How To Compare The Academic Performance Of A Cooperative Learning Strategy To An Individualistic Learning Strategy



Similar documents
The Effects Of Unannounced Quizzes On Student Performance: Further Evidence Felix U. Kamuche, ( Morehouse College

Objectives. What Is Cooperative Learning?

Technological Attitude and Academic Achievement of Physics Students in Secondary Schools (Pp )

Virtual Teaching in Higher Education: The New Intellectual Superhighway or Just Another Traffic Jam?

COMMUNITY COLLEGE GRADUATION RATES: DETERMINING THE INFLUENCE OF CAMPUS HOUSING IN A NON-URBAN SETTING. Stephen M. Benson

The Turkish Online Journal of Educational Technology TOJET July 2004 ISSN: volume 3 Issue 3 Article 7

APPLIED COOPERATIVE LEARNING APPROACH EMPLOYED ON INDUSTRIAL ENGINEERING LABORATORY COURSES ABSTRACT

Studying Knowledge Retention through Cooperative Learning in an Operations Research Course

THE EFFECT OF MATHMAGIC ON THE ALGEBRAIC KNOWLEDGE AND SKILLS OF LOW-PERFORMING HIGH SCHOOL STUDENTS

Effects of Teaching through Online Teacher versus Real Teacher on Student Learning in the Classroom

Stat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct

Patrick U. Osadebe 1,* *Correspondence: Department of Guidance and Counselling, Delta State University, Abraka, USA.

Quality Measurement and Good Practices in Web-Based Distance Learning:

A PRELIMINARY COMPARISON OF STUDENT LEARNING IN THE ONLINE VS THE TRADITIONAL INSTRUCTIONAL ENVIRONMENT

Comparison of Student and Instructor Perceptions of Best Practices in Online Technology Courses

Mathematical Knowledge level of Primary Education Department students

A Hybrid Approach to Teaching Managerial Economics

Striving for Success: Teacher Perspectives of a Vertical Team Initiative

Evaluating Group Selection Methods in Construction Managers

The Effect of Flexible Learning Schedule on Online Learners Learning, Application, and Instructional Perception

EFL LEARNERS PERCEPTIONS OF USING LMS

University Students' Perceptions of Web-based vs. Paper-based Homework in a General Physics Course

The Turkish Online Journal of Educational Technology TOJET October 2004 ISSN: volume 3 Issue 4 Article 2

STUDENT S ASSESSMENT ON THE UTILIZATION OF STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES (SPSS) SOFTWARE FOR BUSINESS STATISTICS COURSE

Perception of Nigerian secondary school teachers on introduction of. e-learning platforms for instruction

A STUDY OF WHETHER HAVING A PROFESSIONAL STAFF WITH ADVANCED DEGREES INCREASES STUDENT ACHIEVEMENT MEGAN M. MOSSER. Submitted to

Learning Equity between Online and On-Site Mathematics Courses

An Investigation on Learning of College Students and the Current Application Situation of the Web-based Courses

Effect of polya problem-solving model on senior secondary school students performance in current electricity

COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

BUSINESS EDUCATION STUDENTS S PERCEPTION OF THE SKILL NEEDS FOR SUCCESSFUL ENTREPRENEURSHIP IN NIGERIA. M. O. BINUOMOTE

Cooperative Learning and Its Effects in a High School Geometry Classroom

High School Psychology and its Impact on University Psychology Performance: Some Early Data

Teaching Hybrid Principles Of Finance To Undergraduate Business Students Can It Work? Denise Letterman, Robert Morris University

RUNNING HEAD: TUTORING TO INCREASE STUDENT ACHIEVEMENT USING TUTORING TO INCREASE STUDENT ACHIEVEMENT ON END OF COURSE ASSESSMENTS. By KATHYRENE HAYES

Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation

A critique of the length of online course and student satisfaction, perceived learning, and academic performance. Natasha Lindsey

research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other

RESEARCH METHODS IN PSYCHOLOGY PSYC 381 FALL 2013 T & TH 12:10 p.m. to 1:25 p.m. (GRPS 1) SATURDAY 9/14 & 10/19 (8:00 a.m. to 12:00 noon Tech 101)

The Importance of Learning Aidsitude in Employees

Research Proposal: Evaluating the Effectiveness of Online Learning as. Opposed to Traditional Classroom Delivered Instruction. Mark R.

Issues in Information Systems Volume 13, Issue 1, pp , 2012

A CASE STUDY COMPARISON BETWEEN WEB-BASED AND TRADITIONAL GRADUATE LEVEL ACADEMIC LEADERSHIP INSTRUCTION

Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test

Evaluating Students in the Classroom Faculty Development Conference February 2007 D. P. Shelton, MSN, RN, CNE, EdD (c)

In the past decade, U.S. secondary schools have

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Survey Research: Choice of Instrument, Sample. Lynda Burton, ScD Johns Hopkins University

PERCEPTION OF DIFFICULT TOPICS IN CHEMISTRY CURRICULUM BY STUDENTS IN NIGERIA SECONDARY SCHOOLS

DATA ANALYSIS AND INTERPRETATION OF EMPLOYEES PERSPECTIVES ON HIGH ATTRITION

PATHWAYS TO READING INSTRUCTION INCREASING MAP SCORES HEIL, STEPHANIE. Submitted to. The Educational Leadership Faculty

How To Create An Online Learning Community

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

SCIENCE-RELATED ATTITUDES AND INTERESTS OF STUDENTS

Effects of Computer Animation Package on Senior Secondary School Students Academic Achievement in Geography in Ondo State, Nigeria.

CHEM PRINCIPLES OF CHEMISTRY Lecture

MARKETING EDUCATION: ONLINE VS TRADITIONAL

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

Achievement and Satisfaction in a Computer-assisted Versus a Traditional Lecturing of an Introductory Statistics Course

Department of Mathematics Sultan Idris Education University Perak, Malaysia

CHAPTER 5 COMPARISON OF DIFFERENT TYPE OF ONLINE ADVERTSIEMENTS. Table: 8 Perceived Usefulness of Different Advertisement Types

Traditional In-class Examination vs. Collaborative Online Examination in Asynchronous Learning Networks: Field Evaluation Results

TEACHING BUSINESS ETHICS IN AN INNOVATIVE BUSINESS COURSE

A QUALITATIVE ANALYSIS OF STUDENT ADVICE FROM ONLINE QUANTITATIVE MBA COURSES

Summary A Contemporary Study of Factors Influencing Urban and Rural Consumers for Buying Different Life Insurance Policies in Haryana.

OPTIMIZING COURSE MANAGEMENT SYSTEM RESOURCES IN THE INTRODUCTORY ACCOUNTING COURSE

American Journal Of Business Education July/August 2012 Volume 5, Number 4

Problem-Based Learning in Aerospace Engineering Education

EVALUATING BASIC TECHNOLOGY INSTRUCTION IN NIGERIAN SECONDARY SCHOOLS

UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST

Does a Virtual Networking Laboratory Result in Similar Student Achievement and Satisfaction?

Cooperative Education at the Riyadh College of Technology: Successes and Challenges

Student Perceptions of Online Courses: Real, Illusory or Discovered.

Mr. Snong Boiciew. Summary

A Study of Student s Attitudes towards Cooperative Learning

SCHOOL OF ENGINEERING Baccalaureate Study in Engineering Goals and Assessment of Student Learning Outcomes

A Hands-On Exercise Improves Understanding of the Standard Error. of the Mean. Robert S. Ryan. Kutztown University

The Reality of Application of Total Quality Management at Irbid National University from the Perspective of Academicians

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Analysis of the Effectiveness of Traditional Versus Hybrid Student Performance for an Elementary Statistics Course

Title of the submission: A Modest Experiment Comparing Graduate Social Work Classes, on-campus and at A Distance

Organizational Commitment among Public and Private School Teachers

Integrating Information Technology (IT) into Accounting Courses

The Extent to Which Human Resources Managers in the Kuwaiti Insurance Sector Perceived the Modern Roles Human Resources Management

Teachers' Perspectives about the Effect of Tawjihi English Exam on English Instruction at the Second Secondary Stage in Jordan

Modeling Peer Review in Example Annotation

Skills versus Concepts: Attendance and Grades in Information Technology Courses

THE INFLENCE OF PRINCIPALS LEADERSHIP STYLES ON SCHOOL TEACHERS JOB SATISFACTION STUDY OF SECONDRY SCHOOL IN JAFFNA DISTRICT

PREPARING STUDENTS FOR CALCULUS

Investigation into the effectiveness of an inquiry-based curriculum in an Introductory Biology laboratory

The Reading Practices and Study Behaviors of Developmental and Nontraditional Community College Students. M Cecil Smith. Robert J.

The African Symposium: An online journal of the African Educational Research Network

Face to face or Cyberspace: Analysis of Course Delivery in a Graduate Educational Research Course

Internet classes are being seen more and more as

The Impact of Blended Learning on Communication skills and Teamwork of Engineering Students in Multivariable Calculus

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp , ,

Trust, Job Satisfaction, Organizational Commitment, and the Volunteer s Psychological Contract

Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)

UNDERSTANDING THE TWO-WAY ANOVA

Transcription:

The Journal of Effective Teaching an online journal devoted to teaching excellence Statistical Analysis of Cooperative Strategy Compared with Individualistic Strategy: An Application Study Tawfik A. Saleh 1 King Fahd University of Petroleum and Minerals, Kingdom of Saudi Arabia Abstract The study investigates the effect of cooperative and individualistic learning strategies on the academic performance of students in the general chemistry laboratory. The samples of the study were divided into experimental and control s. The hypotheses were first generated and, after collecting data, analyzed by an analysis of t-test at an α = 0.05 level of significance. The findings revealed that a cooperative learning strategy is more effective than an individualistic strategy; and, the students in the cooperative performed significantly better. The mean difference of the final examination of 6.80, t = 6.10, p = 0.001 indicated that the difference of the results for control and experimental was significant at p<0.05. Students of cooperative s, at the end of the course, were given a questionnaire to reflect their perception. Their response was positive toward the cooperative learning strategy. 90% of the students would like to help, get help and mutually discuss the labs with their partners. A majority of them were in agreement that working as a to conduct an experiment could improve their teamwork skills as well. This study adds to the global discussion about the role of the University in preparing students toward teamwork. Keywords: Cooperative learning, individualistic learning, general chemistry, laboratory, scholarship of teaching, effective teaching, teamwork. In pedagogy, educators seek for a learning methodology to teach a specific subject properly so that students maximize learning. Learning appropriately occurs when students are actively involved in the construction of their knowledge (Mestre & Cocking, 2002). Generally, there are three major learning structures: competition learning, independent (individualistic) learning, and cooperative learning (Roon, et al., 1983). These three ways of learning lead to different interaction patterns and thus promote different learning outcomes. In competition learning, students perceive that they can achieve their goals if other students fail to do so. In independent learning, the achievement of each student is unrelated to others; there is no concern about competing for grades since there is an individualistic goal structure and student goal achievement is independent. In cooperative learning, students goal achievements are positively correlated. Cooperative learning (CL) is defined as a technique for helping students to work together in small s more 1 Corresponding author's email: tawfik@kfupm.edu.sa

Saleh 20 effectively to achieve shared goals with maximum learning (Johnson & Johnson, 1999). Johnson and Johnson (1989) have indicated that CL fosters creative thinking such that students in a generated new ideas, strategies and solutions which are more powerful than those generated in individual learning. Also other studies have pointed out that CL helps to improve students achievement and retention and develop more positive attitudes towards learning skills (Pressel, 1992; Nichols and Miller, 1994). It is more effective than competitive learning (Kolawole, 2008). Roon used CL s in a biochemistry laboratory course for first year students and reported that the faculty were positive about CL impact (Roon et al., 1983). According to the educational literature related to CL methods, CL requires six principles. (1) Individual accountability: all students contribute to know and master the material, learn and share their knowledge and ideas with their teammates; (2) Positive interdependence: the success of all members in the is linked through goals and materials so everybody should understands that his contribution is important in achieving the shared goals or tasks and others understanding; (3) Cooperation as a value: students have to know that cooperation is not only a way to learn but it is a part of the content to be learned; (4) Equal participation: the structure of the goals to be learned should encourage and promote members to fairly participate equally; (5) Simultaneous interaction: to ensure that more than one member is actively engaged at a time. At least one student gives the idea and the others receive the idea and mutually discuss it; and (6) Promotive interaction: students can have face to face interaction in at least part of the task (Johnson & Johnson, 1994; Johnson, Johnson, & Smith, 1998; Kagan, 1994; Jones & Jones, 2008; Jacobs, Power, & Loh, 2002; Jacobs, 2008). These six elements are used as a basis for implementing CL in this work due to its solid foundation in educational research. This paper describes and statistically analyzes the application of CL as a strategy of introducing general chemistry laboratory to enhance students learning and satisfaction. Objective of the Study The purpose of the study includes the comparison of the academic performance of students taught with CL strategy and those taught with individualistic learning strategy in general chemistry laboratory. Statement of the Problem Despite its efforts to prepare students for the practice of chemistry, Chemistry departments confront challenges related to increasing diversity of students backgrounds in basic science and the failure of many students to appreciate the important role of chemistry in the practice. In addition, many students are impatient with studying basic science because they are primarily motivated to enter their major of interest and do not perceive the direct relevance of the science of chemistry to their majors. To make chemistry interesting and to contribute to greater efficiency and effectiveness, a number of innovative approaches have been used in teaching including cooperative learning and individualistic learning. Thus, the main problem this study investigates is to determine which of these

Cooperative Strategy Compared with Individualistic Strategy 21 learning strategies leads to better achievements of the students in the chemistry laboratory and to what extent do these learning strategies affect the learning outcomes. Based on this, the author postulated the following question: Will those taught with a cooperative learning strategy and those taught with an individualistic learning strategy perform equally in chemistry laboratory? Hypotheses Based on the statement of the problem, the following hypotheses are generated and tested at an α = 0.05 level of significance: Hypothesis 1: There is no significant difference between the academic performance of students in experimental and control s taught with individualistic learning strategy in the first three experiments. Hypothesis 2: There is no significant difference between the mean academic performance of students taught with an individualistic learning strategy and those taught with a cooperative learning strategy during the other 8 experiments. Research Design and Implementation Methodology Both an experimental and a control were established for this study. To determine whether there were any statistical differences between the control and experimental s, an individualized learning strategy was used during the first three experiments for both s. Then, starting with experiment four, the study was performed by using CL to teach some sections of students (experimental ) and using individualized learning to teach the other sections (control ). All students are taught the same experiments using the same materials, have the same facilities, and the same form of quizzes, assignments and exams. Specifically, the principles of CL were explained to the students of experimental and they were instructed and encouraged to function as units in conducting the experiments, related laboratory concepts, calculations and the reporting of the data. On the other hand, the students in th control were instructed and encouraged to work individually. Each student had to turn in individual report. Students performance in the laboratory was assessed in three ways: laboratory reports, quizzes, and a final examination. The laboratory reports included laboratory data and calculations. Uniformity of grading was encouraged by the use of detailed scoring keys. In laboratory quizzes, only laboratory-related material was included and questions required single word, sentence, or paragraph answers. At the end of the course, students were examined practically and theoretically.

Saleh 22 Variables and Instruments The independent variable in this study is the learning approach (cooperative learning vs. individualized learning), and the dependent variables are the students achievements as measured by their report, quizzes and final semester examination scores, and their attitudes and perceptions. The measuring instruments used in this study consisted of the experiments reports, quizzes and final semester examination. The quizzes were designed to measure the performance of the students. The statistical tools used to analyze the experiments reports, quizzes, and final exam scores in the study were the mean, the standard deviation, and the student t-test. Students also were asked to fill out a questionnaire to reflect their opinions and perceptions. Validity and Reliability of the Instruments The instruments were validated by content and face-to-face validity methods. For validity, the instruments were revised with the suggestions of the experts in the field. During the final week of the semester, some students in the experimental were randomly chosen for face-to-face interviews. Administration of the Instrument A purposive sampling technique was used to divide the sample into two s; experimental taught using comparative learning and the control taught using individualistic learning. In order to ascertain the homogeneity of the treatment s, the same work scheme was used in explaining the experiments and introducing the quizzes and final exam. After treatment, the scores of both s were collected and subjected to appropriate statistical analysis. The hypotheses were analyzed by analysis of the t-test at an α = 0.05 level of significance. Qualitative Findings Results and Discussion The attitudes of students were assessed in two ways: 1) by observation and discussion with students (face-to-face interviews) and 2) by administration of a written questionnaire. From the students responses in the interviews and laboratory observation, most of them showed a very positive response and expressed that they like the CL method instead of the individualistic learning method. They welcomed the CL strategy and enjoyed learning and hoped that the teacher would continue implementing this strategy. It was observed that the students were motivated to perform better than their previous performance since they had a chance to mutually discuss the experiment with their partners. In the students opinion questionnaire, administrated at the end of the course, students in the experimental were asked to respond to statements about the laboratory taught by cooperative learning. The results of this questionnaire are presented in Table 1.

Cooperative Strategy Compared with Individualistic Strategy 23 Table 1: Students perception about the application of the strategy. Statement I prefer to work individually to perform the whole experiment. I prefer to work cooperatively with teammates to perform the experiment. I like helping others understanding the content of the experiment. I would like to get help from others understanding the content of the experiment. Working cooperatively increases mutual discussion of contents of the experiment with teammates Working cooperatively improves understanding the experiment Working as a to conduct an experiment increase positive interdependence Working as a to conduct an experiment improve the teamwork skills Working as a to conduct an experiment improve my laboratory skills Working as a to conduct an experiment make the lab more enjoyable and interesting Ease and speed of the lab improve when we work as a % SA A N D SD 10 15 0 35 40 70 20 0 10 0 70 20 10 0 0 30 40 10 10 10 70 20 10 0 0 30 50 10 10 0 45 45 10 0 0 70 20 0 10 0 30 30 20 10 10 60 20 20 0 0 35 35 10 10 10 SA: strongly agree; A: agree; N: neutral; D: disagree; SD: strongly disagree. In general, the students were positive about the cooperative learning strategy. A majority of them preferred to work cooperatively, rather than individually, to conduct the experiments. 90% of them did like to help, get help, and mutually discuss the experiments with their partners. This led to positive interdependence. A majority of them were in agreement that working as a to conduct an experiment could improve their teamwork skills. Quantitative Findings Hypothesis 1: As illustrated in Table 2, the results show that the control obtained 80.67 mean score compared to the experimental which obtained an 80.33 mean score. The mean difference of 0.34, t = -0.277, P = 0.808 indicated that the difference of the results between the control and the experimental was not significant (p > 0.05). Hence the null hypothesis is accepted at an α = 0.05 level of significance. Thus, there was no significant difference between both s when individualistic learning was used for both s in the first three experiments (Table 2 & Figure 1). Therefore,

Saleh 24 Table 2: Statistical analysis of reports scores of pre-application of strategy. Source of Mean SD t variation c t t P Result Experimental 80.67 7.30 0.277 1.96 0.808 NSS Control 80.33 7.40 SD: standard deviation; t c : student t-test calculated; t t : student t-test tabulated; P-value; NSS: not statistically significant. Figure 1: Mean experimental grades of students of both experimental and control s. before the study started, both the control and experimental were not statistically different. Although the experimental s mean score is 0.34 higher than the control, the difference is not significant at p < 0.05 level. Hypothesis 2: Table 3 shows that t-calculated vaue is greater than t-tabulated vaue; hence, the null hypothesis is rejected at an α = 0.05 level of significance. This means there is a significant difference between the academic performance of students taught with cooperative and individualistic learning strategies in favor of cooperative learning strategy. After the application of the cooperative strategy, the analysis of the results in

Cooperative Strategy Compared with Individualistic Strategy 25 Table 3: Statistical analysis of reports scores of those taught with cooperative and individualized learning strategy (post-application). Source of Mean SD t variation c t t P Result Cooperative 89.91 4.90 11.63 1.96 7.8 x 10-6 SS Individulistic 79.75 7.70 SD: standard deviation; t c : student t-test calculated; t t : student t-test tabulated; P-value; SS: statistically significant. Table 3 showed that the students taught with cooperative learning strategy performed better than those taught with th individualistic learning strategy. The experimental obtained a higher mean score of 89.91 as compared with the mean of 79.75 for the control. The difference between the means scores of both s is significant. The mean difference is only 0.34 during th pre-application of the strategy, and it increased to 10.16 after the application of the cooperative strategy (Table 3 & Figure 1). The statistical analysis of the final semester examination mean scores for both s was carried out. The results, as illustrated on Table 4, show that the control obtained a 78.10 mean score as compared to the experimental, which obtained an 84.90 mean score. The mean difference of 6.80 with t = 6.10 and P = 0.001 indicates that the difference between the control and the experimental was significant at p<0.05. The experimental had higher mean scores than those of the control, and the results were statistically significant. Therefore, the learning through a cooperative strategy had produced positive effects. Table 4: Statistical analysis of final examination scores. Source of Mean SD t variation c t t P Result Cooperative 84.90 3.5 6.1 1.96 0.001 SS Individulistic 78.10 6.9 SD: standard deviation; t c : student t-test calculated; t t : student t-test tabulated; P-value; SS: statistically significant Conclusion This study has proven that a cooperative learning strategy is more effective than an individualistic learning strategy in teaching the general chemistry laboratory. The advantage

Saleh 26 of a cooperative learning strategy is not only to teach but also to create and enhance students motivation, interest, and achievement. This definitely can bring about more effective learning. The study adds to the global discussion on the effect of the CL to enhance practical performance and understanding, and thus motivates the interest in the learning of practical subjects. Recommendations Based on the findings, it is hereby recommended that: cooperative learning strategy should be adopted as an effective learning strategy in order to improve student s performance, social interaction skills and foster meta-cognition in students. In addition, the results of this study provide guidelines for further research and are used to create innovative knowledge creation in other fields. The effectiveness of the cooperative learning strategy is recommended to be studied in other subjects. References Jacobs, G. M., Power, M. A., & Loh, W. I. (2002). The teacher's sourcebook for cooperative learning: Practical techniques, basic principles, and frequently asked questions. Thousand Oaks, CA: Corwin Press. Jacobs, G., Cooperative Learning: Theory, Principles, And Techniques, JF New Paradigm Education, Retrieved in 2008, http://www.georgejacobs.net. Johnson D. W., & Johnson, R.T. (1989). Leading the Cooperative School, Edina, MN: Interaction Book Company. Johnson, D. W, Johnson, R. T., & Smith, K. A. (1998). Active Learning: Cooperation in the College Classroom, Edina, MN: Interaction Book. Johnson, D. W., & Johnson, R. T. (1994). Leading the cooperative school (2nd ed.). Edina, MN: Interaction Book Company. Johnson, D. W., & Johnson, R. T. (1999). Making cooperative learning work. Theory Pract. 38, 1 73. Jones, K. A., & Jones, J. L. (2008). Making Cooperative Learning Work in the College Classroom: An Application of the Five Pillars of Cooperative Learning to Post- Secondary Instruction, The Journal of Effective Teaching, 8 (2), 61-76. Kagan, S. (1994). Cooperative learning. San Clemente, CA: Kagan Publications. Kolawole, E. B. (2008). Effects of competitive and cooperative learning strategies on academic performance of Nigerian students in mathematics, Educational Research and Review 3 (1), 033-037. Mestre, J., & Cocking, R. R. (2002). Applying the science of learning to the education of prospective science teachers. In: Learning Science and the Science of Learning: Science Educators' Essay Collection, ed. R. W. Bybee, Arlington, VA: National Science Teachers Association Press. Nichols, J., & Miller, R. (1994). Cooperative learning and student motivation. Contemporary Educational Psychology, 19, 167 178. Pressel, B. E. (1992). A Perspective on the Evolution of Cooperative Thinking, in Davidson and Worksham (Eds). Enhancing Thinking Through Cooperative Learning. NY, NY; College Teachers Press.

Cooperative Strategy Compared with Individualistic Strategy 27 Roon, R. J., Van Pilsum, J. F., Harris, I., Rosenberg, P., Johnson, R., Liaw, C., & Rosenthal, L. (1983). The experimental use of cooperative learning s in a biochemistry laboratory course for first-year medical students, Biochemical Education 11 (1), 12-15.