Hydraulic Troubleshooting PRESENTED BY



Similar documents
Hydraulic Trouble Shooting

Chapter 7 Hydraulic System Troubleshooting

Example. Fluid Power. Circuits

Engine, Drive Train, and Hydraulic Repair Indicator Quick Reference Guide

Parker Power Units. Standard Hydraulic Power Units Installation and Maintenance Manual. D, H, V-Pak and Custom Power Units.

Trouble Shooting. Pump

Hydraulics Trouble Shooting Guide. TS-Guide_R.doc

Schematic Symbols Chart (Design Hydraulic and Pneumatic circits)

Pump Maintenance - Repair

Table Z. Troubleshooting Chart for Air Conditioners. Cause

The Secret of Hydraulic Schematics. BTPHydraulics

Oil and Coolant Circulating Heating System. Model - OCSM

A.Y. McDonald Mfg. Co. Troubleshooting Submersible and Jet Pumps

Unit 24: Applications of Pneumatics and Hydraulics

Basic Symbols. Lines. Circular. Square. Diamond. Miscellaneous Symbols. -continuous line - flow line. -dashed line - pilot, drain

Table V. Troubleshooting Checklist for Refrigeration Systems. Air or non-condensable gas in system. Inlet water warm.

WHAT YOU DON T KNOW ABOUT ACCUMULATORS CAN KILL YOU!

BOWIE PUMPS OPERATION - MAINTENANCE

Diesel: Troubleshooting

CDS TROUBLESHOOTING SECTION I. VACUUM Weak vacuum at wand. Gauge reads normal (10hg to 14hg)

PUMP AND MOTOR DIVISION

COUNTERBALANCE VALVES

PART 2 FORKLIFT HYDRAULIC SYSTEM

Class 5 to 7 Truck and Bus Hydraulic Brake System

Rexroth Hydraulic Pump A10VO Series User Manual

Quiz On Information Learned From Chapter 1

No grinding or welding operations should be done in the area where hydraulic components are being installed.

Presented by Rory S. McLaren. SAFE by DESIGN

LECTURE 28 to 29 ACCUMULATORS FREQUENTLY ASKED QUESTIONS

ACCUMULATOR INSTALLATION

SIMPLIFIED VALVE CIRCUIT GUIDE

Single Phase Soft Starter

Failure to comply with the following cautions and warnings could cause equipment damage and personal injury.

AC Electric Motors best practice

Why and How we Use Capacity Control

Carburetion Troubleshooting Quick Reference Guide

Failure to comply with the following cautions and warnings could cause equipment damage and personal injury.

The Aftertreatment System Technician's Guide has been revised.

TROUBLESHOOTING GUIDE

System Saver 318 Air Compressor for Mack E-Tech and ASET Engines

OPERATING AND MAINTENANCE INSTRUCTIONS CLIMATE CONTROL/INDUSTRIAL

Float and Thermostatic Traps Series H, C and X

SunMaxx Solar Filling Station Operating Instructions

13. REAR WHEEL/BRAKE/SUSPENSION

hance the application of specific components, such as pumps, motors, accumulators, filters, and airline lubricators.

Cooling Systems. Table of Contents

Material taken from Fluid Power Circuits and Controls, John S. Cundiff, 2001

11. COOLING SYSTEM 11-0 COOLING SYSTEM BET & WIN 50

PUMP MAINTENANCE SCHEDULE AND CHECKLISTS

PC1131 Electric Air Compressor

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

Technical Guide 08/15/14

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1

FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES

Unit 24: Applications of Pneumatics and Hydraulics

In addition, a number of auxiliary options are available (para 2.7) as well as optional slices for special requirements (para 2.8).

PC1130 Electric Air Compressor

Electrical Systems - IQAN Digital Control System. IQAN Control System Components

SIMPLIFIED VALVE CIRCUIT GUIDE

Compressor Service & Maintenance Manual

SINGLE PHASE MOTORS. INSTALLATION AND MAINTENANCE MANUAL March 21, 2006

Oildyne. 165 Series Hydraulic Power Units. Pressures to 241 bar (3500 psi) Flows to 5.4 lpm (1.4 gpm)

Pressure Relief and Regulating Valves

Trouble shooting for die cast machine. customer service department of L.K Group

TOYOTA ELECTRONIC TRANSMISSION CHECKS & DIAGNOSIS

Cooling system components, removing and installing

Heating, Ventilation, Air Conditioning and Refrigeration (HVACR)

HVAC Preventative Maintenance Basics. Presented by Mike Crawley

ATLAS AIR COMPRESSOR OPERATING INSTRUCTIONS COMPRESSOR IDENTIFICATION

USER S, MAINTENANCE and SERVICE INFORMATION MANUAL

TOPIC: KNOWLEDGE: K1.01 [3.3/3.5] Which one of the following contains indications of cavitation in an operating centrifugal pump?

Chapter 11 SERVO VALVES. Fluid Power Circuits and Controls, John S.Cundiff, 2001

Kobelco Extended Warranty Program.

MAINTENANCE INSTRUCTIONS FOR THE CLEAN-FLO CONTINUOUS LAMINAR FLOW INVERSION / OXYGENATION SYSTEM

1115 4G SERIES GOVERNOR ma ANALOGUE DIGITAL SPEED SETTING

Training Syllabus to Instruct/Prepare for the ASE Transit Bus HVAC Test

Unit 24: Applications of Pneumatics and Hydraulics

15CI and 25CI Reversing Motor Pumpset Owner's Manual

ON-VEHICLE INSPECTION

Rotary Lift Trouble Shooting Guide

Troubleshooting for: Premier Supplier of Pumps & Parts

Failure code manual. content

PROPERLY WORKING FUEL SYSTEM

Lancair Legacy Annual Condition Inspection Checklist

Basic Hydraulics and Pneumatics

CTV-1500 Cooling Tower Vacuum Operating & Maintenance Manual

INTERNATIONAL FIRE TRAINING CENTRE FIREFIGHTER INITIAL PUMPS AND PRIMERS. Throughout this note he means he/she and his means his/hers.

Troubleshooting accelerometer installations

Volkswagen Golf > VW Rabbit GTI 2006->

FUEL-16, Troubleshooting Fuel Supply Problems

FAIRBANKS NIJHUIS FIRE PUMPS.

Specifying a Variable Frequency Drive s

Vickers. Overhaul Manual. Vane Motors. Vane Motors. 25M, 35M, 45M, 50M Series -20 Design

Proportional and Servo Valve Technology

Hydraulic control unit series

AWWA Butterfly Valve Operation and Maintenance Manual Series 511A & 510A 20 and Smaller

Document Title Press Maintenance Checklist used in performing routine maintenance on punch presses

Buy Karcher Parts Online: Need Technical Help? Call: Requests to:

Transcription:

Hydraulic Troubleshooting PRESENTED BY NORMAN KRONOWITZ

Introduction Welcome to the CMA/Flodyne/Hydradyne s Hydraulic Troubleshooting presentation. We will introduce many aspects of troubleshooting hydraulic systems and will share information that will help you to better understand and enhance the operation of your hydraulic equipment.

Agenda Mentally Prepare Documentation Starting the process Predictability System Isolation Pumps Overheating Actuators Valves Accumulators Questions and answers

MENTALLY PREPARE Use Safety Equipment Apply General Safety Rules Lockout / Tag-out Work with a partner Be Afraid of Hydraulic accumulators Have Complete Documentation

Obtain Documentation and Determine a Direction Obtain all Hydraulic and Electrical l Schematics pertaining to the equipment Manuals on the machines operation Determine your starting point based on the symptoms.

Starting the Process Understand the machine sequence and operation What is the machine doing or not doing? Intermittent t or continuous Smell, feel, listen, touch and see Machine running slow or fast Pressure low or high Shock, banging, vibration

Predictability Expect a result Be predictive Every time an adjustment t is made predict what should happen. Every time you shift a valve predict what will happen. If your predication is correct continue troubleshooting. If your predication IS NOT correct find out why. Do not make a change just to see what will happen. You must make a predication especially when working with a partner!

Isolating Portions of the System Isolating portions of the circuit is a good way to identify the area of concern. Lacking pressure? - Try to isolate the hydraulic system from the rest of the system by blocking the pressure source. (close a ball valve, disconnect a line and plug, etc ) Lacking flow The flow is taking the path of least resistance. (Isolate portions of the circuit, check all ball valves/safety valves, listen to relief valves, feel for heat, etc..)

Pump Troubleshooting Flow and Pressure Excessive Noise Overheating Leaking

Flow and Pressure Hydraulic pumps create flow not pressure Resistance to flow creates pressure Flow determines actuator speed Pressure determines actuator force Fluid will always take the path of least resistance. When Fluid moves from an area of high pressure to an area of low pressure ( pressure drop) without performing work, heat is generated.

Symptom: Noisy Pump Cavitation? (pump starving for fluid) Damaged pump? Reasons/Possible solutions might be: Inlet Strainer clogged Remove or replace inlet strainer Examine inlet pipe for any obstructions Examine inlet pipe to ensure that the connections are tight and that the proper sealant/o-rings were used at all connections. If air is being drawn into the pump through these points, the pump will cavitate. Repair loose connection with proper sealant, or replace damaged inlet line. Wrong fluid being used viscosity too high or operating temperatures are too low, thus causing the viscosity to increase. Excessive drive speed Reservoir design incorrect with no baffles, too shallow, or oil level too low, thus causing a vortex in the reservoir and inducing air into the pump inlet. Plugged or dirty filler breather element on reservoir Worn or damaged shaft seal on pump. (Check shaft for misalignment) Aeration of fluid in the reservoir (return lines above the oil level) Contamination or high heat (monitor ISO cleanliness codes and temps)

Symptom: Noisy Pump Fixed displacement or Pressure compensated Normal wear If pump p is fixed displacement, it may be: Worn or sticking vanes Worn ring Worn or faulty bearings Worn or damaged gears If pump is pressure compensated, it may: Have worn Internal parts (Vanes, rotary group, bearings, causing internal leakage) If your pump has a case drain line, a quick check for inefficiency is to remove the case drain line and drop it into a bucket. While the pump is in compensation, monitor how much fluid is coming from the case drain line. It should be within the catalog characteristics. If more than 10% of the pumps maximum output is going over the case, this would indicate that the pump requires rebuild or replacement. Inefficiencies or internal leakage will show signs of high heat. Temperature readings at the pump during a morning start-up will help to identify the source of the heat and determine leakage/inefficiencies, thus indicating pump replacement

System Overheating? Determine the source What is too hot? Is the pump overheating? Is a valve or actuator t overheating? General overheating

Symptom: Over heating of system What is the maximum temperature for a hydraulic system? For safety, efficiency, and oil quality, temperatures above 140 degrees F are not recommended for industrial hydraulic equipment. Oil that t is too hot will degrade d rapidly, drop in viscosity, it and can lead to accelerated component wear and poor system performance. A broken hose or leak in a line can seriously burn someone. Causes of overheating systems: Contamination causing wear of components, thus creating internal leakage of the component and higher operating temperatures. Relief valve misadjusted. Compensator on pump may be set higher than the relief valve in the system Flow control valves may be set improperly. Water supply feeding heat exchanger may be shut-off or has insufficient flow or temperature for cooling. Heat exchanger may be clogged or water modulating valve may have failed. If an air to oil heat exchanger is in the system the cooling fins may need to be cleaned, or electric motor, or starter may have failed. Ambient air temperature may have increased and can no longer supply sufficient cooling media. Inadequate ventilation or area of room size may have changed. Incorrect fluid used in hydraulic system Defective pump ( See Noisy pump)

Actuators not functioning? Cylinders 1. Speed 2. No Movement 3. Insufficient force Hydraulic motors 1. Speed 2. No Movement 3. Insufficient torque

Symptom: Actuator fails to move Reasons and possible solutions: Note: Usually, when an actuator doesn t move, the problem is not the actuator. Directional valve not shifting. Electrical failure, bad solenoid, limit switch, PLC ect... Insufficient pilot pressure (If dual stage valve, check pilot and drain configuration) especially if valve has just been replaced. Look at any check valves or back pressure valves required to provide pilot pressure. System operating pressure to low (see low or erratic pressure) A valve elsewhere in the system is allowing flow to be diverted to the reservoir Interlock device not actuated Mechanical bind on machine or actuator (improper mounting of actuator) Faulty pump High heat viscosity too low Previous contamination damage/high heat has caused component fatigue, wear, and failure. Worn/damaged actuator (cylinder or hydraulic motor blow-by or internal leakage.

Suggestions: If you think that it may be internal leakage: Take temperature readings on the system and on both sides of actuator. Actuator may be bypassing internally due to worn seals, geroter, gears vanes, ect Extend cylinder fully and disconnect rod end port connection. If fluid is continuing to flow from rod end port, the cylinder has internal leakage and requires rebuild or replacement. If no leakage is present, connect the line, retract the cylinder and remove cap end connection to check for same on opposite end. Note: Depending on the seal design, It is possible for a cylinder to leak in one direction and not the other. A cylinder that leaks internally typically will drift in the extend direction, ecto because of the area differences e on the psto piston, even e when mounted vertically rod up. If you experience this type of drifting, the issue is probably the actuator, and you should start your troubleshooting here.

Valves not functioning? i Pressure Controls Directional Controls Flow Controls

Symptoms: Low or Erratic Pressure Reasons and possible solutions: Pressure control setting too low (relief, compensator, reducing valve, ect..) Contaminates in fluid or high heat/low viscosity Worn or sticking relief valve Dirt/debris stuck and holding a relief or other valve partially open. Suggestions: Check cleanliness of fluid and act accordingly. Take temperature readings at the various valves to identify a noticeable temperature rise (possible internal leakage) Put your hand on valve to feel or listen for leakage. If the valve discharges to tank, disconnect the tank line and connect a hose from the valve, feeding into a bucket. Start system and measure the leakage. Act accordingly to repair or replace the valve

Symptoms: No pressure! Reasons and possible solutions: Unit not running or pump in reverse direction. Low oil level or no oil Drive coupling is damaged or disconnected. Full pump volume by-passing through a faulty valve or actuator. Suction line of pump obstructed or disconnected A manual valve may be shifted diverting volume to tank or a solenoid valve may be un-intentionally energized/shifted or not shifted, due to an electrical problem. PLC? (Check all possible valves with a volt meter, or manual over-ride ride if available) Note: Don t get stuck on hydraulic, as many times the hydraulic problem you are experiencing may be mechanical or electrical.

Symptoms: Slow or Erratic Feed Rate /Operation Reasons and possible solutions: Air or water in the fluid (will typically produce a milky appearance) Low fluid level Viscosity of the fluid is too high or temperature is too low Contamination Internal leakage through a valve or actuator Dirt/debris stuck and holding a valve partially open. Worn/Inefficient pump Pump drive speed too low Faulty or dirty flow control or other feed related valve Mechanical misalignment-alignment, sticky, warped, or binding ways, bent bracket, or other Suggestions: Check level, color, quality, and cleanliness of fluid and act accordingly. Take temperature readings at the pump, pump case, and various valves to identify a noticeable temperature rise (possible internal leakage) Put your hand on valve to feel or listen for leakage. If the valve discharges to tank, disconnect the tank line and connect a hose from the valve, feeding into a bucket. Start system and measure the leakage. Act accordingly to repair or replace the valve.

Hydraulic or Electrical l? Often an electrical issue will affect the hydraulic operation. Don t get focused on a hydraulic problem until you have also reviewed electrical issues such as: No or low voltage at a solenoid valve due to: a defective limit switch, misadjusted limit switch, PLC output, power supply, transformer, No control power. What has changed? A change to the PLC program?, a limit switch or other g p g, electrical component recently replaced?

Proportional & Servo valves and Drivers Valves may have on-board electronics or be controlled by an amplifier or motion control device. Proportional and servo valves are current driven using Pulse Width Modulation Before troubleshooting a proportional or servo valve obtain documentation for the valve and control. Shielded wire is required for the valve to operate without interference (electrical noise) Proportional and servo valves are controlled with either a current or voltage command to the valve or control device. Often the problem is not the valve but the amplifier, PLC, feedback device or broken wire. What has changed? Ask Questions?

Accumulators Why is the accumulator in the system? Nitrogen pressure can not be measured while system is running Potential to discharge unexpectedly Use your senses and ASK QUESTIONS!

Most Important t Tools Eyes Ears Hands Nose Use your senses and ASK QUESTIONS!

Where to Get More Information Other training sessions Books, Trade magazine articles, Internet, etc.. Consulting services, other sources Call us anytime!

This guide cannot cover all details or all variations in equipment nor can it provide for every possible condition/solution of cause and effect. Feel free to contact us should further information be required. Were always happy to help!