Mobile Computing. What is RFID? RFID 9/30/14. CSE 40814/60814 Fall Radio Frequency Iden=fica=on

Similar documents
Radio Frequency Identification (RFID)

RFID BASED VEHICLE TRACKING SYSTEM

Contactless Smart Cards vs. EPC Gen 2 RFID Tags: Frequently Asked Questions. July, Developed by: Smart Card Alliance Identity Council

Using RFID Techniques for a Universal Identification Device

RF-Enabled Applications and Technology: Comparing and Contrasting RFID and RF-Enabled Smart Cards

CHAPTER 1 Introduction 1

RFID Design Principles

Gemalto Mifare 1K Datasheet

Evolving Bar Codes. Y398 Internship. William Holmes

Recent Developments in Mobile Financial Services Solutions December 12, 2012

Near Field Communication in Cell Phones

NFC Based Equipment Management Inventory System

NFC Test Challenges for Mobile Device Developers Presented by: Miguel Angel Guijarro

RFID Design Principles

Radio Frequency Identification (RFID) An Overview

RFID Security. April 10, Martin Dam Pedersen Department of Mathematics and Computer Science University Of Southern Denmark

RFID Basics HEGRO Belgium nv - Assesteenweg Ternat Tel.: +32 (0)2/ Fax : +32 (0)2/ info@hegrobelgium.

How Does It Work? Internet of Things

RFID SECURITY. February The Government of the Hong Kong Special Administrative Region

NFC. Technical Overview. Release r05

Data Protection Technical Guidance Radio Frequency Identification

Radio Frequency Identification (RFID) Vs Barcodes

Frequently Asked Questions

Why Has the Development in RFID Technology Made Asset Management More Urgent?

RFID Security: Threats, solutions and open challenges

How To Understand The Power Of An Freddi Tag (Rfid) System

ENERGY HARVESTED ELECTRONIC SHELF LABEL

WHITE PAPER. ABCs of RFID

RFID TECHNOLOGY: A PARADIGM SHIFT IN BUSINESS PROCESSES. Alp ÜSTÜNDAĞ. Istanbul Technical University Industrial Engineering Department

Abracon PTM Introduction to ANFCA Series Flexible Peel & Stick NFC Antennas

Security & Chip Card ICs SLE 44R35S / Mifare

ASSET TRACKING USING RFID SRAVANI.P(07241A12A7) DEEPTHI.B(07241A1262) SRUTHI.B(07241A12A3)

Mobile Payment Transactions: BLE and/or NFC? White paper by Swen van Klaarbergen, consultant for UL Transaction Security s Mobile Competence Center

The Place of Emerging RFID Technology in National Security and Development

Technical Article. NFiC: a new, economical way to make a device NFC-compliant. Prashant Dekate

Innovative Wafer and Interconnect Technologies - Enabling High Volume Low Cost RFID Solutions

Design And Implementation Of Bank Locker Security System Based On Fingerprint Sensing Circuit And RFID Reader

Location-Aware and Safer Cards: Enhancing RFID Security and Privacy

NACCU Migrating to Contactless:

REAL TIME MONITORING AND TRACKING SYSTEM FOR AN ITEM USING THE RFID TECHNOLOGY

NFC: Enabler for Innovative Mobility and Payment NFC: MOBILIDADE E MEIOS DE PAGAMENTO

If you are interested in Radio Frequency Identification technology, then this is the best investment that you can make today!

Security in Near Field Communication (NFC)

Security Issues in RFID systems. By Nikhil Nemade Krishna C Konda

MIFARE CONTACTLESS CARD TECHNOLOLGY AN HID WHITE PAPER

IMPROVISED SECURITY PROTOCOL USING NEAR FIELD COMMUNICATION IN SMART CARDS

Contactless Payments with Mobile Wallets. Overview and Technology

NFC Hacking: The Easy Way

THE APPEAL FOR CONTACTLESS PAYMENT 3 AVAILABLE CONTACTLESS TECHNOLOGIES 3 USING ISO BASED TECHNOLOGY FOR PAYMENT 4

RFID Tags. Prasanna Kulkarni Motorola. ILT Workshop Smart Labels USA February 21, 2008

Demystifying Wireless for Real-World Measurement Applications

The Drug Quality & Security Act

Time & Access System An RFID based technology

Automated Identification Technologies

Financial industry Solutions. Redefining Micro Location for the Financial industry in a Mobile World

Store Logistics and Payment with Near Field Communication

Cloud RFID UHF Gen 2

Privacy and Security in library RFID Issues, Practices and Architecture

915MHz RFID State of the Art RFID

RFID Penetration Tests when the truth is stranger than fiction

Infinite Integration: Unlocking the Value of Enterprise Asset Management through Technology Integration May 2010

Development of Hybrid Radio Frequency Identification and Biometric Security Attendance System

What is our purpose?

Training. MIFARE4Mobile. Public. MobileKnowledge April 2015

RFID Radio Frequency Identification

CHAPTER 7. Wireless Technologies and the Modern Organization

MF1 IC S General description. Functional specification. 1.1 Contactless Energy and Data Transfer. 1.2 Anticollision. Energy

INTEGRATED CIRCUITS I CODE SLI. Smart Label IC SL2 ICS20. Functional Specification. Product Specification Revision 3.1 Public. Philips Semiconductors

tags Figure D-1 Components of a Passive RFID System

rf Technology to automate your BUsiness

International Journal of Engineering Research & Management Technology

NFC APPLICATIONS IN THE TRACKING SYSTEMS

Best Practices for Integrating Mobile into the Access Control Architecture

Bluetooth in Automotive Applications Lars-Berno Fredriksson, KVASER AB

Towards an Internet of Things: Android meets NFC. Dipartimento di Scienze dell Informazione Università di Bologna

Bluetooth Pairing Guide For iphone

Mobile Near-Field Communications (NFC) Payments

RF ID Security and Privacy

Michael I. Shamos, Ph.D., J.D. School of Computer Science Carnegie Mellon University

Security and Privacy Issues of Wireless Technologies

Atmel Innovative Silicon RFID IDIC Solutions

Chip Card & Security ICs Mifare NRG SLE 66R35

SINGLE DEVICE FOR MULTIPLE TASKS

a leap ahead in analog

Contents. I. 3G Mobile Patent. II. 4G LTE Patent. III. RFID Patent. IV. NFC Patent TechIPm, LLC All Rights Reserved

NFC Hacking: The Easy Way

Best Practices for the Use of RF-Enabled Technology in Identity Management. January Developed by: Smart Card Alliance Identity Council

How To Use Radio Frequency Identification (Rfid) Effectively

RFID market value vs tag cost : Reality vs Dream. Figure 3.2 Examples of RFID applications and potential applications at different tag prices

DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch

Trackability Technologies supporting Business

RFID Technology - Potential Of Big Brother

MOBILE PAYMENT SECURITY: BLE OR NFC

LibRFID: Automation Software for Library Management System Using RFID Technology

Your Mobile Phone as a Ticket (NFC)

Your Digital Dollars Online & Mobile Banking

OBID RFID by FEIG ELECTRONIC. OBID classic / OBID classic-pro. RFID Reader Technology for Security Applications

fleischhauer tickets RFID

Transcription:

Mobile Computing CSE 40814/60814 Fall 2014 What is RFID? Radio Frequency Iden=fica=on Who Are You? I am Product X RFID RFID is an ADC (automated data collec=on) technology that uses radio- frequency waves to transfer data between a reader and a movable item to iden=fy, categorize, track... RFID is fast, reliable, and does not require physical sight or contact between reader/ scanner and the tagged item A close cousin to sensor network technology Generally, RFID tags are cheaper, but less intelligent than sensor nodes As things evolve the line between the two technologies is blurring 1

Historical Background Identification Friend or Foe (IFF) Used by Allied bombers during World War II In 1948, concept of passive RFID systems introduced by Harry Stockman In 1972, Kriofsky and Kaplan designed and patented an inductively coupled transmitter-responder (2 antennas) In 1979, Beigel designed/patented identification device which combined both antennas into one In the 1970s, a group of scientists at the Lawrence Livermore Laboratory (LLL) build a handheld receiver stimulated by RF power for secure access to nuclear facilities RFID Systems Main components: Tags (transponders) - microchip & antenna Tag reader decoder & antenna the RFID reader sends a pulse of radio energy to the tag and listens for the tag s response to instruc=ons RFID readers are either con=nuously on or they send the radio pulse only in a response to an external event Tags Varia=ons: Memory Size (16 bits - 512 Kbytes) Read- Only, Read/Write or WORM Arbitra=on (An=- collision) Ability to read/write one or many tags at a =me Frequency 125KHz - 5.8 GHz Price ($0.10 to $250) Physical Dimensions Thumbnail to Brick sizes 2

Mission Impossible Tiny Tags 2007 Hitachi produced RFID device measuring 0.05 0.05 mm, and thin enough to be embedded in a sheet of paper. The data contained on them can be extracted from as far away as a few hundred metres. Human hair comparison. Active versus Passive Active RFID Passive RFID Tag Power Source Internal to tag Energy transferred using RF from reader Tag Battery Yes No Required signal strength Very Low Very High Range Up to 100m Up to 3-5m, usually less Multi-tag reading 1000 s of tags recognized up to 100mph Few hundred within 3m of reader, about 3 sec per read => at most 3 mph. Data Storage Up to 512 KB 16 bits 1 KB 3

Active Tag Passive Tag Frequency Ranges 4

9/30/14 Low Frequency: Load Modulation Computer Science and Engineering - University of Notre Dame High-Frequency: Backscatter Modulation Computer Science and Engineering - University of Notre Dame Codes RFID tag Bar code Computer Science and Engineering - University of Notre Dame 5

Bar Code EPC: Electronic Product Code Creating EPCs Transmitting EPCs EPC 6

Communication and Collisions Very simple packet formats General structure: Sync Header Command Data CRC Usually reader- to- tag and tag- to- reader format somewhat different. Typically 2 byte CRC Collisions When mul=ple tags receive a query from the reader, they will all respond. => Responses will collide at the reader Many readers feature simultaneous read capabili=es Must resolve collisions Basic link layer problem (e.g., Ethernet) But here the algorithm must be very simple Problem in wireless in general: collision detec=on at sender not possible Problem in RFID: no carrier sense of tag possible Collision Resolution for RFID Two common approaches: Sloned Aloha (with back- off) Binary tree algorithm (reader polls tags bit by bit ) 7

9/30/14 Application Scenarios Track the movement of consumer product goods Animal iden=fica=on/tracking/coun=ng Toll collec=on Implanta=on of RFID chips into people, e.g., Alzheimer pa=ents Computer Science and Engineering - University of Notre Dame Applications Keyless entry Proximity cards Supply chain management Computer Science and Engineering - University of Notre Dame Implants It is the most controversial application Small glass cylinders approximately 2 or 3mm wide and between 1 and 1.5cm long Consists of a microchip, a coiled antenna, and a capacitor Implanted typically under the skin of arm or the back of the neck Computer Science and Engineering - University of Notre Dame 8

Concerns Clandes=ne tracking Inventorying Benetton Controversy (2003) Walmart Controversy (2003) 9

Instant Checkout Chip to remove shopping blues " Post-Courier, January 1994! 1.5 electronic bar code announced " San Francisco Chronicle!! Tiny microchip identifies groceries in seconds.! Chicago Tribune!! Scanning range of four yards " NY Times!! Checkout in one minute " The Times, London!! The Hype Cycle Peak of Inflated Expectations Visibility Plateau of Productivity Slope of Enlightenment RFID Today! Technology Trigger Trough of Disillusionment Time Walmart In 2003, Walmart made the retail industry's ini=al steps with a Radio Frequency Iden=fica=on (RFID) supplier requirement when it announced a pallet and case level tagging ini=a=ve. Currently, over 600 suppliers are par=cipa=ng in the ini=a=ve. Today, Walmart requires that its top suppliers must be RFID compliant, at the pallet and outer case level. Many suppliers have already been no=fied regarding their target compliance dates. As =me progresses RFID benefits will con=nue to surface as well as the technology will become cheaper and easier to integrate. 10

Case Studies AIRBUS A- 380 The world s largest passenger aircrap has been equipped with 10,000 radio frequency tags which will help speed up maintenance and improve safety. The double- decker plane which accommodates 555 passengers has passive RFID chips on removable parts such as seats, life jackets, brakes and other parts, which are subject to rou=ne service or replacement. RFID tagging will make the checking of these parts quicker and more accurate and provide a database of informa=on about each item. Case Studies Volkswagen Volkswagen is Europe's largest producer of cars, and the fourth largest in the world, and each year over 35,000 vehicles are displayed at and collected from the company's unique Autostadt (Auto City) facility at Wolfsburg in Germany. When Volkswagen wanted a way to quickly locate a car in the holding lot and then track its progress through pre- delivery, it was decided to adopt a system using RFID tags. All tasks involved in the delivery process are recorded and stored on the tag, which is hung from the rear view mirror. Every =me the car moves through a process sta=on, workers know its loca=on and current status automa=cally. Near-Field Communication (NFC) NFC, is one of the latest wireless communication technologies. As a shortrange wireless connectivity technology, NFC offers safe yet simple communication between electronic devices. It enables exchange of data between devices over a distance of 4 cm or less. NFC operates at 13.56 MHz and rates ranging from 106 kbit/s to 848 kbit/s. 32 11

How NFC Works NFC is based on RFID technology that uses magnetic field induction between electronic devices in close proximity. For two devices to communicate using NFC, one device must have an NFC reader/writer and one must have an NFC tag. The tag is essentially an integrated circuit containing data, connected to an antenna, that can be read or written by the reader. NFC The technology is a simple extension of the ISO/IEC14443 proximity- card standard (contactless card, RFID) that combines the interface of a smartcard and a reader into a single device. An NFC device can communicate with both exis=ng ISO/ IEC14443 smartcards and readers, as well as with other NFC devices, and is thereby compa=ble with contactless infrastructure already in use for public transporta=on and payment. NFC is primarily aimed at usage in mobile phones. By 2013, one in five phones will have NFC (predicted by Juniper Research). Japan is early adopter of NFC. 34 Uses and Applications There are currently three main uses of NFC: Card emulation: The NFC device behaves like an existing contactless card. Reader mode: The NFC device is active and reads a passive RFID tag, for example for interactive advertising. P2P mode: Two NFC devices communicating together and exchanging information. 12

NFC Applications Mobile ticketing in public transport: an extension of the existing contactless infrastructure, such as Mobile Phone Boarding Pass. Mobile payment, electronic money. Smart poster: the mobile phone is used to read RFID tags on outdoor billboards. Electronic =cke=ng. Travel card, iden=ty documents. Electronic keys: replacements for physical car keys, house/office keys, hotel room keys, etc. NFC can be used to configure and initiate other wireless network connections such as Bluetooth, Wi- Fi or Ultra-wideband. 36 Comparison with Bluetooth NFC and Bluetooth are both short-range communication technologies which are integrated into mobile phones. To avoid a complicated configuration process, NFC can be used for the set-up of wireless technologies, such as Bluetooth. NFC sets up faster than standard Bluetooth, but is not much faster than Bluetooth low energy. With NFC, instead of performing manual configurations to identify devices, the connection between two NFC devices is automatically established quickly in less than a tenth of a second. The maximum data transfer rate of NFC (424 kbit/s) is slower than that of Bluetooth V2.1 (2.1 Mbit/s). 13

With a maximum working distance of less than 20 cm, NFC has a shorter range, which reduces the likelihood of unwanted interception. That makes NFC particularly suitable for crowded areas where correlating a signal with its transmitting physical device (and by extension, its user) becomes difficult. In contrast to Bluetooth, NFC is compatible with existing passive RFID (13.56 MHz ISO/IEC 18000-3) infrastructures. NFC requires comparatively low power, similar to the Bluetooth V4.0 low energy protocol. However, when NFC works with an unpowered device (e.g. on a phone that may be turned off, a contactless smart credit card, a smart poster, etc.), the NFC power consumption is greater than that of Bluetooth V4.0 Low Energy. Activation of the passive tag needs extra power. Security Unauthorized Reading: Compe=tors can scan closed boxes and find out what is inside Someone can read your RFID enabled credit card Metal foil used in US passport to avoid reading when closed Unauthorized Wri=ng: Can change UPC/price of an item Can kill a tag Solu=on: Reader authen=ca=on: Passwords can be sniffed. RFID Zapper: Can burn a tag by overcurrent RSA Blocker Tag: placed near another RFID, it prevent is reading Privacy What can you do to prevent others from reading your RFID aper you purchase the item? Kill the tag. Need authen=ca=on. Put the tag to sleep. Used for reusable tags. Libraries. Authen=ca=on to put to sleep and to awaken. Re- label: Customer can overwrite customer specific informa=on. Manufacturer specific informa=on can remain. Dual Labeling: One tag with customer specific informa=on. One with manufacturer specific informa=on. PIN: The reader needs to provide a PIN. The user can change the PIN. Distance- Sensi=ve: Tag is designed so that the informa=on provided depends upon the distance Blocker: A device that generates random signal and prevents others from reading your RFIDs. 14

Range of Attacks Nominal reading range: Standard power reader Rogue reading range: More powerful readers can read from longer distance Tag- to- Reader Eavesdropping Range: Passively listen to response with a more sensi=ve receiver Reader- to- tag Eavesdropping Range: Passively listen to query with a more sensi=ve receiver. Can do this from very far. Detec=on Range: Can just detect the presence of a tag or a reader. Important in defense applica=ons where important weapons or targets are tagged. Types of Attacks Sniffing and eavesdropping: Passively listening with very sensi=ve readers. Compe==on can find what you are shipping/receiving Spoofing: Copy tag for use on other items Replay: Unauthorized access by recording and replaying the response. Garage door openers. Denial of Service: Frequency jamming Blocking: Aluminum foils Future Devices and Use On November 15, 2010 Eric Schmidt announced at the Web 2.0 Summit that Android will support NFC starting from version 2.3 ("Gingerbread"). The first Android handset which supports this technology is the Nexus S. On January 25, 2011, Bloomberg published a report stating that Apple was actively pursuing development of a mobile payment system employing NFC. New generations of iphone, ipod and ipad products would reportedly be equipped with NFC capability which would enable small-scale monetary transactions. 15

New Trend: Mobile Payments mybanktracker.com katu.com iranmobin.com tomnoyes.wordpress.com paymentscouncil.org.uk Predicted Mobile Spending http://money.cnn.com/2011/01/24/pf/end_of_credit_cards/ Types of Mobile Payments Mobile-to-mobile payments Mobile devices as credit card processors Mobile devices used as credit cards 16

Mobile-to-Mobile Payments n Merchant applica=ons allowing instantaneous transfer of funds from one account to another via smartphone n Examples: n Paypal Bump n Bump phones together to receive account info n Or enter email address to download appropriate account info n 1.9% - 2.9% + $0.30 transac=on fee Mobile Devices as Credit Card Processors allaexpression.com http://www.multicellphone.com/category/mobilepayment/page/2/ Square, Inc. Device acts a mini credit card reader inputting pertinent transaction information into the phone through Square App Cost: 2.75% + $0.15/card swiped; 3.5% +$0.15/ card keyed in Intuit Mobile credit card reader Cost Low Volume: $0/month, 2.7% + $0.15/swipe, 3.7% + $0.15/keyed in High Volume: $12.95/month, 1.7% + $0.30/swipe, 2.7% + $0.30/keyed in *Also additional fees for non-qualified transactions Mobile Devices as Credit Cards Near Field Communication (NFC) Technology Allows consumers to wave their mobile phone over a point of sale terminal to purchase retail items Thought to threaten the existence of the wallet Companies set to launch pilot programs: Wells Fargo Google ISIS (partnership between AT&T, Verizon Wireless, T-Mobile, Discover Financial Services and Barclays) Costs: Approximately $200/reader Phones with microchips would cost an additional $10 to $15 Transaction fees? news.softpedia.com 17

Adoptability of NFC Technology Multiple transaction systems (like with credit cards) would need to be put into place before the technology would work Banks, merchants, phone makers, and wireless carriers would need to agree on transaction fees and technical specifications Security threats May be useful for small transactions (fast food, transit costs, etc.), but not predicted to be used for big purchases 18