. R44 The following quotation describes the individual thinking category: Essential for making a good career. According to my opinion the best way to become an expert is to focus an interesting field so that you control it really well. Besides, becoming an expert requires continuous interest towards your chosen field, and you must be able to update knowledge to keep up with the current development. R75 Additionally, a small part of the respondents belonged to a critical group according to their answers. However, a fourth category was not formed from them because the share of the respondents was rather small. These respondents had critical attitudes to the both questions about the studies at the Faculty of Electronics, Communications and Automation. In particular, the answers to Scientific thinking is... included much criticism of the curricula and teaching of the faculty. According to their perceptions, scientific thinking could not be developed at TKK, or during their studies at TKK. Some of the respondents mentioned other courses at other departments/faculties at TKK in which there were better possibilities to learn some basics of it. Most of the respondents in the entire sample group had the idea that scientific thinking skills are something not needed in daily working life, but just by with researchers in scientific field. Only few people had answered that creating scientific thinking skills is one aim of higher education. The majority of the respondents mentioned the following competencies or abilities belonging to engineering expertise and scientific thinking. Many of them were mentioned as answers to the both questions: Analytical thinking Problem solving skills Critical thinking skills Ability to search information and create new information Seeing links between different fields of expertise, and even outside technical field Integrating theories into practice Age and the length of work experience did not have much effect on answers, or on forming different categories. A rather young respondent (from 26 to 29 years old) could have wider, holistic perceptions on society, or e.g. developing your expertise. However, middle-aged respondents (over 40 years) did not all belong to the group with many years of work experience. It may be that this sample group with the delayed studies is rather heterogenic, and further research would be needed in order to go deeper into factors affecting their perceptions and thinking. 6 CONCLUSIONS This research aimed to understand the perceptions of electrical engineering students. The majority of the respondents were in working life, and trying to complete delayed studies at the Faculty of Electronics, Communications and Automation. Their answers on expertise and scientific thinking were analysed with a content analysis research approach. Three categories were found, and the categories had links with each other. When examining the research aims, the first aim was partly achieved. The connection between the perceptions of engineering expertise and learning was found, but not very widely. Learning skills and their development were rarely named. The second category of status-oriented perceptions showed that individuals could see their own

situation and career development. However, a smaller number of respondents mentioned links with the surrounding society (colleagues, clients, other branches and fields in and outside engineering). The majority of the respondents had mentioned several engineering attributes in common in their answers. One respondent wrote that engineering expertise is a common way of thinking with other engineers (R79) Despite the categories found and differences in their answers, majority of the respondents in the sample group shared this way of engineering thinking, and also shared the idea of engineering identity. However, not enough attention has been paid to lifelong learning in engineering, and in particular how engineers reflect on their learning skills. Thus, more research on this subject is needed. References [1] Bordogna, J. (1997) Making Connections: The Role of Engineers and Engineering Education. The Bridge 27(1). Available online at: http://www.nae.edu/nae/bridgecom.nsf/weblinks/naew-4nhmpy?opendocument [2] Meier, R.L., Williams, M.R. & Humphreys, M.A. (2000). Refocusing Our Efforts: Assessing Non-Technical Competency Gaps. Journal of Engineering Education, July 2000, 377-385. [3] http://www.tkk.fi/en/about_tkk/strategies/index.html [4] Castells, M., Flecha, R., Freire, P., Giroux, H.A., Macedo, D. & Willis, P. (eds.) 1999. Critical Education in the New Information Age. Rowman & Littlefield Publishers, Inc. [5] Davis, D.C., Beyerlein, S.W., & Davis, I.T. (2005) Development and Use of an Engineer Profile. Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition. [6] Rychen, D.S. (2002) Key Competencies for the Knowledge Society. A Contribution from OECD Project Definition and Selection of Competencies (DeSeCo). Education Lifelong learning and the Knowledge Economy, Conference in Stuttgart, October 10-11, 2002. [7] Ericsson, K.A. (2006) An Introduction to Cambridge Handbook of Expertise and Expert Performance: Its Development, Organization, and Content. In Cambridge Handbook of Expertise and Expert Performance (eds. Ericsson, K.A. et al.) Cambridge University Press [8] Longman Dictionary of Contemporary English, (2006). Harlow, UK: Pearson Longman [9] Ropo, E. (2004) Teaching Expertise. Empirical findings on expert teachers and teacher development. In Professional Learning: Gaps and Transitions on the Way from Novice to Expert (Eds. Boshuizen, H.P.A., Bromme, R. & Gruber, H.) Kluwer Academic Publishers: Dordrecht. [10] Ahmed, S., Hacker, P. & Wallace, K. (2005) The role of knowledge and experience in engineering design. International Conference on Engineering Design ICED 05 Melbourne, August 15-18 (2005). [11] Ahmed, S. (2007) An Industrial Case Study: Identification of Competencies of Design Engineers. Journal of Mechanical Design, July 2007, vol. 129, pp. 709-716. [12] Evans, D.L., Beakley, G.C., Couch, P.E. & Yamaguchi, G.T. (1993) Attributes of Engineering Graduates and Their Impact on Curriculum Design. Journal of Engineering Education, October 1993, 82(4), 203-211. [13] Martin, R., Maytham, B., Case, J. & Fraser, D. (2005). Engineering graduates perceptions of how well they were prepared for work in industry. European Journal of Engineering Education, May 2005, 30(2), 167-180. [14] Mäkinen, J. & Olkinuora, E. (1999) Building academic expertise in information society who demands and what? (Akateemisen asiantuntemuksen rakentaminen tietoyhteiskunnassa kuka vaatii ja mitä? Kasvatus 30 (3), pp. 290-305. [15] Kuhn, D., Amsel, E. & O Loughlin, M. (1988) The Development of Scientific Thinking Skills. Developmental Psychology Series. Academic Press, Inc.

[16] Kuhn, D. & Pearsall, S. (2000) Developmental Origins of Scientific Thinking. Journal of Cognition and Development, vol. 1, no. 1, pp. 113-129. [17] Tynjälä, P., Slotte, V., Nieminen, J., Lonka, K. & Olkinuora, E. (2006) From University to Working Life: Graduates Workplace Skills in Practice. In Higher Education and Working Life. Collaborations, Confrontations and Challenges (Eds. Tynjälä, P., Välimaa, J. & Boulton-Lewis, G.) Elsevier: Amsterdam. [18]Sonnentag, S., Niessen, C. & Volmer, J (2006) Expertise in Software Design. In Cambridge Handbook of Expertise and Expert Performance (eds. Ericsson, K.A. et al.) Cambridge University Press [19] Sheehan, K.B (2001) E-mail Survey Response Rates: A Review. Journal of Computer-Mediated Communication, 6 (2), 0-0 doi:10.1111/j.1083-6101.2001.tb00117.x [20] Krippendorf, K. (2004) Content Analysis: Introduction to Its Methodology. 2 nd ed. Sage Publications: Thousand Oaks, USA. ACKNOWLEDGEMENTS The research is funded by the Faculty of Electronics, Communications and Automation at Helsinki University of Technology TKK and the Lifelong Learning Institute Dipoli.