Fraxel Laser Indications and Long-Term Follow-Up

Similar documents
Fractional Resurfacing for the Treatment of Hypopigmented Scars: A Pilot Study

Fractional photothermolysis is a new technique

Eyelid laxity is often the cause of senile ectropion

12/7/2014. Dr.Mohammad Alshami associate professor of dermatology Sana a university Yemen

Next generation Er:YAG fractional ablative laser

MICROLASERPEEL TM. Meeting. Atlanta, GA April, 2002 (1) TM Sciton Corp, Palo Alto, CA

ACNE IS A COMMON DISORder,

Hybrid Fractional Laser: The Future of Laser Resurfacing

Treatment of Atrophic Facial Acne Scars with a Dual-Mode Er:YAG Laser

Long-Pulsed 1064-nm Nd:YAG Laser-Assisted Hair Removal in All Skin Types

Use of Fractionated Microneedle Radiofrequency for the Treatment of Inflammatory Acne Vulgaris in 18 Korean Patients

Treatment of Melasma Using a Novel 1,927-nm Fractional Thulium Fiber Laser: A Pilot Study

2 days after C02 laser resurfacing, painful blisters around mouth. Likely dx? Tx? Could it have been prevented?

Evaluation of Fractional CO 2 Laser Efficacy in Acne Scar

Microneedling therapy in atrophic facial scars: An objective assessment (publ )

Periorbital skin tightening with broadband infrared light device - Preliminary Results

Complications in Lasers, Lights, and Radiofrequency Devices

The Gold Standard in Facial Resurfacing: The CO2 Laser and Future Directions

Non-Fractional Broadband Infrared Light for: Acne Scarring - Preliminary Results

PLEASE SCROLL DOWN FOR ARTICLE

Innovative Low Fluence-High Repetition Rate Technology for Hair Removal

Treatment of Hypertrophic Scars Using Laser and Laser Assisted Corticosteroid Delivery

ORIGINAL ARTICLE. Mario A. Trelles & Serge Mordon & Mariano Velez & Fernando Urdiales & Jean Luc Levy

A single device, a plethora of treatments.

Treatment of Burn Scars With the 1,550 nm Nonablative Fractional Erbium Laser

Skin rejuvenation with laser and other techniques

Noninvasive Lifting of Arm, Thigh, and Knee Skin with Transcutaneous Intense Focused Ultrasound

Patient Information and Consent for Medical/Laser/Intense Pulsed Light Treatment. VASClinic PROCEDURES

Smoothbeam Laser Treatment of Acne Vulgaris. Emerging Applications

Treatment of Freckles and Solar Lentigines Using A Long-Pulsed Alexandrite Laser in Asian Skin : A Pilot Study

R. Glen Calderhead 1, Boncheol Leo Goo 1, Franco Lauro 2, Devrim Gursoy 3, Satish S. Savant 4 and Adam Wronski 5. Addressee for Correspondence:

New Methods for Guidance of Light-Based Treatments Using Objective Melanin Measurements

Facial and neck skin laxity has traditionally been addressed

A Novel Approach to Make an Objective Evaluation of Photo Skin Rejuvenation with Intense Pulsed Light

Freckles Removal Using Intense Pulsed Light in Chinese People

SCIENTIFIC PAPER ABSTRACT

By Inga Hansen. September/October 2008 MedEsthetics. Hannah Ross

PowerLight LED Light Therapy. The FUTURE of corrective skin

RESULTS YOU CAN SEE AND FEEL

REVIEW Fractional FRAC3 and Twinlight TM Laser Skin Treatments

There has been an explosive increase in the

Safe and Effective Long-Term Hair Reduction in Tanned Patients Using an 800 nm Diode Laser

Characterization of a New Light and Vacuum Device for the Treatment of Acne

Natalie L. Semchyshyn, M.D. Assistant Professor

Overview. Introduction

TREATMENT OF PERIORAL RHYTIDES WITH VOLTAIC ARC DERMOABRASION. Department of Oral Science, Nano and Biotechnology University of Chieti-Pescara 2

Laser and Cosmetic Center

Laser Treatment of Scars E. L. Tanzi, MD and T. S. Aister, MD

Laser Treatment of Scars

SKIN REJUVENATION WITH FRAXEL LASER. Akhil Wadhera, M.D. Dermatology

Informed Consent For Laser Hair Removal

LASER TREATMENT OF VASCULAR LESIONS

Non-Surgical Fat Reduction using the CoolSmooth Conformable Surface Cryolipolysis Applicator. W. Grant Stevens, MD, FACS

Novel approach with fractional ultrapulse CO 2 laser for the treatment of upper eyelid dermatochalasis and periorbital rejuvenation

Performance. All You Need. All In One.

Striae or stretch marks are frequent undesirable

Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

Informed Consent for Cosmetic Laser Skin Resurfacing with the DOT laser

As the demand for less invasive, highly effective COSMETIC

Cutaneous Laser Surgery Session Sunday, April 3, 2011

Novel Fractional Treatments with VSP Erbium YAG Aesthetic Lasers

CLINICAL EVALUATION OF HANDHELD SELF-TREATMENT DEVICE FOR HAIR REMOVAL

A division of Dermatology Associates of Atlanta PC. Laser Skin Care - Head to Toe. Our Services

Explaining Ellipse I 2 PL

A Review of Radio Frequency for Skin Tightening by Dr. Steven Weiner (Finally! A Radiofrequency System That Makes Sense: The Infini From Lutronic)

Control system for laser therapy of teleangiectasies

CURRICULUM VITAE Dr. William F. Groff La Jolla Cosmetic Surgery Centre 9850 Genesee Avenue, Suite 480 La Jolla, CA (858)

Effective, Permanent Hair Reduction Using a Pulsed, High-Power Diode Laser

LASER TREATMENT OF PIGMENTED LESIONS

SELECTED READINGS ORAL AND MAXILLOFACIAL SURGERY COSMETIC SKIN CARE

INFORMED CONSENT DERMABRASION

Laser Tattoo Removal

ICON PRE AND POST OP INSTRUCTIONS. MAXG or 1540 (XD/XF)

Review Article. Light-based treatments for acne. Introduction

Palomar LuxIR Fractional Handpiece

Low-Fluence 585 nm Q-Switched Nd:YAG Laser: A Novel Laser Treatment for Post-Acne Erythema

Use of the LightSheer Diode Laser System for the Treatment of Benign Pigmented Lesions

Consent for Laser/Light Based Treatment

MEDICAL POLICY POLICY TITLE POLICY NUMBER SURGICAL TREATMENT OF ACNE AND DERMABRASION MP-1.102

Evaluation of the Efficacy of Tattoo-Removal Treatments with Q-Switch Laser

Avalanche FRAC3 Nd:YAG Laser Hair Removal

NEHSNORTH EASTERN HEALTH SPECIALISTS

There are different types of lasers that according the wavelength of their beams have different indications; the most common ones used on skin are:

A Comparison of Two 810 Diode Lasers for Hair Removal: Low Fluence, Multiple Pass Versus a High Fluence, Single Pass Technique

Love the Skin You re In. Emily Lambert, MD Sara Drew, ANP

Combating photoaging with percutaneous collagen induction

Dermatochalasis is the crepey, wrinkled, Surgical Treatment Options for Lower Eyelid Aging. Cosmetic Technique. Joe Niamtu III, DMD

Spotlight Series: Interventional Radiology. Varicose Veins and Venous Insufficiency

Treatment of Medium-Size Congenital Melanocytic Nevi (CMN) by New Combined Laser Therapy: Better Results and Fewer Complications*

Use of an 800 nm High-power Diode Laser for the Treatment of Leg Vein Telangiectasia

Lasers in dermatology: Four decades of progress

RULES OF THE ALABAMA BOARD OF MEDICAL EXAMINERS CHAPTER 540-X-11 GUIDELINES FOR THE USE OF LASERS AND OTHER MODALITIES AFFECTING LIVING TISSUE

Aesthetic Plus LASER TRAINING MANUAL FOR MEDICAL PROFESSIONALS. presents

The Evolution of Melasma Therapy: Targeting Melanosomes Using Low-Fluence Q-Switched Neodymium-Doped Yttrium Aluminium Garnet Lasers

Cosmetic Laser Procedures and Facial Contouring with Injectables. 2009, American Society for Aesthetic Plastic Surgery

Carbon dioxide laser safety issues in blepharoplasty and eyelid surgery

ANNE M. CHAPAS, M.D.


CO 2 laser for skin resurfacing and benign skin lesions

PRESENTATIONS. 3. Practice Safe Sun! Presented to the executive editorial staff of Hearst Magazines, June 26, 2007.

Transcription:

xxx-xxxc_ymj587_tanzi_1p 10/20/08 1:39 PM Page 1 Special Topic Fraxel Laser Indications and Long-Term Follow-Up Elizabeth L. Tanzi, MD; Rungsima Wanitphakdeedecha, MD, M, MSc; and Tina S. lster, MD Fractional photothermolysis, based on creating spatially precise microscopic thermal wounds, is performed using a 1550-nm erbium fiber laser that targets water-containing tissue to effect the photocoagulation of narrow, sharply defined columns of skin known as microscopic thermal zones. ccording to the authors, Fraxel resurfacing has been shown to be both safe and effective for facial and nonfacial photodamage, atrophic acne scars, hypopigmented scars, and dyspigmentation. ecause only a fraction of the skin is treated during a single session, a series (typically 3 to 6 treatments) of fractional resurfacing at 2- to 4-week intervals is required for the best clinical improvement. It is the authors experience that a series of Fraxel treatments can achieve a similar clinical result for atrophic scars compared with traditional ablative laser skin resurfacing. However, the improvement seen after a series of Fraxel treatments for perioral laxity and rhytides often falls short of the impressive results that can be achieved with ablative laser skin resurfacing. (esthetic Surg J 2008;28:***.) Q1 EVOLUTION OF LTIVE ND NONLTIVE SYSTEMS blative laser skin resurfacing with either carbon dioxide (CO 2 ) or erbium:yttrium-aluminum-garnet (Er:YG) laser systems is a well accepted treatment for facial rejuvenation, predictably improving the appearance of photoinduced rhytides and dyschromia. 1 However, complete epidermal ablation induced by these systems results in loss of cutaneous barrier function and an extended postoperative recovery period. Untoward side effects include prolonged erythema, pigmentatry alteration, infection, and, in rare cases, fibrosis and scarring. 2-4 Furthermore, because of the high risk of scarring in nonfacial areas because of a relative paucity of pilosebaceous units in nonfacial skin, the use of ablative laser skin resurfacing is limited to facial areas. Nonablative Systems To address the risks associated with ablative laser skin resurfacing, nonablative laser systems were developed. Nonablative laser or light-based systems (including 1064- and 1320-nm Nd:YG, 1450-nm diode, 1540-nm erbium glass lasers, and intense pulsed light systems) combine epidermal surface cooling with infrared or near-infrared wavelengths that create a controlled thermal injury. In studies using various nonablative devices, neocollagenesis was evident on histologic evaluation with minimal side effects, but clinical improvement was Drs. Tanzi and lster are in private practice in Washington, DC. Dr. Wanitphakdeedecha is from the Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, angkok, Thailand. modest and often inconsistent. 5-9 Moreover, photoinduced dyschromia, which is often seen in conjunction with wrinkles, is not adequately addressed with completely nonablative laser systems. FRCTIONL PHOTOTHERMOLYSIS Introduced by Manstein et al 10 in 2003, fractional photothermolysis was developed to overcome the aforementioned shortcomings associated with cutaneous laser resurfacing and is based on the creation of spatially precise microscopic thermal wounds with sparing of the surrounding tissue. Fractional resurfacing is performed using a 1550-nm erbium fiber laser (Fraxel; Reliant Technologies, Mountain View, C) that targets watercontaining tissue to effect photocoagulation of narrow, sharply defined columns of skin known as microscopic thermal zones (MTZs), at depths of 200 µm to 500 µm and spaced at 200- to 300-µm intervals. Histologic evaluation of the MTZ demonstrates homogenization of dermal matrix and the formation of microscopic epidermal necrotic debris (MEND) that corresponds to the extrusion of damaged epidermal components by viable keratinocytes at the lateral margins of the MTZ. The depth of penetration of each MTZ is energy dependent and can be tailored to the characteristics of the treatment area (ie, facial vs nonfacial skin). Increases in pulse energy lead to increases in MTZ depth and width without compromising the structure or viability of interlesional tissue. 11 The MEND exfoliates several days after treatment, lending the skin a bronzed appearance. 12 The wound healing response differs from ablative techniques because the epidermal tissue that is spared between thermal zones contains viable transient amplifying cells, capable esthetic Surgery Journal Volume 28 Number 6 November/December 2008 1

xxx-xxxc_ymj587_tanzi_1p 10/20/08 1:39 PM Page 2 Q2 of rapid reepithelialization. Furthermore, because the stratum corneum has a low water content, it remains intact immediately after treatment, thereby maintaining epidermal barrier function and reducing the risk of infection. In addition, fractional resurfacing can provide an advantage over purely nonablative laser treatments because of the gradual exfoliation of the epidermis with resultant improvement in superficial dyspigmentation. Investigators have shown Fraxel laser resurfacing to be both safe and effective for a variety of indications, including facial and nonfacial photodamage, atrophic acne scars, hypopigmented scars, and dyspigmentation (Figures 1 through 3). 13-21 ecause only a fraction of the skin is treated during a single session, a series (typically 3 to 6 treatments) of fractional resurfacing at 2- to 4-week intervals is required for the best clinical improvement. Side Effects and Complications Side effects of fractional resurfacing are typically mild and transient, including erythema and periocular edema, and a slight darkening of the skin (bronzing) as the MEND desquamate. The overall complication rate is significantly lower with fractional skin resurfacing than that reported after ablative laser skin resurfacing. 1-4 retrospective evaluation of 961 successive 1550-nm Fraxel laser treatments in patients with various skin phototypes (Fitzpatrick types I through V) was conducted in a single clinical center. 22 There were 73 reported complications in 961 treatments (7.6%). The most frequent complications were acneiform eruptions (n = 18; 1.87%), herpes simplex virus (HSV) outbreaks (n = 17; 1.77%), and erosions (n = 13; 1.35%). Less frequent side effects included postinflammatory hyperpigmentation (n = 7; 0.73%), prolonged erythema (n = 8; 0.83%), prolonged edema (n = 6; 0.62%), and dermatitis (n = 2; 0.21%). To reduce the risk of HSV outbreak, oral HSV prophylaxis is recommended for those patients with a strong history of herpes labialis. cne-prone patients were more likely to experience posttreatment acne, presumably because of the disruption of follicular units during treatment and reep- Q3 Q5 Figure 1., Pretreatment view of a ***-year-old female with periocular rhytides., Posttreatment view 3 months after a series of three Fraxel laser treatments. Figure 2., Pretreatment view of a ***-year-old male with periocular rhytides., Posttreatment view 3 months after a series of five Fraxel laser treatments. 2 Volume 28 Number 6 November/December 2008 esthetic Surgery Journal

xxx-xxxc_ymj587_tanzi_1p 10/20/08 1:39 PM Page 3 Figure 3., Pretreatment view of a ***-year-old male with atrophic scars., Posttreatment view 3 months after a series of four Fraxel laser treatments. Q4 ithelialization. The use of oral antibiotics (eg, doxycycline, 20 mg daily) during subsequent treatments prevented future outbreaks in these patients. To date, permanent pigmentary alteration and scarring have not been reported. However, when an aggressive treatment protocol is used, placing a high density of MTZ, the risk of visible epidermal ablation is increased along with the side effects and complications associated with ablative laser procedures. CONCLUSIONS s demand grows for minimally invasive treatments to address the signs of aging and photodamage, clinicians will be challenged to develop procedures that combine reliable clinical results with minimal posttreatment recovery. ased on its demonstrated clinical efficacy and excellent side effect profile in a wide range of skin types, fractional photothermolysis is considered a first-line treatment for cutaneous resurfacing. To date, there are no published reports evaluating the clinical efficacy of traditional ablative laser skin resurfacing compared with nonablative fractional resurfacing. It is the authors experience that a series of Fraxel treatments can achieve a similar clinical result for atrophic scars compared with traditional ablative laser skin resurfacing. However, the improvement seen after a series of Fraxel treatments for perioral laxity and rhytides often falls short of the impressive results that can be achieved with ablative laser skin resurfacing. Over the next several years, variations on the theme of fractional photothermolysis, including ablative fractional photothermolysis with highly advanced CO 2 and Er:YG laser systems, will continue to advance cutaneous laser resurfacing toward the ultimate goal of maximum clinical improvement coupled with minimal recovery and side effects. DISCLOSURES The authors have no financial interest in and receive no compensation from the manufacturers of products mentioned in this article. Fraxel Laser Indications and Long-Term Follow-Up REFERENCES 1. lster TS. Cutaneous resurfacing with CO 2 and erbium:yg lasers: preoperative, intraoperative, and postoperative considerations. Plast Reconstr Surg 1999;103:619 632. 2. lster TS, Tanzi EL. Laser and light source treatment of clinical manifestations of photodamage. In: Goldberg D, ed. Photodamaged Skin. New York: Marcel Dekker; 2004:115 143. 3. Tanzi EL, lster TS. Side effects and complications of variable-pulsed erbium:yttrium-aluminum-garnet laser skin resurfacing: extended experience with 50 patients. Plast Reconstr Surg 2003;111:1524 1529. 4. Tanzi EL, lster TS. Single-pass carbon dioxide versus multiple-pass Er:YG laser skin resurfacing: a comparison of postoperative wound healing and side-effect rates. Dermatol Surg 2003;29:80 84. 5. lster TS, Tanzi EL. Laser skin resurfacing: ablative and nonablative. In: Robinson J, Sengelman R, Siegel DM, Hanke CM, eds. Surgery of the Skin. Philadelphia: Elsevier; 2005:611 624. 6. Goldberg DJ, Samady J. Intense pulsed light and Nd:YG laser nonablative treatment of facial rhytides. Lasers Surg Med 2001;28:141 144. 7. Lupton JR, Williams CM, lster TS. Nonablative laser skin resurfacing using a 1540 nm erbium:glass laser: a clinical and histologic analysis. Dermatol Surg 2002;28:833 835. 8. Tanzi EL, Williams CM, lster TS. Treatment of facial rhytides with a nonablative 1450 nm diode laser: a controlled clinical and histologic study. Dermatol Surg 2003;29:124 128. 9. Tanzi EL, lster TS. Comparison of a 1450-nm diode laser and a 1320- nm Nd:YG laser in the treatment of atrophic facial scars: a prospective clinical and histologic study. Dermatol Surg 2004;30:152 157. 10. Manstein D, Herron GS, Sink RK, Tanner H, nderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med 2004;34:426 438. 11. edi VP, Chan KF, Sink RK, Hantash M, Herron GS, Rahman Z, et al. The effects of pulse energy variations on the dimensions of microscopic thermal treatment zones in nonablative fractional resurfacing. Lasers Surg Med 2007;39:145 155. 12. Fisher GH, Geronemus RG. Short-term side effects of fractional photothermolysis. Dermatol Surg 2005;31:1245 1249. 13. Geronemus RG. Fractional photothermolysis: current and future applications. Lasers Surg Med 2006;38:169 176. 14. Tannous ZS, stner S. Utilizing fractional resurfacing in the treatment of therapy-resistant melasma. J Cosmet Laser Ther 2005;7:39 43. 15. Rokhsar CK, Fitzpatrick RE. The treatment of melasma with fractional photothermolysis: a pilot study. Dermatol Surg 2005;31:1645 1650. 16. Wanner M, Tanzi EL, lster TS. Fractional photothermolysis: treatment of facial and nonfacial cutaneous photodamage with a 1550-nm erbium-doped fiber laser. Dermatol Surg 2007;33:23 28. Volume 28 Number 6 November/December 2008 3

xxx-xxxc_ymj587_tanzi_1p 10/20/08 1:39 PM Page 4 17. lster TS, Tanzi EL, Lazarus M. The use of fractional laser photothermolysis for the treatment of atrophic scars. Dermatol Surg 2007;33:295 299. 18. Lee HS, Lee JH, hn GY, Lee DH, Shin JW, Kim DH, et al. Fractional photothermolysis for the treatment of acne scars: a report of 27 Korean patients. J Dermatolog Treat 2008;19:45 49. 19. Jih MH, Goldberg LH, Kimyai-sadi. Fractional photothermolysis for photoaging of hands. Dermatol Surg 2008;34:73 78. 20. Glaich S, Rahman Z, Goldberg LH, Friedman PM. Fractional resurfacing for the treatment of hypopigmented scars: a pilot study. Dermatol Surg 2007;33:293 294. 21. Waibel J, eer K. Fractional laser resurfacing for thermal burns. J Drugs Dermatol 2008;7:59 61. 22. Graber EM, Tanzi EL, lster TS. Side effects and complications of fractional laser photothermolysis: experience with 961 treatments. Dermatol Surg 2008;34:1 7. ccepted for publication September 16, 2008. Reprint requests: Elizabeth L. Tanzi, MD, 1430 K St. NW, Ste. 200, Washington, DC 20005. E-mail: etanzi@skinlaser.com. Copyright 2008 by The merican Society for esthetic Plastic Surgery, Inc. 1090-820X/$34.00 doi:10.1016/j.asj.2008.09.006 4 Volume 28 Number 6 November/December 2008 esthetic Surgery Journal

xxx-xxxc_ymj587_tanzi_1p 10/20/08 1:39 PM Page 5 Q1: Please provide Dr. Wanitphakdeedecha s appointment within the department (ssociate Professor, Clinical Professor, et cetera). Q2: Is it okay to cite all 3 figures here? Q3: Is the addition of Fitzpatrick types okay? Q4: Please verify that no authors have any financial interest in Reliant Technologies. Thank you. Q5: For Figures 1, 2, and 3, please provide the ages of the patients. Thank you. Fraxel Laser Indications and Long-Term Follow-Up Volume 28 Number 6 November/December 2008 5