APPLICATION NOTE BUILDING A QAM MODULATOR USING A GC2011 DIGITAL FILTER CHIP



Similar documents
Application Note AN107

LM5030 LM5030 Application: DC - DC Converter Utilizing the Push-Pull Topology

Design Note DN304. Cebal CCxxxx Development Tools USB Driver Installation Guide By Åsmund B. Bø. Keywords. 1 Introduction

Design Note DN004. Folded Dipole Antenna for CC25xx By Audun Andersen. Keywords. 1 Introduction CC2500 CC2550 CC2510 CC2511

ZigBee Sensor Monitor SWRU157D 2008 Low-Power RF

TI and ibiquity Introduce Industry s Lowest Cost Single-Chip AM/FM and HD Radio Baseband John Gardner Digital Radio Marketing Manager

Application Report. 1 Description of the Problem. Jeff Falin... PMP Portable Power Applications ABSTRACT

Evaluating the complex configuration options of the Texas Instruments advanced fuel gauges can be

Calculating Gain for Audio Amplifiers

LM556 LM556 Dual Timer

Data sheet acquired from Harris Semiconductor SCHS067B Revised July 2003

Using C to Access Data Stored in Program Memory on the TMS320C54x DSP

SDLS068A DECEMBER 1972 REVISED OCTOBER Copyright 2001, Texas Instruments Incorporated

Data sheet acquired from Harris Semiconductor SCHS087D Revised October 2003

AMC1100: Replacement of Input Main Sensing Transformer in Inverters with Isolated Amplifier

6 Output With 1 kω in Series Between the Output and Analyzer Output With RC Low-Pass Filter (1 kω and 4.7 nf) in Series Between the Output

54LS174,54LS175,DM54LS174,DM54LS175, DM74LS174,DM74LS175

Providing Continuous Gate Drive Using a Charge Pump

TRF7960 Evaluation Module ISO Host Commands

LM709 LM709 Operational Amplifier

Application Report. 1 Introduction. 2 Resolution of an A-D Converter. 2.1 Signal-to-Noise Ratio (SNR) Harman Grewal... ABSTRACT


Smart Codec Features in TMS320DM365

Data sheet acquired from Harris Semiconductor SCHS020C Revised October 2003

Importing a SPICE NetList Into TINA9-TI

Using Code Coverage and Multi-event Profiler in Code Composer Studio v2.3 for Robustness and Efficiency Analyses

Design Note DN002. Practical Sensitivity Testing By Morten Engjom. Keywords. 1 Introduction. Receiver Testing Sensitivity

Wireless Subwoofer TI Design Tests

Optical Implementation Using IEEE-1394.b

µa7800 SERIES POSITIVE-VOLTAGE REGULATORS


Programming the On-Chip Flash Memory in a Stellaris Microcontroller. Application Note. Copyright Texas Instruments

LM388 LM W Audio Power Amplifier

ORDERING INFORMATION. TOP-SIDE MARKING PDIP N Tube SN74LS07N SN74LS07N PACKAGE. SOIC D Tape and reel SN74LS07DR

DS8907 DS8907 AM/FM Digital Phase-Locked Loop Frequency Synthesizer

Data sheet acquired from Harris Semiconductor SCHS078C -- Revised October 2003

Filter Design in Thirty Seconds

Analysis of Power Supply Topologies for IGBT Gate Drivers in Industrial

Multi-Transformer LED TV Power User Guide. Anderson Hsiao

Choosing Inductors and Capacitors for DC/DC Converters

Ultrasonic Sensing Basics for Liquid Level Sensing, Flow Sensing, and Fluid

Texas Instruments. FB PS LLC Test Report HVPS SYSTEM AND APPLICATION TEAM REVA

Ultra-Low Power Comparison: MSP430 vs. Microchip XLP Tech Brief A Case for Ultra-Low Power Microcontroller Performance

Designing Gain and Offset in Thirty Seconds

Controlling TAS5026 Volume After Error Recovery

AN-1963 IEEE 1588 Synchronization Over Standard Networks Using the

How To Close The Loop On A Fully Differential Op Amp

Design Note DN041. Using CC253X or CC254X with Dipole PCB Antennas. Keywords. 1 Introduction. By Espen Wium CC2530 CC2531 CC2533 CC2540 CC2541

LM138,LM338. LM138/LM338 5-Amp Adjustable Regulators. Literature Number: SNVS771A

WLAN Channel Bonding: Causing Greater Problems Than It Solves

SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

AN-1733 Load Transient Testing Simplified

AN-311 Theory and Applications of Logarithmic Amplifiers

Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications

LM1851 LM1851 Ground Fault Interrupter

The main goal of this tutorial is to get familiar with SmartRF Studio 7: Learn how it works and what it can do.

TL081 TL081 Wide Bandwidth JFET Input Operational Amplifier

SDLS940A MARCH 1974 REVISED MARCH Copyright 1988, Texas Instruments Incorporated

AN-1405 DP83848 Single 10/100 Mb/s Ethernet Transceiver Reduced Media Independent Interface (RMII ) Mode

Evaluation Criteria for ADSL AFE1302

Thumbus2300. User's Guide. 1 Introduction. 1.1 Features. 1.2 Kit Contents

DC/DC LED Lighting Developer s Kit Hardware

AN-225 IC Temperature Sensor Provides Thermocouple Cold-Junction

TrxEB RF PER Test Software Example. User s Guide SWRU296

TVP5146 VBI Quick Start

Application Report. Vincent Chan, Steve Underwood... MSP430

CUSTOM GOOGLE SEARCH PRO. User Guide. User Guide Page 1

Pressure Transducer to ADC Application

Motor Speed Measurement Considerations When Using TMS320C24x DSPs

Current-Transformer Phase-Shift Compensation and Calibration

TVP51471M1 VBI Quick Start

August 2001 PMP Low Power SLVU051

with Ultra-Fast Transient Response and High Light-Load Efficiency

LMS8117A LMS8117A 1A Low-Dropout Linear Regulator

LM5025,LM5026,LM5034 Operation and Benefits of Active-Clamp Forward Power Converters

Standard Linear & Logic Semiconductor Marking Guidelines

Using Texas Instruments Spice Models in PSpice

Simplifying System Design Using the CS4350 PLL DAC

description V CC A CLR BO CO LOAD C D B Q B Q A DOWN UP Q C Q D GND D OR N PACKAGE (TOP VIEW) SDFS031A D3693, JANUARY 1991 REVISED OCTOBER 1993

V OUT. I o+ & I o- (typical) 2.3A & 3.3A. Package Type

RF37S114 Tag-it HF-I Type 5 NFC, ISO/IEC Transponder, 4 mm 4 mm

Component Reliability After Long Term Storage

LM2900,LM3301,LM3900. LM2900/LM3900/LM3301 Quad Amplifiers. Literature Number: SNOSBV6

AN-1900 LM3150 Evaluation Boards

User s Guide. 100-W Universal Line Input PFC Boost Converter Using the UCC User s Guide

Analysis Toolkit v1.3 for Code Composer Studio User s Guide

Application Report. Jim Patterson... Americas Field Applications

RETRIEVING DATA FROM THE DDC112

MM58274C MM58274C Microprocessor Compatible Real Time Clock

AN-1826 Extending the Reach of a FPD-Link II Interface With Cable Drivers and Equalizers

Using C to Access Data Stored in Program Space Memory on the TMS320C24x DSP

LM2747,LM3100,LM5035 Synchronous Rectification in High-Performance Power Converter Design

SN74ACT STROBED FIRST-IN, FIRST-OUT MEMORY

Transcription:

SLWA022 APPLICATION NOTE BUILDING A QAM MODULATOR USING A GC2011 DIGITAL CHIP October 6, 1994 1.0 INTRODUCTION This report describes how one can use the GC2011 Digital Filter chip to build digital modulators for most BPSK, QPSK, and QAM radio signals. The modulator described here will accept a data stream with a symbol rate equal to B (standing for baud) and will output a modulated QAM signal centered at an IF frequency equal to the symbol rate or twice the symbol rate (B or 2B). A typical application would be a 5 MBaud (5 million symbols per second) 64 QAM modulator for a digital television transmitter. The modulator will Nyquist filter 1 the QAM signal, mix it up to be centered at either 5 MHz or 10 MHz and output an analog signal ready to be mixed up to a final carrier frequency. 2.0 THE BASIC MODULATOR The basic functions of a QAM modulator are shown in Figure 1 below: BIT STREAM IN FORMAT INTO SYMBOLS ZERO PAD ZERO PAD PULSE SHAPE PULSE SHAPE DIGITAL TO ANALOG CONVERTER IF SIGNAL OUT DIGITAL SIN/COSINE OSCILLATOR Figure 1. BASIC MODULATOR The bit stream is formatted into symbols consisting of I and Q words. A QPSK symbol uses a pair of input bits to identify each symbol. The first bit in the pair selects ±1 for the I word and the second bit selects ±1 for the Q word. A 16 QAM symbol uses four input bits per symbol. Two bits select ±1 or ±3 for the I word and 2 bits select ±1 or ±3 for the Q words. A 64 QAM symbol uses 6 input bits per symbol, 3 bits 1. The transmitter s pulse shaping filter is called a Nyquist filter. - 1 - October 6, 1994

DIGITAL QAM MODULATORS APPLICATION NOTES for the I and 3 bits for the Q. The I and Q values for 64 QAM are ±1, ±3, ± 5 and ±7. A 256 QAM signal uses 8 input bits per symbol and selects between 16 values of I and 16 values of Q. The symbols are zero padded to generate a data stream at the desired sample rate for the final digital to analog converter (DAC). The desired sample rate is a function of the IF signal frequency and its bandwidth. If the excess bandwidth of the Nyquist filter is α, and the IF signal s center frequency is F, then the DAC frequency must be at least twice (F + (1+α)B/2). This means that the DAC frequency must be greater than (2F + (1+α)B). If the IF is centered at the symbol rate B, then a DAC frequency of 4B is adequate. If the IF center frequency is 2B, then a DAC frequency of 8B is adequate. If the DAC frequency is chosen as 4B, then the zero pad circuit must insert 3 zeroes between each symbol. If the DAC frequency is 8B, then 7 zeroes must be inserted between each symbol. The pulse shape filter is typically the raised cosine pulse defined as: pt () sin πt ---- 2 cos απt -------- T = ------------------ ------------------------- πt ---- 2αt T 1 -------- 2 EQ 2.0 T Where α sets the excess bandwidth of the pulse and T is the symbol time spacing (B = 1/T). If the DAC frequency is 4B, then the pulse filter will use the impulse response h(k) = p(kt/4) for k= -N to +N. The length of the filter is 2N+1. The value of N, and hence the length of the filter, is set so that the value of p(t) in EQ 2.0 is sufficiently close to zero for k > N. If the DAC frequency is 8B, then h(k) = p(kt/8). Typically N is less than 30 for a DAC frequency of 4B and is less than 60 for a DAC frequency of 8B. The I/Q signal coming from the pulse shape filters is mixed up to the desired IF center frequency as shown in Figure 1. The real part of the mixer output is retained and sent to the DAC. The DAC output is smoothed by a lowpass filter. The lowpass filter s passband extends from 0 to (F + (1+α)B/2) and its stopband starts at F DAC minus (F + (1+α)B/2). If the DAC frequency is 4B and the IF is B, or if the DAC frequency is 8B and the IF is 2B, then the mixer frequency is e j(π/4)n which is simply the sequence (1, j, -1, -j,...). This means that the mixer only needs to make sign changes and to multiplex between the I and Q filter outputs. 3.0 THE GC2011 CHIP The GC2011 Filter chip has a complex to real upconvert mode. In this mode the chip accepts I and Q input samples at half the clock rate, inserts zeroes between every input to double the rate, filters the I and Q signals with 127 tap filters, mixes the signal up using the sequence (1, j, -1, -j...), and outputs real data at the clock rate. The real signal will be centered at one-fourth the clock rate. This mode of the GC2011 Filter chip can be used in the QAM modulator as described in the next Section. GRAYCHIP,INC. - 2 - October 6, 1994

DIGITAL QAM MODULATORS APPLICATION NOTES 4.0 THE SUGGESTED ARCHITECTURE A PSK or QAM modulator architecture using the GC2011 chip is shown in Figure 2. BIT STREAM IN BIT CLOCK IN SYMBOL FORMATTER (FPGA CHIP) I Q PULSE SHAPING AND MODULATOR (GC2011) DIGITAL TO ANALOG CONVERTER (DAC) LOW PASS SIGNAL IF OUT 4B OR 8B CLOCK GENERATOR TO CONTROL PROCESSOR Figure 2. THE GC2011 MODULATOR In this architecture the Symbol formatter chip accepts the input bit stream, formats it into symbols, and generates a symbol stream which has been zero padded to be at a sample rate which is equal to 2B or 4B. If the IF signal is to be centered at B, then the formatter should output samples at a 2B rate by inserting a zero between each symbol. If the IF signal is to be centered at 2B, then the formatter should insert three zeroes between each symbol. The clock generator must synthesize a clock for the GC2011 chip and the DAC chip which is at either 4B or 8B, depending upon whether the desired IF is B or 2B. The GC2011 chip, operating in the complex to real upconvert mode, accepts the zero padded input symbols, zero pads them by another factor of two, filters the I/Q stream by the pulse shaping filter, mixes the data up by one-fourth the clock rate, and then outputs a real data stream at the clock rate. If the chip is clocked at 4B, then the real output will be centered at an IF equal to B, if the clock rate is 8B, then the IF will be 2B. The GC2011 s output is converted to an analog signal by the DAC and then low pass filtered. If the IF is B, then the low pass filter has a passband extending from 0 to (B + (1+α)B/2) and a stopband starting at (3B - (1+α)B/2). If the IF is 2B, then the low pass filter has a passband extending from 0 to (2B + (1+α)B/ 2) and a stopband starting at (6B - (1+α)B/2). GRAYCHIP,INC. - 3 - October 6, 1994

DIGITAL QAM MODULATORS APPLICATION NOTES 5.0 DIGITAL TELEVISION EXAMPLE A proposed digital TV modulation standard is to transmit the TV signal using a 5 Mega-baud, 64 QAM modulator. In this example the modulator will output the signal at an IF equal to the symbol rate of 5 MHz. The Symbol format chip in Figure 2 accepts a 30 mega-bit data stream and a 30 MHz clock. The chip outputs a 10 mega-word I/Q stream consisting of 3 bit I-words and 3 bit Q-words. The stream is generated by blocking the bit-stream into 6 bit words at a 5 mega-word rate and then inserting zeroes between the words to increase the rate to 10 MHz. The upper 3 bits of the 6 bit words are taken as the I-word, and the lower 3 bits are taken as the Q-word. 1 The GC2011 and DAC chips are clocked at 20 MHz. A simple clock generator can be implemented within the Symbol formatter FPGA by using the 30 MHz bit stream clock to repetitively output a one followed by two zeroes. The resulting sequence (100100100100100100...) is effectively a phase locked 20 MHz clock. The filter coefficients are generated using EQ 2.0 with t equal to kt/4 where k ranges from -62 to +62 (a 127 tap filter) and α equal to 0.2 (for 20% excess bandwidth). The GC2011 chip is configured into the complex to real mode and the coefficients are loaded into the chip as described in the GC2011 datasheet 2. The low pass filter following the DAC chip is designed to pass signals below 8 MHz and reject signals above 12 MHz. The output QAM signal will be centered at 5 MHz with a lower band edge at 2 MHZ and an upper band edge at 8 MHz. An alternative approach, which involves running the GC2011 and DAC chips at 40 MHz, is to center the output signal at twice the baud rate (10MHz). The higher output center frequency may make the analog IF to RF conversion easier, and relaxes the lowpass filter specifications. The low pass filter would have a passband from 0 to 13 MHz and a stopband starting at 27 MHz. The disadvantage, besides the extra power consumption of running at 40 MHz, is that a clock synthesizer chip would need to be used to generate a 40 MHz clock which is locked to the 30 MHz bit stream clock. In addition, the Symbol Formatter chip will have to output data at a 20 MHz rate (one I/Q pair and then 3 zeroes) which is awkward to generate from the 30 MHz bit stream clock. 1. The GC2011 inputs are 12 bits. The 3 bit words should be used as the most significant bits (MSBs), with the fourth bit set to a 1 and the remaining bits set to zero. 2. The coefficients need to be scaled to be 14 bit numbers for the GC2011 chip. GRAYCHIP,INC. - 4 - October 6, 1994

GRAYCHIP DSP CHIPS AND SYSTEMS 2314 Ramona St. (415) 323-2955 FAX (415) 323-0206 Palo Alto, CA. 94301 GRAYCHIP APPLICATION NOTES: BUILDING A QAM MODULATOR USING A GC2011 DIGITAL CHIP October 6, 1994 Joseph H. Gray

IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Telephony www.ti.com/telephony RF/IF and ZigBee Solutions www.ti.com/lprf Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright 2008, Texas Instruments Incorporated