PARTICULAR RELIABILITY CHARACTERISTICS OF TWO ELEMENT PARALLEL TECHNICAL (MECHATRONIC) SYSTEMS



Similar documents
INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY

Term Structure of Interest Rates: The Theories

Estimating the social benefits of recreational harvesting of edible wild mushrooms using travel cost methods

The effect on the Asian option price times between the averaging. Mark Ioffe

Virtual Sensors

2. Evaluation of the probability characteristics of vehicles coming out of order

Finite Dimensional Vector Spaces.

SIF 8035 Informasjonssystemer Våren 2001

Neural Networks for Process Monitoring, Control and Fault Detection: Application to Tennessee Eastman Plant

Chapter 4 Multiple-Degree-of-Freedom (MDOF) Systems. Packing of an instrument

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks

Multi- item production inventory systems with budget constraints

Problem Set 6 Solutions

Chad Saunders 1, Richard E Scott 2

Numerical Algorithm for the Stochastic Present Value of Aggregate Claims in the Renewal Risk Model

Initial inventory levels for a book publishing firm

QUANTITATIVE METHODS CLASSES WEEK SEVEN

Many quantities are transduced in a displacement and then in an electric signal (pressure, temperature, acceleration). Prof. B.

Decision Making in Finance: Time Value of Money, Cost of Capital and Dividend Policy

Forecasting Demand of Potential Factors in Data Centers

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

The Valuation of Futures Options for Emissions Allowances under the Term Structure of Stochastic Multi-factors

DATA MINING TECHNOLOGY IN PREDICTING THE CULTIVATED LAND DEMAND

Basis risk. When speaking about forward or futures contracts, basis risk is the market

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

You can recycle all your cans, plastics, paper, cardboard, garden waste and food waste at home.

New Basis Functions. Section 8. Complex Fourier Series

Ana Botín, chairman of Banco Santander. Internal communication. 25 November 2014.

Self-rescue in quantitative risk analysis

A Note on Approximating. the Normal Distribution Function

Entity-Relationship Model

CEO Björn Ivroth. Oslo, 29 April Q Presentation

Use a high-level conceptual data model (ER Model). Identify objects of interest (entities) and relationships between these objects

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

Lecture 20: Emitter Follower and Differential Amplifiers

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means

DEVELOPMENT OF MODEL FOR RUNNING DIESEL ENGINE ON RAPESEED OIL FUEL AND ITS BLENDS WITH FOSSIL DIESEL FUEL

REVISTA INVESTIGACIÓN OPERACIONAL VOL., 32, NO. 2, , 2011

QUALITY OF DYING AND DEATH QUESTIONNAIRE FOR NURSES VERSION 3.2A

Estimating Powers with Base Close to Unity and Large Exponents

Analysis Method of Traffic Congestion Degree Based on Spatio-Temporal Simulation

Vom Prototyp zum MVP. Peter Spisak Senior Lead Architect Online and VAS Development. Public Nicht vertraulich

Operation Transform Formulae for the Generalized. Half Canonical Sine Transform

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

55 th EOQ Congress as World Quality Congress

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Essence of the Projector Augmented Wave (PAW) Method used in QMAS

Rapid Estimation of Water Flooding Performance and Optimization in EOR by Using Capacitance Resistive Model

(Analytic Formula for the European Normal Black Scholes Formula)

Transient Thermoelastic Behavior of Semi-infinite Cylinder by Using Marchi-Zgrablich and Fourier Transform Technique

SCO TT G LEA SO N D EM O Z G EB R E-

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS

Approximate Counters for Flash Memory

Taxes and the present value assessment of economic losses in personal injury litigation: Comment 1

Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman

GENETIC ALGORITHMS IN SEASONAL DEMAND FORECASTING

Probabilistic maintenance and asset management on moveable storm surge barriers

Ref No: Version 5.1 Issued: September, 2013

Claims Reserving When There Are Negative Values in the Runoff Triangle

The Design of a Forecasting Support Models on Demand of Durian for Domestic Markets and Export Markets by Time Series and ANNs.

The Sensitivity of Beta to the Time Horizon when Log Prices follow an Ornstein- Uhlenbeck Process

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

Rural and Remote Broadband Access: Issues and Solutions in Australia

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN

Cisco InterCloud. Turvallinen tapa rakentaa Hybrid Cloud. Mika Meritähti Systems Engineer DCV

Service Capacity Competition with Peak Arrivals and Delay Sensitive Customers

Traffic Flow Analysis (2)

Vladimir PAPI], Jovan POPOVI] 1. INTRODUCTION

BERGEN COMMUNITY COLLEGE DIVISION OF BUSINESS, PERFORMING ARTS AND SOCIAL SCIENCES BUSINESS DEPARTMENT

english parliament of finland

EXECUTIVE SUMMARY. Survey Objective. How to Use This Report. Methodology

5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power

ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS WITH COMPOUND POISSON DEMAND

Parallel and Distributed Programming. Performance Metrics

Online Insurance Consumer Targeting and Lifetime Value Evaluation - A Mathematics and Data Mining Approach

TELL YOUR STORY WITH MYNEWSDESK The world's leading all-in-one brand newsroom and multimedia PR platform

Proving the Computer Science Theory P = NP? With the General Term of the Riemann Zeta Function

Elements from Another Universe: Understanding the Beauty of the Periodic Table

11 Multiple Linear Regression

ISSeG EGEE07 Poster Ideas for Edinburgh Brainstorming

Online Load Balancing and Correlated Randomness

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

english parliament of finland

7.2 Analysis of Three Dimensional Stress and Strain

Masters Mens Physique 45+

Evaluating Direct Marketing Practices On the Internet via the Fuzzy Cognitive Mapping Method

ME 612 Metal Forming and Theory of Plasticity. 6. Strain

Unit 2. Unit 2: Rhythms in Mexican Music. Find Our Second Neighborhood (5 minutes) Preparation

Learning & Development

CHAPTER 4c. ROOTS OF EQUATIONS

Cikkszám Termék neve Fogyasztói bruttó árak

by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia

Question 3: How do you find the relative extrema of a function?

Long run: Law of one price Purchasing Power Parity. Short run: Market for foreign exchange Factors affecting the market for foreign exchange

1. Online Event Registration 2. Event Marketing 3. Automated Event Progress Reports 4. Web based Point of Sale Terminal 5. Marketing System

Numerical and Experimental Study on Nugget Formation in Resistance Spot Welding for High Strength Steel Sheets in Automobile Bodies

Transcription:

Maagm Sysms Produco Egrg No 3 7 pp 3 8 PARICULAR RELIABILIY CHARACERISICS O WO ELEMEN PARALLEL ECHNICAL MECHARONIC SYSEMS Zbgw MAUSZAK Marm Uvrsy o Szczc Absrac: h papr characrzs h basc dsrbuos o alur o lms ha cosu h chcal mcharocal sysms: oal Wbull ormal log ormal dsrbuo. h dscrpo o wo lm paralll chcal sysms wh rlably characrscs has b mad. Spcc cass ar sudd whr up m o h chcal sysm lms hav oal Wbull ormal log ormal dsrbuos ad whr h sysm cosss o wo pars wh paralll rlably srucur ad o dr yps o dsrbuos o lms up ms. h ordr o lms h aalyss dos o mar. h rlva characrscs o rlably or a sysm wh wo paralll lms ar prsd: up m dsrbuo uco o h sysm sysm rlably up m probably dsy o h sysm h sysm alur sy. Ky words: chcal mcharocal sysm dsrbuos o lms alur dsrbuos o alurs o wo lm paralll chcal sysms INRODUCION h combao o mchacal lcrcal lcroc pumac lms o o oprag chcal sysm has b calld rc yars a mcharoc dvc sysm. Each o hs lms has a spcc characr o durably damag suscpbly ad rlably. Rlably o dvcs ad mcharoc dvc compos s dscrbd by mahmacal modls dsrbuos o radom varabls ad parcularly h characrscs o rlably whch drcly ac h rlably characrscs o mcharoc dvcs o whch hy ar cludd. h mos commoly usd mahmacal modls o sudyg h rlably o chcal dvcs ar dsrbuos o radom varabls: oal Wbull ormal logarhmo ormal ormal rucad a zro gamma bomal Broull Posso hyprgomrc gomrc ad procsss: Posso ormal Markov ad sm Markov. Dsrbuos ar probablsc modls ad procsss ar sochasc modls [ 3 4 5]. I complx rsposbl chcal ad mcharoc sysms a combao o mchacal lcrcal lcroc pumac oprag compos o a cohr chcal sysm rsrvg compos ar o usd. h smpls rsrvg cosss a paralll cluso o h sam compo o h sysm whch rplacs h damagd compo a h m o h prmary alur. I mor complx chcal sysms h ucos o h dcv par may b ak by a dr sysm compo wh dr oprag characrscs ad hus wh dr rlably characrscs. Each o h compos may hav a dr durably damag ad rlably characr whch s dscrbd by h mahmacal modls sascal dsrbu os ad parcularly h characrscs o rlably whch drcly ac h rlably characrscs o a chcal sysm hy cosu. h mos commoly usd mahmacal modls o sudyg h rlably o chcal dvcs ar dsrbuos o radom varabls: oal Wbull ormal logarhmo ormal ormal rucad a zro gamma bomal Broull Posso hyprgomrc gomrc ad procsss: Posso ormal Markov ad sm Markov. Dsrbuos ar probablsc modls ad procsss ar sochasc modls [ 3 4 5]. I urhr aalyss h smpls ad h mos commo modls ar assumd: oal Wbull ormal or logarymo ormal. May yars o ld ss ad daabass avalabl o alur o compos ad chcal qupm dca ha spcc dsrbuos or hr rlably characrscs ca b arbud o spcc compos ad dvcs as wll as o h ypcal yps o damag [6 7 8 9] abl.

4 Maagm Sysms Produco Egrg 37/ Z. MAUSZAK Szczgól charakrysyk zwodoścow dwulmowych rówolgłych sysmów chczych Compo dvc abl. ucos o alur sy o slcd compos ad dvcs as wll as ypcal yps o damag Dsrbuo o ucos o alur sy yp o damag small rubbr pars such as sals daphragms Wbull caasrophc oal compos ad qupm damagd by xral acors oal agg Wbull gamma lcroc lms oal vry slow war oal dvcs wh a doma umbr o movg pars Wbull rapd war corrosv war Dsrbuo o ucos o alur sy ormal logarhmo ormal gamma Up m o h h lm s a radom varabl wh a dsrbuo dd by h ollowg characrscs: rlably o h compo... R P probably dsy o h compo up m d... d alur sy o h compo d l R... d R 3 h cd up m o h compo I h x par h aalyss o our dsrbuos s gv as a xampl ad h slcd characrscs o rlably composos o lms o mcharoc dvcs ar prsd. I h gv xampls h prsao s lmd o composos o dsrbuos or wo lms. CHARACERISICS O HE ANALYZED RELIABILIY DISRI BUIONS I h work blow [] parcular cass o dsrbuo composos ar aalysd. Expoal dsrbuo Expoal dsrbuo s usul or sg h rlably o such dvcs whch ar h rsul o mpac o shock loads so calld dscr smul. Expoal dsrbuo ca b usd o s h rlably o qupm ad compos : chags o h chcal codo ad h rsulg damag s rrvrsbl h lvl o rssac war rssac s cosa whch mas o damag causd by agg drvd rom cumulav xoro damag s h rsul o xral or ral radom shock racos dscr smul. Up m characrscs =... o a compo ar as ollows: rlably o h compo probably dsy o h compo up m R d... E 4 R 5 6 alur sy o h compo h cd up m o h compo Wbull dsrbuo Wbull dsrbuo dscrbs h m o ormal opra o o such dvcs whch damag s dpd ay damag causs loss o qupm up m ach u cosss o a sucly larg umbr o homogous compos. h lm has a Wbull dsrbuo wh h paramrs α β = wh s characrscs ak h orm: rlably o h compo probably dsy o h compo up m alur sy o h compo h cd up m o h compo cos. 7. E 8 A spcal cas o Wbull dsrbuo s a Raylgh dsrbuo whch h paramr α =. Normal dsrbuo h ormal dsrbuo s a modl o rlably o ay chcal objc whch hr ar damags rsulg rom h agg procss cludg war. hs s o b usd a dscrbd radom varabl dpds o a umbr o phoma ad causs o o whch ca b cosdrd doma. h compo τ up m has a ormal dsrbuo wh h probably dsy has h orm R 9 E.

Maagm Sysms Produco Egrg 37/ 5 Z. MAUSZAK Szczgól charakrysyk zwodoścow dwulmowych rówolgłych sysmów chczych ad s dsrbuo uco whr s h cd up m o a compo ad σ s s varac. h ormal dsrbuo s dd or all R whl h radom varabl τ bg h up m o h lm aks oly ogav valus. O ca pu up wh such a adquacy o h modl whr h probabls P{τ <} ar glgbly small o largr ha masurm rrors. I ordr o wr smplr ad mor cov up m characrscs o h lm wh ormal dsrbuo h characrscs o h ormal dsrbuo N probably dsy has b usd: ad h dsrbuo uco O ca h wr h characrscs o h sysm compos h orm: probably dsy o h compo up m rlably o h compo alur sy o h compo I cas o cao accp h assumpo ha h probabls P{τ <} ar glgbly small o should us h rucad ormal dsrbuo a whch m h aul r oprao o h compo aks oly ogav valus τ I hs cas h rlably characrscs o lms has h orm: probably dsy o h compo upm rlably o h compo alur sy o h compo Logarhmo ormal dsrbuo Logarhmo ormal dsrbuo rlably hory o h bass o h mprcal rsarch characrzs mal compos sa agu l h srgh o mals subjcd o prologd oprao srss as wll as lcroc compos up m. h compo τ up m has logarhmo ormal dsrbuo wh h radom varabl Y=lτ s ormally dsrbud whh paramrs N σ. Usg h probably dsy ad dsrbuo uco o h ormal dsrbuo N compo rlably characrscs o logahmoormal dsrbuo ca b wr as: probably dsy o h compo up m rlably o h compo alur sy o h compo h cd up m o h compo CHARACERISICS O HE DISRIBUIONS O WO ELEMEN PARALLEL ECHNICAL SYSEMS Hr h aalyss o lm sysm wh a paralll rlably srucur s prsd. h sam dsgaos whch hav b dd h prvous sco wll b usd. Sc h lms ar dpd ad h sysm 3 dx x 4 R 5 R. dx x 6 R 7 R 8 9 R. l l 3 l l R 4 l l 5 E 6

6 Maagm Sysms Produco Egrg 37/ Z. MAUSZAK Szczgól charakrysyk zwodoścow dwulmowych rówolgłych sysmów chczych s workg lawlssly ul h damag o all h compos: h up m dsrbuo s E d 36 P... P 7 h sysm rlably R probably dsy o h sysm up m alur sy o h sysm has h orm h cd up m o h sysm wh paralll rlably srucur s h quao 3 shows ha s rarly possbl o calcula h cd up m o h sysm h lc orm. Ev or smpl dsrbuos h cd up m o h sysm s qu complcad. I a parcular cas all compos o h sysm hav h sam up m dsrbu os. hs happs usually wh svral compos prorm o ad h sam uco. o prorm o compo s suc hror h rmag lms ar ho rsrvg ad ha cas o = or =.. h or a sysm wh a paralll srucur cossg o dcal compos rlably characrscs hav h orm: h dsrbuo uco o h sysm up m h sysm rlably R probably dsy o h sysm up m alur sy o h sysm h cd up m o h sysm 8 j j j j j 9 3 E j d 3 3 R 33 34 35 h ollowg rlably characrscs o sysms wh a paralll wo lm srucur ad dr yps o compos up m dsrbuos hav b drmd. h ordr o compos s arbrary dos o mar or h dpdc. h rs compo has h up m o h oal dsrbuo wh h paramr λ ad h scod o h Wbull dsrbuo wh h paramrs αβ. Rlably characrscs o h sysm ak h orm: h dsrbuo uco o h sysm up m h sysm rlably R probably dsy o h sysm up m alur sy o h sysm h rs compo has h up m o h oal dsrbuo wh h paramr λ ad h scod o h Wbull dsrbuo wh h paramrs σ. Rlably characrscs o h sysm ak h orm: h dsrbuo uco o h sysm up m h sysm rlably probably dsy o h sysm up m alur sy o h sysm 37 38 R h rs compo has h up m o h oal dsrbuo wh h paramr λ ad h scod o h logarhmo ormal dsrbuo wh h paramrs σ. Rlably characrscs o h sysm ak h orm: h dsrbuo uco o h sysm up m 39 4 4 4 43 l 44 45

Maagm Sysms Produco Egrg 37/ 7 Z. MAUSZAK Szczgól charakrysyk zwodoścow dwulmowych rówolgłych sysmów chczych h sysm rlably R probably dsy o h sysm up m alur sy o h sysm h rs compo has h up m o h Wbull dsrbuo wh h paramr αβ ad h scod o h ormal dsrbuo wh h paramrs σ. Rlably characrscs o h sysm ak h orm: h dsrbuo uco o h sysm up m h sysm rlably probably dsy o h sysm up m alur sy o h sysm h rs compo has h up m o h Wbull dsrbuo wh h paramr αβ ad h scod o h logarhmo ormal dsrbuo wh h paramrs σ. Rlably characrscs o h sysm ak h orm: h dsrbuo uco o h sysm up m h sysm rlably probably dsy o h sysm up m alur sy o h sysm l 46 h rs compo has h up m o h ormal dsrbuo wh h paramr σ ad h scod o h logarhmo ormal dsrbuo wh h paramrs σ. Rlably characrscs o h sysm ak h orm: l l 47 R l l l 48 49 5 5 R l l l 5 53 54 l 55 l l l 56 h dsrbuo uco o h sysm up m h sysm rlably R probably dsy o h sysm up m alur sy o h sysm l 57 l 58 l l 59 CONCLUDING REMARKS I chcal sysms parcularly mcharoc sysms rsrvg h sysm compos s popular. I h prsd maral spcc xampls o compos rsrvg ar show wh h compos ar o rsrvd by h objcs o h sam yp wh h sam characrs cs o rlably bu wh h ucoal rsrvg by a dr compo wh a dr rlably characrs cs s usd. I cas o rsrvg by h sam compos wh h sam alur dsrbuos h aalyss o rlably characrscs s rlavly smpl ad dd by h dpdcs 3 35. I ohr cass s complx. REERENCES [] Prażwska M. d.: Nzawodość urządzń lkroczych. WKŁ. Warszawa 987. [] Rausad M. Høylad A.: Sysm Rlably hory: Modls Sascal Mhods ad Applcaos. Scod do. Irscc. Nw Jrsy: Wly 4. [3] Salh J. H. Maras K.: Rlably: How much s worh? Byod s smao or prdco h prs valu o rlably. Rlably Egrg ad Sysm Say. Vol. 9 6 pp. 665 673. [4] Soskow B.S.: Nzawodość lmów urządzń auomayk. WN. Warszawa 973. [5] Ważyńska ok K. Jaźwńsk J.: Nzawodość sysmów chczych. PWN. Warszawa 99. [6] Mauszak Z.: Charakrysyk zawodoścow wlolmowych srukur mszaych odawalych. Collco o rsarch paprs o h Balc Assocao o Mchacal Egrg Exprs No 4 Mchacal Egrg o h Balc Rgo. Kalgrad Sa chcal Uvrsy. Kalgrad 4 pp. 46 48. [7] Mauszak Z.: Charakrysyk zawodoścow klkulmowych sysmów chczych o srukurz szrgowj rówolgłj o różych rozkładach czasów zdaośc. Collco o rsarch paprs o h Balc Assocao o Mchacal Egrg Exprs No 4 Mchacal Egrg o h Balc Rgo. Kalgrad Sa chcal Uvrsy. Kalgrad 4 pp. 49 53. l l l 6

8 Maagm Sysms Produco Egrg 37/ Z. MAUSZAK Szczgól charakrysyk zwodoścow dwulmowych rówolgłych sysmów chczych [8] Mauszak Z.: Slcd say modls o lms ad sysms h g room. Iraoal Scc Joural Problms O Appld Mchacs. Gorga Comm o Iraoal drao or h Machs ad Mchacs. bls 4 No 4 4 pp. 3 39. [9] Nowakowsk.: Bazy wdzy w badaach zawodośc maszy. Marały Korcj Naukowj "Mody dośwadczal w budow ksploaacj maszy roboczych chologczych oraz środków rasporu". Wydawcwo Polchk Wrocławskj. Wrocław Szklarska Poręba 993 s. 9 5. [] Mauszak Z.: Szczgól charakrysyk zawodoścow szrgowych sysmów mcharoczych. Suda Marały Polskgo Sowarzysza Zarządzaa Wdzą. Nr 45 s. 76 9. dr hab. ż. Zbgw Mauszak pro AM Marm Uvrsy o Szczc aculy o Mchacal Egrg Isu o Shp Powr Pla Oprao ul. Wały Chrobrgo 7 5 Szczc POLAND mal: z.mauszak@am.szczc.pl Arykuł w polskj wrsj językowj dosępy a sro rowj czasopsma. h arcl Polsh laguag vrso avalabl o h wbs o h joural