Image Resolution Enhancement by Using Stationary and Discrete Wavelet Decomposition

Similar documents
A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation

Redundant Wavelet Transform Based Image Super Resolution

Resolution Enhancement of images with Interpolation and DWT-SWT Wavelet Domain Components

Sachin Patel HOD I.T Department PCST, Indore, India. Parth Bhatt I.T Department, PCST, Indore, India. Ankit Shah CSE Department, KITE, Jaipur, India

HSI BASED COLOUR IMAGE EQUALIZATION USING ITERATIVE n th ROOT AND n th POWER

SINGLE IMAGE SUPER RESOLUTION IN SPATIAL AND WAVELET DOMAIN

Super-resolution method based on edge feature for high resolution imaging

SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A

A Secure File Transfer based on Discrete Wavelet Transformation and Audio Watermarking Techniques

PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM

PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM

An Efficient Compression of Strongly Encrypted Images using Error Prediction, AES and Run Length Coding

Reversible Data Hiding for Security Applications

Study and Implementation of Video Compression Standards (H.264/AVC and Dirac)

COMPRESSION OF 3D MEDICAL IMAGE USING EDGE PRESERVATION TECHNIQUE

JPEG Image Compression by Using DCT

Performance Analysis of medical Image Using Fractal Image Compression


Region of Interest Access with Three-Dimensional SBHP Algorithm CIPR Technical Report TR

Discrete Curvelet Transform Based Super-resolution using Sub-pixel Image Registration

Volume 2, Issue 12, December 2014 International Journal of Advance Research in Computer Science and Management Studies

2695 P a g e. IV Semester M.Tech (DCN) SJCIT Chickballapur Karnataka India

New high-fidelity medical image compression based on modified set partitioning in hierarchical trees

CHAPTER 7 CONCLUSION AND FUTURE WORK

Performance Analysis and Comparison of JM 15.1 and Intel IPP H.264 Encoder and Decoder

NEIGHBORHOOD REGRESSION FOR EDGE-PRESERVING IMAGE SUPER-RESOLUTION. Yanghao Li, Jiaying Liu, Wenhan Yang, Zongming Guo

Dynamic Binary Location based Multi-watermark Embedding Algorithm in DWT

International Journal of Computer Sciences and Engineering Open Access. A novel technique to hide information using Daubechies Transformation

A Wavelet Based Prediction Method for Time Series

Combating Anti-forensics of Jpeg Compression

An Efficient Architecture for Image Compression and Lightweight Encryption using Parameterized DWT

Performance Verification of Super-Resolution Image Reconstruction

Image Interpolation by Pixel Level Data-Dependent Triangulation

ROI Based Medical Image Watermarking with Zero Distortion and Enhanced Security

Introduction to Medical Image Compression Using Wavelet Transform

Image Authentication Scheme using Digital Signature and Digital Watermarking

MEDICAL IMAGE COMPRESSION USING HYBRID CODER WITH FUZZY EDGE DETECTION

Study and Implementation of Video Compression standards (H.264/AVC, Dirac)

Super-resolution Reconstruction Algorithm Based on Patch Similarity and Back-projection Modification

A Digital Audio Watermark Embedding Algorithm

Low-resolution Character Recognition by Video-based Super-resolution

Image Resolution Enhancement Methods for Different Applications

AUTHORIZED WATERMARKING AND ENCRYPTION SYSTEM BASED ON WAVELET TRANSFORM FOR TELERADIOLOGY SECURITY ISSUES

Image Compression through DCT and Huffman Coding Technique

Sachin Dhawan Deptt. of ECE, UIET, Kurukshetra University, Kurukshetra, Haryana, India

ADAPTIVE ALGORITHMS FOR ACOUSTIC ECHO CANCELLATION IN SPEECH PROCESSING

International Journal of Emerging Technology and Advanced Engineering Website: (ISSN , Volume 2, Issue 9, September 2012)

WAVELETS AND THEIR USAGE ON THE MEDICAL IMAGE COMPRESSION WITH A NEW ALGORITHM

THE LAUNCH of a new generation of Ikonos and Quickbird

Progressive-Fidelity Image Transmission for Telebrowsing: An Efficient Implementation

Advanced Signal Processing and Digital Noise Reduction

A Novel Method for Brain MRI Super-resolution by Wavelet-based POCS and Adaptive Edge Zoom

Efficient Data Recovery scheme in PTS-Based OFDM systems with MATRIX Formulation

AT&T Global Network Client for Windows Product Support Matrix January 29, 2015

The Combination Forecasting Model of Auto Sales Based on Seasonal Index and RBF Neural Network

ScienceDirect. Brain Image Classification using Learning Machine Approach and Brain Structure Analysis

FCE: A Fast Content Expression for Server-based Computing

Low Contrast Image Enhancement Based On Undecimated Wavelet Transform with SSR

Watermarking Techniques for Protecting Intellectual Properties in a Digital Environment

DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION

Open Access A Facial Expression Recognition Algorithm Based on Local Binary Pattern and Empirical Mode Decomposition

High Quality Image Magnification using Cross-Scale Self-Similarity

Co-integration of Stock Markets using Wavelet Theory and Data Mining

Case 2:08-cv ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138. Exhibit 8

Combining an Alternating Sequential Filter (ASF) and Curvelet for Denoising Coronal MRI Images

Wavelet Analysis Based Estimation of Probability Density function of Wind Data

(12) United States Patent Takada

Simulation of Frequency Response Masking Approach for FIR Filter design

Enhancement of scanned documents in Besov spaces using wavelet domain representations

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 10, OCTOBER

An Automatic and Accurate Segmentation for High Resolution Satellite Image S.Saumya 1, D.V.Jiji Thanka Ligoshia 2

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*

Canada J1K 2R1 b. * Corresponding author: wangz@dmi.usherb.ca; Tel ;Fax:

Network Traffic Prediction Based on the Wavelet Analysis and Hopfield Neural Network

A comprehensive survey on various ETC techniques for secure Data transmission

CHAPTER 2 LITERATURE REVIEW

Wavelet-Based Smoke Detection in Outdoor Video Sequences

Exploring Resource Provisioning Cost Models in Cloud Computing

Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics

The Role of Size Normalization on the Recognition Rate of Handwritten Numerals

Invisible Image Water Marking Using Hybrid DWT Compression/Decompression Technique

Accelerating Wavelet-Based Video Coding on Graphics Hardware

Keywords: Image complexity, PSNR, Levenberg-Marquardt, Multi-layer neural network.

SUPER RESOLUTION FROM MULTIPLE LOW RESOLUTION IMAGES

DYNAMIC DOMAIN CLASSIFICATION FOR FRACTAL IMAGE COMPRESSION

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)

Algorithms for the resizing of binary and grayscale images using a logical transform

Sub-pixel mapping: A comparison of techniques

International Journal of Advanced Research in Computer Science and Software Engineering

Extracting a Good Quality Frontal Face Images from Low Resolution Video Sequences

Source Class Identification for DSLR and Compact Cameras

LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE.

Loudspeaker Equalization with Post-Processing

Adaptive Block Truncation Filter for MVC Depth Image Enhancement


Ericsson T18s Voice Dialing Simulator

Conceptual Framework Strategies for Image Compression: A Review

Time-Frequency Detection Algorithm of Network Traffic Anomalies

Colour Image Encryption and Decryption by using Scan Approach

Transcription:

I.J. Image, Graphics and Signal Processing, 2012, 11, 41-46 Published Online September 2012 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijigsp.2012.11.06 Image Resolution Enhancement by Using Stationary and Discrete Wavelet Decomposition Battula.R.V.S.Narayana M.Tech Student, Department of ECE, Gudlavalleru Engineering College raja802.b@gmail.com K.Nirmala Assistant Professor, Department of ECE, Gudlavalleru Engineering College Nirmala.kuthadi@gmail.com Abstract This work proposed an image resolution enhancement technique which is based on the interpolation of the high frequency subbands obtained by DWT. The proposed technique uses DWT to decompose an image into different subbands, and then the high frequency subband images have been interpolated. The interpolated high frequency subband coefficients have been corrected by using the high frequency subbands achieved by SWT of the input image. An original image is interpolated with half of the interpolation factor used for interpolation the high frequency subbands. Afterwards all these images have been combined using IDWT to generate a super resolved imaged. The proposed technique has been tested on well-known benchmark images, where their PSNR, Mean Square Error and Entropy results show the superiority of proposed technique over the conventional and state-of-art image resolution enhancement techniques. Keywords Discrete wavelet transform, image super resolution, stationary wavelet transform I. INTRODUCTION Discrete wavelet transform (DWT) [8] is one of the recent wavelet transforms used in image processing. DWT decomposes an image into different sub band images, namely low-low (LL), low- high (LH), highlow (HL), and high-high (HH). Another recent wavelet transform which has been used in several image processing applications is stationary wavelet transform (SWT) [9]. In short, SWT is similar to DWT but it does not use down-sampling, hence the sub bands will have the same size as the input image. Resolution has been frequently referred as an important aspect of an image. Images are being processed in order to obtain more enhanced resolution. One of the commonly used techniques for image resolution enhancement is Interpolation. The high frequency sub- bands obtained by SWT of the input image are being incremented into the interpolated high frequency subbands in order to correct the estimated coefficients. In parallel, the input image is also interpolated separately. Finally, corrected interpolated high frequency subbands and interpolated input image are combined by using inverse DWT (IDWT) to achieve a high resolution output image. In this work, we are proposing an image resolution enhancement technique which generates sharper high resolution image. The pro- posed technique uses DWT to decompose a low resolution image into different subbands. Then the

42 Image Resolution Enhancement by Using Stationary and Discrete Wavelet Decomposition three high frequency subband images have been interpolated using bi-cubic interpolation. The proposed technique has been compared with conventional and state-of-art image resolution enhancement techniques. The conventional techniques used are the following: Interpolation techniques: bilinear interpolation and bicubic interpolation; Wavelet zero padding (WZP). The state-of-art techniques used for comparison purposes are the following Regularity-preserving image interpolation [7]; new edge-directed interpolation (NEDI) [10]; hidden Markov model (HMM) [11]; HMM-based image super resolution (HMM SR) [12]; WZP and cycle-spinning (WZP-CS) [13]; WZP, CS, and edge rectification (WZP-CS-ER) [14]; DWT based super resolution (DWT SR) [15]; Complex wavelet transform based super resolution (CWT SR) [5]. According to the quantitative and qualitative experimental results, the proposed technique over performs the aforementioned conventional and state-ofart techniques for image resolution enhancement. II. PROPOSED IMAGE RESOLUTION ENHANCEMENT In this correspondence, one level DWT (with Daubechies 9/7 as wavelet function) is used to decompose an input image into different subband images. Three high frequency subbands (LH, HL, and HH) contain the high frequency components of the input image. In the pro- posed technique, bi-cubic interpolation with enlargement factor of 2 is applied to high frequency subband images. In image resolution enhancement by using interpolation the main loss is on its high frequency components (i.e., edges), which is due to the smoothing caused by interpolation. In order to increase the quality of the super resolved image, preserving the edges is essential. In this work, DWT has been employed in order to preserve the high frequency components of the image. The redundancy and shift invariance of the DWT mean that DWT coefficients are inherently interpolable [9]. Downsampling in each of the DWT subbands causes information loss in the respective subbands. That is why SWT is employed to minimize this loss. The interpolated high frequency subbands and the SWT high frequency subbands have the same size which means they can be added with each other. The new corrected high frequency subbands can be interpolated further for higher enlargement. Also it is known that in the wavelet domain, the low resolution image is obtained by lowpass filtering of the high resolution image [16]. In other words, low frequency subband is the low resolution of the original image. Therefore, instead of using low frequency subband, which contains less information than the original high resolution image, we are using the input image for the interpolation of low frequency subband image. Using input image instead of low frequency subband increases the quality of the super resolved image. Fig. 1 illustrates the block diagram of the proposed image resolution enhancement technique. By interpolating input image by, and high frequency subbands by 2 and in the intermediate and final interpolation stages respectively, and then by applying IDWT, as illustrated in Fig. 1, the output image will contain sharper edges than the interpolated image obtained by interpolation of the input image directly. This is due to the fact that, the interpolation of

Image Resolution Enhancement by Using Stationary and Discrete Wavelet Decomposition 43 isolated high frequency components in high frequency subbands and using the corrections obtained by adding high frequency subbands of SWT of the input image, will preserve more high frequency components after the interpolation than interpolating input image directly. III. RESULTS AND DISCUSSIONS The below figure shows that super resolved image of Baboon s picture using proposed technique in (d) are much better than the low resolution image in (a), super resolved image by using the interpolation (b), and WZP (c). Note that the input low resolution images have been obtained by down-sampling the original high resolution images. Figure-1. Block diagram of the proposed super resolution algorithm.

44 Image Resolution Enhancement by Using Stationary and Discrete Wavelet Decomposition In order to show the effectiveness of the proposed method over the conventional and state-of-art image resolution enhancement techniques, four well-known test images (Lena, Elaine, Baboon, and Peppers) with different features are used for comparison. Table I compares the PSNR performance of the proposed technique using bicubic interpolation with conventional and state-of-art resolution enhancement techniques: bilinear, bicubic, WZP, NEDI, HMM, HMM SR, WZP-CS, WZP-CS-ER, DWT SR, CWT SR, and regularity-pre- serving image interpolation. Additionally, in order to have more comprehensive comparison, the performance of the super resolved image by using SWT only (SWT-SR) is also included in the table. The results in Table I indicate that the proposed technique over-performs the aforementioned enhancement techniques. Table I also indicates that the proposed technique over-performs the aforementioned enhancement techniques. Table-I. PSNR (DB) Resultsfor Resolution Enhancement from 128 128 to 512 512 of the Proposed Technique compared with the Conventional and State-Of-Art Image Resolution Enhancement Techniques Techniques / Images PSNR (db) Lena Elaine Baboon Peppers Bilinear 26.34 25.38 20.51 25.16 Bicubic 26.86 28.93 20.61 25.66 WZP(db, 9/7) 28.84 30.44 21.47 29.57 Regularity-Preserving Image Interpolation 28.81 29.97 21.18 28.52 NEDI 28.81 29.97 21.18 28.52 HMM 28.86 30.46 21.47 29.58 HMM SR 28.88 30.51 21.49 29.60 WZP-CS 29.27 30.78 21.54 29.87 WZP-CS-ER 29.36 30.89 21.56 30.05 DWT-SR 34.79 32.73 23.29 32.19 SWT-SR 32.01 31.25 22.74 29.46 Proposed Technique 34.82 35.01 23.87 33.06 Mean square error 4.925 4.5297 7.5819 5.7331 Entropy 7.392 7.2107 7.4451 6.9401

Image Resolution Enhancement by Using Stationary and Discrete Wavelet Decomposition 45 SWT high frequency subbands, and the input image. The proposed technique uses DWT to decompose an image into different subbands, and then the high frequency subband images have been interpolated. The interpolated high frequency subband coefficients have been corrected by using the high frequency subbands achieved by SWT of the input image. An original image is interpolated with half of the interpolation factor used for interpolation the high frequency subbands. Afterwards all these images have been combined using IDWT to generate a super resolved imaged. The proposed technique has been tested on well-known benchmark images, where their PSNR and visual results show the superiority of proposed technique over the enhancement techniques. IV. CONCLUSION This work proposed an image resolution enhancement technique based on the interpolation of the high frequency subbands obtained by DWT, correcting the high frequency subband estimation by using SWT high frequency subbands, and the input image. The proposed technique uses DWT to decompose an image into different subbands, and then the high frequency subband images have been interpolated. The interpolated high frequency subband coefficients have been corrected by using the high frequency subbands achieved by SWT of the input image. An original image is interpolated with half of the interpolation factor used for interpolation the high frequency subbands. Afterwards all these images have been combined using IDWT to generate a super resolved imaged. The proposed technique has been tested on well-known benchmark images, where their PSNR and visual results show the superiority of proposed technique over the enhancement techniques. Figure-2. (a) Original low resolution Baboon s image. (b) Bicubic interpolated image. (c) Super resolved image using WZP. (d) Proposed technique. REFERENCES [1] L. Yi-bo, X. Hong, and Z. Sen-yue, The wrinkle generation method for facial reconstruction based on extraction of partition wrinkle line features and fractal interpolation, in Proc. 4th Int. Conf. Image Graph., Aug. 22 24, 2007, pp. 933 937. [2] Y. Rener, J. Wei, and C. Ken, Downsample-based multiple descrip- tion coding and post-processing of decoding, in Proc. 27th Chinese Control Conf., Jul. 16 18, 2008, pp. 253 256. [3] H. Demirel, G. Anbarjafari, and S. Izadpanahi, Improved motion- based localized super resolution technique using discrete wavelet transform for low resolution video enhancement, in Proc. 17th Eur. Signal Process. Conf., Glasgow, Scotland, Aug. 2009, pp. 1097 1101. [4] Y. Piao, I. Shin, and H. W. Park, Image resolution enhancement using inter-subband correlation in

46 Image Resolution Enhancement by Using Stationary and Discrete Wavelet Decomposition wavelet domain, in Proc. Int. Conf. Image Process., 2007, vol. 1, pp. I-445 448. [5] H. Demirel and G. Anbarjafari, Satellite image resolution enhance- ment using complex wavelet transform, IEEE Geoscience and Remote Sensing Letter, vol. 7, no. 1, pp. 123 126, Jan. 2010. [6] C. B. Atkins, C. A. Bouman, and J. P. Allebach, Optimal image scaling using pixel classification, in Proc. Int. Conf. Image Process., Oct. 7 10, 2001, vol. 3, pp. 864 867. [7] W.K.Carey,D.B.Chuang,andS.S.Hemami, Regulari ty-preservingimage interpolation, IEEE Trans. Image Process., vol. 8, no. 9, pp. 1295 1297, Sep. 1999. [8] S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. New York: Academic, 1999. [9] J. E. Fowler, The redundant discrete wavelet transform and additive noise, Mississippi State ERC, Mississippi State University, Tech. Rep. MSSU-COE-ERC-04-04, Mar. 2004. [10] X. Li and M. T. Orchard, New edge-directed interpolation, IEEE Trans. Image Process., vol. 10, no. 10, pp. 1521 1527, Oct. 2001. [11] K. Kinebuchi, D. D. Muresan, and R. G. Baraniuk, Wavelet- based statistical signal processing using hidden Markov models, in Proc. Int. Conf. Acoust., Speech, Signal Process., 2001, vol. 3, pp. 7 11. [12] S. Zhao, H. Han, and S. Peng, Wavelet domain HMT-based image super resolution, in Proc. IEEE Int. Conf. Image Process., Sep. 2003, vol. 2, pp. 933 936. [13] A. Temizel and T. Vlachos, Wavelet domain image resolution en- hancement using cyclespinning, Electron. Lett., vol. 41, no. 3, pp. 119 121, Feb. 3, 2005. [14] A. Temizel and T. Vlachos, Image resolution upscaling in the wavelet domain using directional cycle spinning, J. Electron. Imag., vol. 14, no. 4, 2005. [15] G. Anbarjafari and H. Demirel, Image super resolution based on interpolation of wavelet domain high frequency subbands and the spatial domain input image, ETRI J., vol. 32, no. 3, pp. 390 394, Jun. 2010. [16] A. Temizel, Image resolution enhancement using wavelet domain hidden Markov tree and coefficient sign estimation, in Proc. Int. Conf. Image Process., 2007, vol. 5, pp. V-381 384. AUTHORS Mr. B.R.V.S. Narayana completed his B.Tech in Electronics and Communication Engineering in 2010 and presently pursuing his M.Tech under the specialization of Digital Electronics and Communication Systems from Gudlavalleru Engineering College. His research interests include Image processing techniques, Logic design theory and CAD tools etc. Ms. K. Nirmala completed her M.Tech with distinction and presently working as Assistant Professor in Gudlavalleru Engineering College. She has an overall teaching experience of more than 2 years. Her research interests includelow Power VLSI, Image processing, etc.