Determination of citric acid in fruit juices using HPLC

Similar documents
Simultaneous determination of aspartame, benzoic acid, caffeine, and saccharin in sugar-free beverages using HPLC

Application Note. Determination of Nitrite and Nitrate in Fruit Juices by UV Detection. Summary. Introduction. Experimental Sample Preparation

Determination of Caffeine in Beverages HPLC-1

Vitamin C quantification using reversed-phase ion-pairing HPLC

Determination of caffeine and vitamin B6 in energy drinks by high-performance liquid chromatography (HPLC)

Simultaneous determination of L-ascorbic acid and D-iso-ascorbic acid (erythorbic acid) in wine by HPLC and UV-detection (Resolution Oeno 11/2008)

ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE

Project 5: Scoville Heat Value of Foods HPLC Analysis of Capsaicinoids

Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography

SIMULTANEOUS DETERMINATION OF TELMISARTAN AND HYDROCHLOROTHIAZIDE IN TABLET DOSAGE FORM USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

SUCRALOSE. White to off-white, practically odourless crystalline powder

Analytical Test Report

Reversed Phase High Presssure Liquid Chromatograhphic Technique for Determination of Sodium Alginate from Oral Suspension

Determination of Food Dye Concentrations in an Unknown Aqueous Sample Using HPLC

HPLC Analysis of Acetaminophen Tablets with Waters Alliance and Agilent Supplies

CONFIRMATION OF ZOLPIDEM BY LIQUID CHROMATOGRAPHY MASS SPECTROMETRY

Analysis of Polyphenols in Fruit Juices Using ACQUITY UPLC H-Class with UV and MS Detection

LUMEFANTRINE Draft proposal for The International Pharmacopoeia (October 2006)

A Complete Solution for Method Linearity in HPLC and UHPLC

Develop a Quantitative Analytical Method for low (» 1 ppm) levels of Sulfate

ERDOSTEINE - MONOGRAPH.

Development of validated RP- HPLC method for estimation of rivaroxaban in pharmaceutical formulation

Comparison of the Reversed-Phase Selectivity of Solid Core HPLC Columns

Standard Analytical Methods of Bioactive Metabolitesfrom Lonicera japonica Flower Buds by HPLC-DAD and HPLC-MS/MS

Automated Method Development Utilizing Software-Based Optimization and Direct Instrument Control

International Journal of Pharma and Bio Sciences V1(2)2010

Extraction of Caffeine from Energy Drinks

LIQUID CHROMATOGRAPHY HOW MUCH ASPIRIN, ACETAMINOPHEN, AND CAFFEINE ARE IN YOUR PAIN RELIEVER? USING HPLC TO QUANTITATE SUBSTANCES (Revised: )

What s really in sugary drinks? Ingredient lists: Decoded

Tamsulosin Hydrochloride Capsules

HEXANES. Insoluble in water, soluble in ether, alcohol, and acetone. Neutral to methyl orange (ph indicator) Not more than 0.

Extraction of Epinephrine, Norepinephrine and Dopamine from Human Plasma Using EVOLUTE EXPRESS WCX Prior to LC-MS/MS Analysis

How To Test For Contamination In Large Volume Water

Application Note. Determination of Amino acids by UHPLC with automated OPA- Derivatization by the Autosampler. Summary. Fig. 1.

α-cyclodextrin SYNONYMS α-schardinger dextrin, α-dextrin, cyclohexaamylose, cyclomaltohexaose, α- cycloamylase

Method Development for Size-Exclusion Chromatography of Monoclonal Antibodies and Higher Order Aggregates

SIMULTANEOUS DETERMINATION OF NALTREXONE AND 6- -NALTREXOL IN SERUM BY HPLC

Guide to Reverse Phase SpinColumns Chromatography for Sample Prep

Determination of Anabolic Steroids in Horse Urine by SPE and LC-MS/MS

Gel Filtration Standard

ACETALDEHYDE and ISOVALERALDEHYDE (Gas Chromatography)

The Use of Micro Flow LC Coupled to MS/MS in Veterinary Drug Residue Analysis

Oasis HLB Cartridges and 96-Well Plates

Chromium Speciation in Drinking Water by LC-ICP-MS

Acids, Bases, and ph

The Theory of HPLC. Gradient HPLC

Journal of Chemical and Pharmaceutical Research

A NEW METHOD DEVELOPMENT AND VALIDATION FOR ANALYSIS OF RIVAROXABAN IN FORMULATION BY RP HPLC

ß-CYCLODEXTRIN SYNONYMS

The Essential CHROMacademy Guide. Mobile Phase Optimization Strategies for Reversed Phase HPLC

Thermo Scientific Syncronis HPLC Columns. Technical Manual

The basic division explosives for forensic purposes is shown in Fig. 1

Human serum albumin (HSA) nanoparticles stabilized with. intermolecular disulfide bonds. Supporting Information

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline

Dissolved and precipitated oxalate

Quantitative analysis of anabolic steroids in control samples from food-producing animals using a column-switching LC-HESI-MS/MS assay

ETHYL LAUROYL ARGINATE

Simultaneous Metabolite Identification and Quantitation with UV Data Integration Using LightSight Software Version 2.2

Purification of reaction mixtures using flash chromatography.

Transfer of a USP method for prednisolone from normal phase HPLC to SFC using the Agilent 1260 Infinity Hybrid SFC/UHPLC System Saving time and costs

Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS

Application Note. Separation of three monoclonal antibody variants using MCSGP. Summary

Enhanced Organic Precursor Removals Using Aged Filter Media Page 1. Enhanced Organic Precursor Removals Using Aged Filter Media

Separation of Amino Acids by Paper Chromatography

Determination of Haloacetic Acids and Dalapon in Drinking Water by SPE and GC/ECD*

# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water

Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry

INSTRUCTOR S MANUAL FOR LABORATORY PROJECTS USING CHROMATOGRAPHY

Ion Exchange Determination of Na+ by Displacement and Zn 2+ Using Preconcentration. Reading: Harris pp , 699

Syllabus OC18 Use litmus or a universal indicator to test a variety of solutions, and classify these as acidic, basic or neutral

Overview. Purpose. Methods. Results

Determination of the Mass Percentage of Copper in a Penny. Introduction

Improving the Flavor of Fruit Products with Acidulants

Experiment 4 (Future - Lab needs an unknown)

Chemical analysis service, Turner s Green Technology Group

EUROPEAN COMMISSION DIRECTORATE-GENERAL TAXATION AND CUSTOMS UNION TAX POLICY Excise duties and transport, environment and energy taxes

Sensitive and Rapid Determination of Polycyclic Aromatic Hydrocarbons in Tap Water

Anion chromatography using on-line recycled eluents

Graphite Furnace AA, Page 1 DETERMINATION OF METALS IN FOOD SAMPLES BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY (VERSION 1.

PVV Satyanaryana et al., IJSID, 2012, 2 (1), International Journal of Science Innovations and Discoveries

Articaine & Epinephrine Injection according to USP method

LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research

Method development for analysis of formaldehyde in foodsimulant. melamine-ware by GC-MS and LC-MS/MS. Internal Technical Report

DRAFT MONOGRAPH FOR THE INTERNATIONAL PHARMACOPOEIA PARACETAMOL ORAL SUSPENSION (September 2010)

Cadmium Reduction Method Method to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls

A feasibility study of the determination of B-group vitamins in food by HPLC with Mass Spectrometric detection. LGC/R/2011/181 LGC Limited 2011

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

Accurate and Precise Automated Dilution and In-line Conductivity Measurement Using the AS-AP Autosampler Prior to Analysis by Ion Chromatography

Correlations Between Citrus Fruit Properties and Ascorbic Acid Content

Analysis of Free Bromate Ions in Tap Water using an ACQUITY UPLC BEH Amide Column

Application Note. Purifying common light-chain bispecific antibodies using MCSGP. Summary

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq)

Determination of Citric Acid in Powdered Drink Mixes

VALIDATION OF HPLC METHOD FOR DETERMINATION OF DOCOSAHEXAENOIC ACID (DHA) IN MULIIVITAMIN CAPSULE DIAH WIDOWATI*, ROS SUMARNY, ESTI MUMPUNI

Color, True and Apparent

Tips for practical HPLC analysis

Transcription:

Determination of citric acid in fruit juices using HPLC Katie Weikle Department of Chemistry, Concordia College, 91 8 th St S, Moorhead, MN 56562 Abstract A naturally occurring acid found in many fruit juices, citric acid was quantified using external standards and high-performance liquid chromatography (HPLC). Eight orange juice samples were analyzed ranging in concentrations from 36. to 427 mg/oz of citric acid. The California navel orange had the highest citric acid concentration, followed by the 1% orange juices, the orange flavored juices, and with the lowest concentration, Nestle s Juicy Juice, the 1% mixed fruit juice. Introduction Citric acid is a naturally occurring weak organic acid. It is small, very soluble, and easily manufactured. Although it is naturally occurring it is used as an additive to many drinks to enhance flavor and increase stability in soft drinks and syrups. It is also used to prevent color change by oxidation. 1 Because they are so easily modified, citrus juices are subject to alteration by addition of citric acid, a cheap ingredient, used to improve taste and increase shelf life. 2 It is difficult to determine which juices have additional synthetic citric acid, which involves the analysis of isotopic forms of the acid, 3 and these higher concentrations can have unwanted effects on tooth enamel. These effects may be worse than soft drinks or sugar because the acid affects the whole mouth equally and the effects cannot be felt like sugar coating the teeth. 4 A 29 study published in the Journal of Dentistry showed that high levels of citric acid in orange juice reduced the hardness of enamel by 84%. 5 According to literature sources, ready-to-drink orange juices contain around 16 g/l of total citric acid, while juice from actual oranges contains less, around 9 g/l. 6 Factors that contribute to differences in citric acid concentrations in oranges include fruit variety, degree of maturity, geographical location, climate zone, and soil conditions. 3 Citric acid dependence in orange juices is more difficult to define because the manufacturer can add additional citric acid. Other factors include the percentage of fresh orange juice, orange juice concentrate, and the addition of other fruit juices such as pear, grape, or apple. The most popular method for quantifying citric acid concentrations in juices is reverse-phase high-performance liquid chromatography (HPLC). 7,8 With all organic acids, including citric acid, phase collapse may be an issue because these polar compounds separate best in purely aqueous mobile phases. 9 If the surfaces of the alkyl chains dewet it becomes harder for the polar compounds to adsorb onto the stationary phase, when this happens the phase is said to have collapsed. Indicators of this phenomenon are erratic chromatograms with ultimate retention loss. 9 To overcome this issue, the column can be regenerated by rinsing with high concentrations of organic solvent, but collapse will likely reoccur. Another solution is to obtain an Ultra-Aqueous or Water-Compatible Allure column. 1 These columns are manufactured to preserve retention in up to 1% aqueous 57

mobile phases. Organic acids can also be determined by ion chromatography (IC) or capillary electrophoresis (CE). 11 Experimental Preparation of Mobile Phase A 5-mM phosphate buffer solution to use as the mobile phase was prepared by dissolving 6.82 g of potassium phosphate monobasic (Fisher) in deionized water. The ph of the buffer was then adjusted to 2.8 by adding concentrated phosphoric acid drop-wise while monitoring with a calibrated ph meter. The solution was then diluted to 1. L with deionized water. To obtain an HPLC grade mobile phase the solution was filtered through a.22-µm nylon membrane by vacuum filtration. HPLC grade methanol was used before and after the experiment to prevent phase collapse. Standard Preparation Citric acid standards of 1, 2, 3, 5, and 1 ppm were prepared from granular citric acid (Fisher) and deionized water. These were then transferred to autosampler vials for HPLC analysis. Preparation of Samples Eight orange juices were purchased at local supermarkets. Four were 1% orange juice: Kemps, Langers, Minute Maid, and Tropicana. Two were orange flavored drinks: Sunny D and Tang, and one was 1% mixed fruit juice: Juicy Juice. A navel orange from California was also used. From each bottled juice a 1.-mL aliquot was transferred to a 5-mL volumetric flask. The Tang, which had to be dissolved, was prepared by dissolving 1.1 g into a 5-mL volumetric flask. This mass was equivalent to a 1-mL sample of Tang prepared according to the instructions on the label. The navel orange sample was prepared by juicing an orange and then pipetting 1 ml of the liquid into a 5-mL volumetric flask. All 5-mL flasks were diluted to volume with deionized water. All dilute samples were filtered through a.45-µm filter membrane before HPLC analysis. After an initial analysis by HPLC, all of the juices were further diluted by transferring 1 ml of the once diluted samples into new 5-mL volumetric flasks and diluting to volume with deionized water. This provided peaks that would be more accurately analyzed than the more highly concentrated samples except for Juicy Juice, which was kept at the higher concentration level for final analysis. Instrument Preparation An isocratic elution was carried out on a Varian ProStar HPLC system with a 5-mm 4.6-mm Kinetex XB-C18 column (Phenomenex) with a 2.6-µm particle size and 1-Å pore size. The mobile phase was 1% 5-mM phosphate buffer at ph 2.8. The HPLC system operated at a flow rate of.5 ml/min, the injection volume was 5 µl, and the 58

external temperature control column oven was set at 35 C. The detection wavelength was 214 nm. Results and discussion Standard Calibration Figure1 displays the overlaid standard chromatograms of citric acid, which eluted from the column at 2.16 min. Based on the integrated peak areas from the HPLC chromatogram, a standard calibration plot was created for citric acid as seen in Fig. 2. 9 absorption (mau) 75 6 45 3 15 1 ppm 5 ppm 3 ppm 2 ppm 1 ppm -15.5 1 1.5 2 2.5 3 time (min) Figure 1. Chromatogram produced from citric acid standards: 1, 2, 3, 5, and 1 ppm. 6 peak area (mau*sec) 45 3 15 y =.55518x R² =.9999 5 1 15 citric acid concentration (ppm) Figure 2. Calibration plot for citric acid. 59

Sample Analysis Figure 2 shows a typical juice chromatogram, the peak at 2.16 min is citric acid. The concentration of citric acid was determined in each sample by integrating the citric acid peak and comparing that value to values in the linear regression curve in Fig. 2. Calculations were then made to determine the original citric acid concentration in the undiluted sample as seen in Table 1 and Fig. 4. The calculations were different for Juicy Juice because of its differing dilution factor. From these citric acid concentrations the juices could be compared with literature values for citric acid levels in orange juices. 3 25 absorption (mau) 2 15 1 5-5.5 1 1.5 2 2.5 3 3.5 4 time (min) Figure 3. Chromatogram of Tropicana orange juice. The literature reports citric acid concentrations of 499.8 mg/oz for bottled orange juices and 269.1 mg/oz for juiced oranges. 5 Although in that particular experiment many juices were analyzed, only two different orange juices were sampled. The juices in this experiment ranged from 241.4 to 34.9 mg/oz for 1% orange juice drinks, 186. to 198.7 mg/oz for orange flavored drinks. The navel orange contained 426.8 mg/oz of citric acid, and the mixed fruit juice contained 36.1 mg/oz. Possible explanations for the variance in concentrations include the processing of the juice. The juices varied in actual juice percentage as well. Sunny D claimed 5% juice and there was no actual juice in Tang. The other juices claimed to be 1% juice, some being from concentrate. The navel orange had the highest citric acid concentration, but per serving it is actually much lower in comparison to the juices because the average orange contains approximately 2 oz. of juice, much less than the 6 to 12 oz. fruit juice servings. The Juicy Juice was expected to have a much lower concentration because it is not 1% orange juice, it also includes apple, pear, grape, and tangerine juices with orange juice listed fourth on the ingredients label. It was not possible to determine how much citric acid was natural verses synthetic because isotopically different compounds cannot be separated in HPLC. According to the ingredients labels on the juices only Juicy Juice, Sunny D, and Tang contain added citric acid. This is likely due to the lower percentages of actual orange juice in these samples. By adding citric acid to the juices the manufacturers are enhancing the flavor and improving the shelf life. 6

Table 1. Citric acid concentrations in juice samples. Sample n mean (mg/oz) std dev % RSD Juicy Juice 1 36 - - Tang 2 186 1.6 9.86 Sunny D 2 198.6.85.43 Minute Maid 3 24 1.2 4.27 Kemps 2 27 26.6 9.86 Tropicana 2 277 3.11 1.12 Langers 2 341 1.6.86 navel orange (CA) 2 427 6.87 1.61 45 citric acid concentrations (mg/oz) 4 35 3 25 2 15 1 5 juice samples Juicy Juice Tang Sunny D Minute Maid Kemps Tropicana Langers navel orange (CA) Figure 4. Concentration of citric acid for each juice sample. Conclusions This experiment utilized external standards and high-performance liquid chromatogrpahy to determine the amount of citric acid in various orange juices, orange flavored drinks, and a navel orange. The navel orange had the highest citric acid concentration, followed by the 1% orange juices, the orange flavored juices, and then the 1% mixed fruit juice. Although the total citric acid concentration was determined, differentiating between natural and added manufactured citric acid was not possible. Phase collapse was not an issue until the third analysis of the juices at which point the experiment was stopped to rewet the column. To determine multiple organic acids simultaneously it is 61

recommended to obtain a column designed for highly soluble aqueous mobile phases and samples. References 1) European Citric Acid Manufacturers Association. Citric Acid Applications: Soft Drinks and Beverages. http://www.ecama.org/level_2/applic/softdrinks1.htm (accessed April 14, 212). 2) Sass-Kiss, A.; Toth-Markus, M.; Sass, M. Chemical Composition of Citrus Fruits (Orange, Lemon, and Grapefruit) with Respect to Quality Control of Juice Products. Nutraceutical Beverages, 24, 871, 24-34. 3) Schmidt, H.; Weber, D.; Rossmann, A.; Werner, R. The Potential of Intermolecular and Intramolecular Isotopic Correlations for Authenticity Control. In Flavor Chemistry: 3 Years of Progress; Teranishi, R.; Wick, E.; Hornstein, I. Kluwer Academic/Plenum: New York, 1999; pp. 55-57. 4) Park, M. Juices, Tea and Energy Drinks Erode Teeth. CNN, July 29, http://articles.cnn.com/29-7-23/health/ teeth.erosion.drinks_1_energy-drinks-carbonated-sports-drinks?_s=pm:health (accessed April 14, 212). 5) Ren, Y.-F.; Amin, A.; Malmstrom, H. Effects of Tooth Whitening and Orange Juice on Surface Properties of Dental Enamel. J. Dent. 29, 37, 424-431 6) Penniston, K. L.; Nakada, S. Y.; Holmes, R. P.: Assimos, D. G. Quantitative Assessment of Citric Acid in Lemon Juice, Lime Juice, and Commercially-Available Fruit Juice Products. J. Endourol. 28, 22, 567-57 7) Shui, G.; Leong, L.P. Separation and Determination of Organic Acids and Phenolic Compounds in Fruit Juices and Drinks by High-Performance Liquid Chromatography. J. Chromatogr. A. 22, 977, 89-96. 8) Nour, V.; Trandafir, I.; Ionica, M. E. HPLC Organic Acid Analysis in Different Citrus Juices under Reversed Phase Condidtions. Not. Bot. Hort. Agrobot. Cluj. 21, 38, 44-48. 9) Przybyciel, M.; Majors, R. E. Phase Collapse in Reversed-Phased LC. LCGC North America, 22, 2, 516-523 1) Kowalski, J.; Wittring, B. Simple, Reliable HPLC Analyses of Organic Acids. Restek. http://www.restek.com/technical-resources/technical-library/ Foods-Flavors-Fragrances/fff_A11 (accessed April 1, 212). 11) Peres, R.; Moraes, E.; Micke, G.; Tonin, F.; Tavares, M.; Rodriguez-Amaya, D. Rapid Method for the Determination of Organic Acids in Wine by Capillary Electophoresis with Indirect UV Detection. Food Control. 29, 2, 548-552. 62