Thermische Speicherung von Solarenergie Dr. Thomas Bauer Institut für Technische Thermodynamik Stuttgart, Köln 15. Kölner Sonnenkolloquium, 12.6.2012
www.dlr.de/tt Slide 2 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Thermal Energy Storage (TES) Activities at the Institute of Technical Thermodynamics High temperature TES for CSP plants, CC plants, Adiabatic CAES, industrial process heat and CHP - Sensible heat storage - Solids: Concrete, packed bed, regenerator - Liquids: Molten salt - Latent heat storage (PCM-salt) - Thermo-chemical storage
www.dlr.de/tt Slide 3 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 CeraStorE (Competence Center for Ceramic Materials and Thermal Storage Technologies in Energy Research) Building 26 (opened 8.12.2011) 2000 m² Total Area for Research Institute of Materials Research (WF) WHIPOX (wound highly porous oxide composite) Redox material development Material aspects Institute of Solar Research (SF) Solar-powered thermochemical cylces Thermochemical and molten salt aspects Institute of Technical Thermodynamics (TT) Thermochemical and molten salt heat storage
www.dlr.de/tt Slide 4 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Importance of Material Research Development Steps for Storage Systems Material screening System integration Thermal properties of storage material and heat transfer fluids Stability, compatibility, corrosion Heat exchanger / heat transfer enhancement Technical material quality Thermophysical properties Thermo-mechanical design Lab-scale tests Containment, Insulation
www.dlr.de/tt Slide 5 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Materials and Sub-Components for Heat Storage Storage material Heat transfer fluid Container Heat exchanger Water, natural rocks, Air, flue gas, Pressurized vessels, Finned tubes, ceramics, concrete water/steam, molten packed bed designs, shell-and-tube heat salts, metal oxides salt, thermal oil corrosive media exchanger Additional components: pumps, valves, connection pipes, insolation, Take away: TES requires more than storage material research foundation, instrumentation and control devices
www.dlr.de/tt Slide 6 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Impact of Specific Material Categories Example: PCM storage with Nitrate Salts Operated with water/steam HTF Heat transfer enhancement (fins) 37% 18% 18% Isolation, Foundation Header, Containment 27% Heat exchanger, Tube register TES Material (Salt)
www.dlr.de/tt Slide 7 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 High-Temperature TES materials and technologies Sensible heat Latent heat Chemical heat Solids Concrete Ceramics and rocks Phase change Solid-solid Reactions Gas-gas Liquids Molten salt -symmetric axis -9 m -5 m -1 m Pressurized water Solid-liquid Alkali nitrate/ nitrite salts Liquid-gas (Absorption) Solid-gas Ca(OH) 2 /CaO/H 2 O CaCl 2 /H 2 O Mn 2 O 3 /Mn 3 O 4 /O 2 Source: ACS Cobra Mixture of solids and liquids
www.dlr.de/tt Slide 8 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Molten Salt Storage - Market status: Commercial CSP experience - 2-tank indirect concept, max. 390 C (Andasol, 2009) - 2-tank direct concept, max. 560 C (Gemasolar, 2011) - Technology: - Decoupled thermal power and capacity; constant power - Boundaries set by current storage medium (temperature levels, costs) - Research focus/challenges: - Development of alternative salt systems - Lower melting temperature to avoid freezing (< 140 C) - Stability at higher temperatures (up to 700 C) - Cost reduction alternative tank design (e.g. Thermocline single tank with filler) - Components and materials for higher temperatures Source: Ferrostaal Andasol 3
www.dlr.de/tt Slide 9 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Molten Salt Storage Phase diagrams 3 different Ions, Binary system with common ion Temperature [ C] 350 300 250 200 Liquidus Melting range Solidus Phase diagram KNO 3 -NaNO 3 0 10 20 30 40 50 60 70 80 90 100 NaNO 3 [wt%] 4 Ions, Additive Ternary 5 Ions, Additive Quaternary (e.g. KNO 3 -NaNO 3 -LiNO 3 -Ca(NO 3 ) 2 ) 4 Ions, Reciprocal Ternary NO 3 100 90 80 70 60 50 40 30 20 10 NO 0 2 0 10 20 30 40 50 60 70 80 90 100 K Mol % Na Mol % 5 Ions, Reciprocal Quaternary (e.g. Li, Na, K // NO 2, NO 3, T min 80 C) 150 C 160 C 180 C 200 C 220 C 240 C 260 C 280 C 320 C 360 C 400 C
www.dlr.de/tt Slide 10 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Molten Salt Storage Novel Salt Mixtures DSC signal [μv/mg] 7 6 5 4 3 2 1 0 Heating rate 5 K/min 2 K/min Liquidus temperature [ C] 1 K/min 81-1 -50 0 50 100 150 200 Temperature [ C] 85 84 83 82 0 1 2 3 4 5 6 Heating rate [K/min] Take away: Low melting temperature alkali nitrate/nitrite mixtures are feasible
www.dlr.de/tt Slide 11 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Na NO 3 Molten Salt Storage Solar Salt Stability Cation Anion First decomposition reaction: NO - 3 NO - 2 + ½ O 2(gas) (reversible) Second decomposition reaction: Air NO 3 - or NO 2 - O 2- + NO x(gas) or N 2(gas) Other Side reactions with CO 2 and H 2 O Take away: Stability of nitrate salts depends on several parameters
www.dlr.de/tt Slide 12 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Molten Salt Storage Steel Corrosion with Nitrates - Major structural alloys: - Low alloyed carbon steel ( 400 C) - Cr-Mo steel ( 500 C) (Cr-content up to about 9 wt%) - Stainless Cr-Ni steel ( 570 C) (with/without Mo, Nb, Ti alloying) - Ni-alloys ( 650 C) (i.e. Alloy 800) - Corrosion aspects: - Nitrate salt impurities (e.g., chlorides) - Nitrate salt decomposition products - Solubility of chromium from oxide layer - Stress corrosion cracking (SCC) Source: Materials Testing Institute (MPA), University of Stuttgart
www.dlr.de/tt Slide 13 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Molten Salt Test Facility Tesis - Technical figures: - 20 m³ Solar Salt (60 wt% NaNO 3 and 40 wt% KNO 3 ) - Temperature range 250 to 560 C - Mass flow rate up to 8 kg/s - Research focus/challenges: - Molten salt storage concepts (e.g. single tank / thermocline) - Component tests (e.g. pumps, valves, receiver tubes, measurement & control) industrial partners - Operational molten salt aspects
www.dlr.de/tt Slide 14 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Thermo-chemical Heat Storage - DLR Development status: Lab-test rigs - Ca(OH) 2 /CaO (300 700 C) - Salt hydrates, reference CaCl 2 (up to 200 C) - Metal oxides (up to 1000 C) - Target applications: CSP, industrial heat recovery - Technology: - Reversible Gas-Solid Reactions - High storage density - Loss-free and long-term storage feasible - Heat transformation possible - Research focus/challenges: - Characterization of suitable material system - Complexity of heat and mass transfer with chemical reaction - Reactor designs - Separation of thermal power and capacity (movement of the reaction bed) Source: DLR
www.dlr.de/tt Slide 15 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Thermochemical Ca(OH) 2 /CaO storage - Target applications: - CSP, industrial process heat - Temperatures 300 700 C - Technology - Ca(OH) 2 + H CaO + H 2 O - Direct/indirect contact concepts - Start of larger test rig in progress - Research focus/challenges - Up-scaling of reactor design - Movement of the reaction bed - System modeling and process integration
www.dlr.de/tt Slide 16 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Summary and Conclusions - Molten salt TES technology - Several parameters affect nitrate salt stability no single limit - Tower systems require novel salts with stabilities up to 700 C - Parabolic through systems require salts as fluids with a liquidus temperature as low as possible to avoid freezing - Thermochemical TES technology offers unique advantages Storage of educts/products at room temperature, heat transformation - Diversity of fluids and storage materials in the high temperature range Molten salt is one TES option among several others - TES material development not only refers to improved storage materials, but also to material aspects in other components (e.g., containment)
www.dlr.de/tt Slide 17 > 15. Kölner Sonnenkolloquium > T. Bauer Thermische Speicherung von Solarenergie > 12.6.2012 Thank you for your attention!