Publication Announcement. FAA Should Monitor Aircraft Cabin Air Quality, Re-evaluate Regulations



Similar documents
3M Personal Safety Division 3M Center, Building W-75 St. Paul, MN, USA

Wildfire Smoke and Your Health

Title 14 of the Code of Federal Regulations (14 CFR) part 121, subpart N and subpart X.

A Breath of Poor Air: Inspecting Indoor Air Quality in the Classroom Ashley Schopieray

CABIN CREW TRAINING FOR FLIGHT ATTENDANTS THE ROLES AND RESPONSIBILITIES OF A CABIN CREW

Mold. Guidelines for New Jersey Residents. Understanding Mold Investigations & Remediation

TITLE: Scent Sensitivity Procedure. SPONSOR: Vice-President, Finance & Administration

Fungal Assessment. Smith Recreation Community Centre 1019 Hwy 2A, Smith, Alberta

Respiratory Syncytial Virus (RSV)

Occupational Asthma. A guide for Employers, Workers and their Representatives BOHRF. British Occupational Health Research Foundation BOHRF

What are the causes of air Pollution

GCE AS/A level 1661/01A APPLIED SCIENCE UNIT 1. Pre-release Article for Examination in January 2010 JD*(A A)

Let s Talk about HEALTHY SCHOOLS

Material Safety Data Sheet

When choosing a destination, it is important to keep the following in mind:

Indoor Air Quality- What You Need to Know

Indoor Air Quality. 2. Test and identify sources that contribute to poor indoor air quality.

: Resin Fibre Discs - Aluminum Oxide, Zirconia Alumina

BOHRF BOHRF. Occupational Asthma. A guide for Employers, Workers and their Representatives BOHRF. Occupational Health Research Foundation

There are several types of air cleaning devices available, each designed to remove certain types of pollutants.

Asthma and COPD Awareness

The Clean Air Act and Public Health

MATERIAL SAFETY DATA SHEET WWF of 5 1 Gal Xtreme Blue -20 Windshield Washer Fluid. 121 Landmark Drive Greensboro, NC 27409

Working safely with metalworking fluids

Asthma Triggers. What are they and what can be done about them?

Guidelines for Cleaning Staff on Managing Mould Growth in State Buildings

Air Quality Index A Guide to Air Quality and Your Health

Stachybotrys chartarum a mold that may be found in water-damaged homes

Sandblasting & Silica Exposure Control Plan

Materials Needed: Time Needed: Adaptations: 2 flyswatters (optional) Vocabulary Definitions (below) Vocabulary Scramble Sheets (below)

SAFETY DATA SHEET. 955 Connecticut Ave, Suite 5202 Bridgeport, CT Tel: Date Prepared: July 22, 2015

SECTION 2: HAZARDS IDENTIFICATION Classification of the Substance or Mixture Classification (GHS-US) Not classified

Harvard School of Public Health Department of Environmental Health Exposure, Epidemiology & Risk Program

The Facts About Roofing Asphalt Fumes and Health

"An Office Building Occupant's Guide to Indoor Air Quality"

Airport preparedness guidelines for outbreaks of communicable disease

Take Action on Asthma. Environmental triggers of asthma and allergies

ACTIVITY #3: LUNG HEALTH ASTHMA AND ALLERGIES

Material Safety Data Sheet

Chapter 5. INFECTION CONTROL IN THE HEALTHCARE SETTING

Hypoxia and Oxygenation Hypoxia is a serious threat to patients and escorts alike when

Kids, Cars and. Cigarettes: A Brief Look at Policy Options for Smoke-Free Vehicles

Elgin Fire Department

According to the criteria of NOHSC, this material is classified as; Hazardous Substance, Dangerous Goods

MOLD BASICS Kathleen Parrott, Ph.D. Professor of Housing, Virginia Tech

Carbon monoxide. General information

Introduction to Industrial Hygiene

CONTROLLING AN OUTBREAK - MOLD RESTORATION

Issue Date: 04-Oct-2013 Revision Date: 19-Nov-2014 Version Number: Identification. 2. Hazards Identification

Indoor Air Quality Issues for Hotels

Addendum to the Epi-Aid Trip Report: Elk River Chemical Spill, West Virginia, January 16 31, 2014 (Epi-Aid )

Section 1: Identification. GLO GERM POWDER All colors

INFLUENZA (FLU) Flu and You

GEORGIA INSTITUTE OF TECHNOLOGY ENVIRONMENTAL HEALTH AND SAFETY PERSONAL PROTECTIVE EQUIPMENT

Whooping Cough. The Lungs Whooping cough is an infection of the lungs and breathing tubes, both of which are parts of the respiratory system.

Swine Flu and Common Infections to Prepare For. Rochester Recreation Club for the Deaf October 15, 2009

MATERIAL SAFETY DATA SHEET

Traveling With Portable Oxygen

Material Safety Data Sheet

Mold. Clean Up, Removal, Safety Concerns

Material Safety Data Sheet

WHMIS Material Safety Data Sheet Product Information VP-TECH CHEMICAL PRODUCT AND COMPANY IDENTIFICATION. Water Soluble Metalworking Fluid Concentrate

STATUS REPORT ON THE ALISO CANYON GAS LEAK AND ITS IMPACT ON PORTER RANCH COMMUNITY

City of Cambridge Climate Protection Action Committee. Recommendations for Adaptation to Climate Change. Purpose

Coming Home Injured: Care and Advocacy for America s Veterans

SAFETY DATA SHEET EVO-STIK GRIPFILL SOLVENT FREE (Irl)

Occupational/Industrial Hygiene Knowledge and Competency Requirements

Material Safety Data Sheet

Material Safety Data Sheet 1. PRODUCT AND COMPANY INDENTIFICATION

Aviation Physiological Factors. G. White

Workforce Guidelines: H1N1 Influenza and Flu-like Illness

Material Safety Data Sheet acc. to ISO/DIS 11014

SAFETY DATA SHEET NITROGEN, COMPRESSED

Low Blood Pressure. This reference summary explains low blood pressure and how it can be prevented and controlled.

European Respiratory Society (ERS), The European Lung White Book Respiratory Health and Disease in Europe,

FIREFIGHTER RESPIRATOR MEDICAL EVALUATION QUESTIONNAIRE (MANDATORY)

Educational Performance, Environmental Management, and Cleaning Effectiveness in School Environments

Pancreatin. Ingredient CAS No Percent Hazardous

MANAGING IN-FLIGHT MEDICAL EMERGENCIES. Dr Nicola Emslie Air NZ Aviation and Occupational Health

: Microscope Slide containing Various Human or Animal Blood samples

Causes of Poor Indoor Air Quality and What You Can Do About It

6/2/2014. Stuff Happens! If there is a Physician, Paramedic, or Nurse, on board please identify yourself to the Flight Attendant!

Selective IgA deficiency (slgad)

: Pen-Aqua-Sol G (penicillin G potassium)

INDOOR AIR QUALITY ASSESSMENT

Version: 1.0 Revision Date: 06/25/2013 Print Date: 06/25/2013 POOL TIME D.E. FILTER POWDER

Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II and Regulation (EC) No. 1272/2008 (CLP) - Europe. Bona Wood Floor Cleaner

Flight Operations Briefing Notes

MATERIAL SAFETY DATA SHEET

Indoor Environmental Quality Management Plan

COMPOSITION / INFORMATION ON INGREDIENTS

Radford University. Indoor Air Quality Management Plan

PROPOSAL AIR POLLUTION: A PROJECT MONITORING CURRENT AIR POLLUTION LEVELS AND PROVIDING EDUCATION IN AND AROUND SCHOOLS IN CAMDEN

Material Safety Data Sheet

How To Find Out If The Gulf War And Health Effects Of Serving In The Gulf Wars Are Linked To Health Outcomes

Material Safety Data Sheet

92699, 92708, 92732, 53825, 53810, : D-55Y Yellow UV Leak Detection Dye Concentrate

Influenza Vaccine Frequently Asked Questions. Influenza Control Program

Material Safety Data Sheet

HEALTH EFFECTS. Inhalation

Transcription:

Read Full Report: http://www.nap.edu/catalog/10238.html?onpi_newsdoc120601 Date: Dec. 6, 2001 Contacts: Bill Kearney, Media Relations Officer Cory Arberg, Media Relations Assistant (202) 334-2138; e-mail <news@nas.edu> National Academy of Sciences For Immediate Release Publication Announcement FAA Should Monitor Aircraft Cabin Air Quality, Re-evaluate Regulations More than a decade after the Federal Aviation Administration banned smoking on all domestic airline flights, passengers and cabin crew still frequently complain that the air on planes is unpleasant and may be unhealthy. The air is a mixture of outside and recirculated air, similar to that in many homes and offices. But the proximity of passengers to one another, the need for cabin pressurization, low humidity, and potential exposure to common chemical and biological contaminants -- all in an enclosed structure -- makes the cabin environment unique. In a new report requested by Congress, the National Academies' National Research Council says the FAA should conduct a rigorous scientific investigation to ensure that regulations governing the air quality in commercial aircraft cabins are adequate to protect public health. The agency also should establish a surveillance program that monitors flights to determine compliance with FAA airquality regulations and documents health effects or complaints. The committee that wrote the report noted that the number of air passengers worldwide has nearly quadrupled in the last 30 years to about 1.5 billion annually. And concomitant with this increase, the number of older and younger passengers has gone up, including children, infants, and people with pre-existing medical conditions. Because few health-effects data for passengers and crew have been collected in conjunction with exposure information, it is extremely difficult to establish a causal relationship between poor air quality on planes and adverse health effects, the report says. On the other hand, some evidence suggests that environmental factors inside commercial aircraft may be responsible for particular health complaints among passengers and crew. Ozone pollution may cause respiratory problems and decreased oxygen pressure may present a health risk for people with certain pre-existing conditions, such as cardiac and respiratory diseases. Other toxic substances that may contaminate cabin air, such as engine oils, hydraulic fluids, de-icing solutions, and pesticides, have not been monitored adequately to assess potential health risks.

Although the FAA requires that ozone concentrations be maintained within specified limits, studies indicate that ozone levels on some flights may exceed FAA and U.S. Environmental Protection Agency standards. Elevated ozone concentrations at ground level have been associated with decreased lung function, airway irritation, exacerbation of asthma, and impairment of the immune system. The FAA should take steps to ensure that its current regulation for ozone -- which limits average concentrations to less than 0.1 parts per million above 27,000 feet, and less than 0.25 parts per million above 32,000 feet -- is met on all flights, the committee said. In addition, aircraft should be either equipped to prevent ozone from entering the cabin or prohibited from flying at altitudes where high ozone concentrations are likely to occur. To ensure compliance, the FAA should monitor flights to verify that ozone controls are working properly. The committee also was concerned about adverse health effects that may result from what is known as the reduced partial pressure of oxygen. At cruising altitudes, oxygen pressure in the atmosphere is too low to support human life, so the cabin must be pressurized. Current FAA regulations require that cabin air pressure must be no lower than the air pressure that naturally occurs at 8,000 feet. But it is unknown whether this is adequate to protect all passengers and crew from reduced partial pressure of oxygen, which typically does not cause problems for healthy people, but could pose risks for those who have conditions that may impair oxygen circulation through the bloodstream. People with pulmonary or cardiac disease, for example, might experience symptoms such as headache, lightheadedness, dizziness, fatigue, and numbness. The committee recommended further study to determine whether the 8,000-foot altitude cap for cabin pressure is adequate. When operated properly, environmental control systems onboard aircraft provide an ample supply of air to pressurize the cabin, maintain a comfortable environment, and dilute or otherwise reduce odors, heat, and contaminants, the committee said. However, the current design standard for the minimum amount of outside air circulated into cabins is about half the ventilation rate often required for building environments. Low ventilation rates in buildings have been linked to increased incidences of health symptoms and sick leave, but whether building ventilation standards are appropriate for airplanes has not been established. The spread of infectious agents during flights does not appear to be facilitated by aircraft ventilation systems, but rather by the high density of people, the committee concluded. An aircraft's environmental control system can be a source of contamination during abnormal operations when engine oil, hydraulic fluids, or de-icing solutions enter the cabin through the air-supply system in what is called "bleed air." Many crews and passengers have reported incidents of smoke or odors within cabins. The committee said FAA should study the need for and feasibility

of installing equipment to remove vapors and particles from air supplied by the environmental control system on all flights. Two environmental factors that may contribute to passenger and crew complaints about air quality are low relative humidity and pesticide use. Low relative humidity occurs on nearly all flights and might cause some temporary discomfort, such as drying of the eyes, nose, and skin. Exposure to pesticides that are routinely sprayed on some international flights can cause skin irritation and are reported to be neurotoxic. Reiterating a recommendation made in a 1986 Research Council report on cabin air quality, the committee called for a regulation requiring the removal of passengers from an aircraft within 30 minutes after the ventilation system fails or is turned off on the ground. Air conditioning also should be required to be kept on continuously during warm weather. In addition, cabin crews should be trained to recognize and respond to asthma attacks and other serious allergic reactions that can be triggered by the presence of airborne allergens in the cabin, the committee said. Furthermore, FAA should work with organizations such as the American Medical Association and the Aerospace Medical Association to improve awareness among doctors, flight crews, and passengers of the potential health risks of flying. The report was sponsored by the Federal Aviation Administration. The National Research Council is the principal operating arm of the National Academy of Sciences and the National Academy of Engineering. It is a private, nonprofit institution that provides science and technology advice under a congressional charter. A committee roster follows. Read the full text of The Airliner Cabin Environment and the Health of Passengers and Crew for free on the Web, as well as more than 1,800 other publications from the National Academies. Printed copies are available for purchase from the National Academy Press Web site or by calling (202) 334-3313 or 1-800-624-6242. Reporters may obtain a pre-publication copy from the Office of News and Public Information (contacts listed above). NATIONAL RESEARCH COUNCIL Division on Earth and Life Studies Board on Environmental Studies and Toxicology Committee on Air Quality in Passenger Cabins of Commercial Aircraft Morton Lippmann (chair) Professor of Environmental Medicine, and Director Center for Particulate Matter Health Effects Research and Human Exposure and Health Effects Research Program

New York University School of Medicine Tuxedo Harriet A. Burge Associate Professor of Environmental Microbiology Harvard School of Public Health Boston Byron W. Jones Associate Dean Research and Graduate Programs, and Director Engineering Experiment Station College of Engineering Kansas State University Manhattan Janet M. Macher Air Pollution Research Specialist Division of Environmental and Occupational Disease Control California Department of Health Services Berkeley Michael S. Morgan Professor Industrial Hygiene and Safety Program Department of Environmental Health University of Washington, and Director Northwest Center for Occupational Health and Safety Seattle William W. Nazaroff Professor of Environmental Engineering Department of Civil and Environmental Engineering University of California Berkeley Russell B. Rayman Executive Director Aerospace Medical Association Alexandria, Va. John D. Spengler Akira Yamaguchi Professor of Environmental Health and Human and Habitation, and

Director Environmental Science and Engineering Program Harvard School of Public Health Boston Ira B. Tager Professor of Epidemiology Division of Public Health, Biology, and Epidemiology University of California, and Co-Director and Principal Investigator Center for Family and Community Health Berkeley Christiaan van Netten Associate Professor Department of Health Care and Epidemiology, and Head Division of Occupational and Environmental Health University of British Columbia Vancouver Bernard Weiss Professor of Environmental Medicine and Pediatrics University of Rochester School of Medicine and Dentistry Rochester, N.Y. Charles J. Weschler Adjunct Professor Department of Environmental and Community Medicine Robert Wood Johnson Medical School, and Member Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School and Rutgers University New Brunswick Hanspeter Witschi Professor of Toxicology and Associate Director Institute for Toxicology and Environmental Health University of California Davis RESEARCH COUNCIL STAFF Eileen N. Abt Study Co-Director

Roberta M. Wedge Study Co-Director