Analysis of an Experience of Problem Based Learning in a Physics Course of Technical Telecommunications Engineering Degree



Similar documents
Using PBL Assignments in Undergraduate Operations Management Course

Problem-Based Learning in Aerospace Engineering Education

EXPERIENCE OF PROBLEM-BASED LEARNING IN NURSING EDUCATION AT KAOHSIUNG MEDICAL UNIVERSITY

ROLES AND RESPONSIBILITIES The roles and responsibilities expected of teachers at each classification level are specified in the Victorian Government

University of Nevada, Reno, Mechanical Engineering Department ABET Program Outcome and Assessment

PROBLEM BASED LEARNING FOR GIS TRAINING

Developing a Web-based Environment in Supporting Students Team-working and Learning in a Problem-based Learning Approach

Industrial Technology Trades. Course Framework

12-Step Program for Preparing a Conference Proposal & Presentation. Created by Dr. Krista Glazewski

Postgraduate Diploma in Higher Education (PGDHE) Customised for the Ministry of Health

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES

Creating an Objective-based Syllabus. Danielle Mihram, Director Center for Excellence in Teaching University of Southern California

MODELS OF CURRICULUM DEVELOPMENT

Case study 1: Setting up a quality management system in a Spanish secondary school

A Systematic Project-based Learning Model for Accounting Education in Engineering and its Application to Web-based Practice System

Engineering for Employability: A transition into CDIO

A PRELIMINARY COMPARISON OF STUDENT LEARNING IN THE ONLINE VS THE TRADITIONAL INSTRUCTIONAL ENVIRONMENT

Prerequisite: High School Chemistry.

Evaluating Group Selection Methods in Construction Managers

School of Music College of Arts and Sciences Georgia State University NON-TENURE TRACK FACULTY REVIEW AND PROMOTION GUIDELINES

Qatari K-12 Education - Problem Solving Climate Crisis

Enhancing Students Level of Critical Thinking through Interaction in Problem Based Learning and Computer Supported Collaborative Learning Environment

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES. Programme BEng Computer Systems Engineering/BEng Computer Systems Engineering with Placement

The Importance of Learning Aidsitude in Employees

AC : A STUDY OF PROJECT-BASED STEM LEARNING IN TAIWAN

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN INFORMATION TECHNOLOGY IN EDUCATION (MSc[ITE]) *

Goal 2. To produce humanitarian physicians with high moral and ethical standards.

A BLENDED LEARNING PROJECT IN GENERAL CHEMISTRY FOR UNDERGRADUATE LEVELS IN CHEMISTRY AND BIOCHEMISTRY DEGREES

ICT in pre-service teacher education in Portugal: trends and needs emerging from a survey

MASTER S DEGREE IN BUSINESS ADMINISTRATION (MBA)

SCIENCE. Introducing updated Cambridge International AS & A Level syllabuses for. Biology 9700 Chemistry 9701 Physics 9702

HOW CAN LIFELONG LEARNING SKILLS BE ASSESSED AT UNIVERSITY?

BA (Honours) PSYCHOLOGY

Needs Assessment for the Development of Entrepreneurship Curriculum for a Master s Degree Program

TOWARDS THE PATHWAYS VISION MODEL OF INTRODUCTORY ACCOUNTING. Michael S. Wilson, PhD, CPA, CGMA

Degree Level Expectations for Graduates Receiving the

A Comparison of E-Learning and Traditional Learning: Experimental Approach

Entrepreneurship Education at European Universities and Business Schools Results of a Joint Pilot Survey

Strengthening the Role of Part-Time Faculty in Community Colleges

Attitudes of preservice teachers towards teaching deaf and ESL students Leidy Johanna Tellez Murcia Ubaned Quintero Idarraga

A Conceptual Framework for Online Course Teaching and Assessment in Construction Education

GIS in Teacher Education Facilitating GIS Applications in Secondary School Geography

Conference of Asian Science Education Science Education from an Asian Perspective February 20-23, 2008 Kaohsiung, Taiwan

How to Teach Serbian History Students about School Failure and Cultural Diversity

Subject Experience Survey Instrument Questions

RESEARCH STUDY ON INNOVATIVE LEARNING ENVIRONMENT FOR GRADUATES STUDENTS OF PROGRAMMING LANGUAGE

AN INVESTIGATION OF THE DEMAND FACTORS FOR ONLINE ACCOUNTING COURSES

LOTE TEACHER COMPETENCIES FOR PROFESSIONAL DEVELOPMENT

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES

Education Policy of the Department of International Development Engineering [Bachelor s Program]

Education Policy of the Department of International Development Engineering [Bachelor s Program]

ILLINOIS PROFESSIONAL TEACHING STANDARDS (2013)

A Technical Writing Program Implemented in a First Year Engineering Design Course at KU Leuven

Research Proposal: Evaluating the Effectiveness of Online Learning as. Opposed to Traditional Classroom Delivered Instruction. Mark R.

The Primary Curriculum in Schools

A COURSE OF THERMODYNAMICS FOR AN INDUSTRIAL ENGINEERING DEGREE USING NEW METHODOLOGIES AND TECHNOLOGIES

Factors affecting teaching and learning of computer disciplines at. Rajamangala University of Technology

Embedding graduate survey indicators into internal quality assurance systems. What can institutions learn from graduate surveys?

COOPERATIVE PROBLEM SOLVING AS A LEARNING APPROACH IN HETEROGENEOUS CLASSES: A PRELIMINARY STUDY

A Guide. to Assessment of Learning Outcomes. for ACEJMC Accreditation

Elementary Math Methods Syllabus

THE INSTITUTE FOR TEACHING AND LEARNING EVALUATION AND QUALITY ASSURANCE (EQA) WORKING GROUP

Graduate Student Perceptions of the Use of Online Course Tools to Support Engagement

University Students' Perceptions of Web-based vs. Paper-based Homework in a General Physics Course

A Downsized, Laboratory-Intensive Curriculum in Electrical Engineering

FACE-TO-FACE AND ONLINE PROFESSIONAL DEVELOPMENT FOR MATHEMATICS TEACHERS: A COMPARATIVE STUDY

THE UNIVERSITY OF TEXAS AT BROWNSVILLE College of Education Syllabus

When I first tried written assignments in my large-enrollment classes,

Zainab Zahran The University of Sheffield School of Nursing and Midwifery

Synchronous Videoconferencing in Distance Education for Pre-Licensure Nursing

AC : A STUDY OF TRADITIONAL UNDERGRADUATE STU- DENT ENGAGEMENT IN BLACKBOARD LEARNING MANAGEMENT SYSTEM

Evaluation of an Intra-Professional Learning workshop between Pharmacy and Pharmacy Technician Students

Basics of Student Project Management (BSPM) High- Level Course Syllabus

E-learning and Student Management System: toward an integrated and consistent learning process

Tfor accrediting master's level programs

OCCUPATIONAL THERAPY ASSISTANT CURRICULUM DESIGN

CTL 2009 ADVANCED PROGRAM REPORT

The South Carolina Center for Advanced Technological Education: Annual External Evaluation Report

Information UNIVERSIDAD PEDAGÓGICA NACIONAL

SCHOOL OF ENGINEERING BACHELOR S DEGREE IN AEROSPACE ENGINEERING

Blended Learning vs. Traditional Classroom Settings: Assessing Effectiveness and Student Perceptions in an MBA Accounting Course

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES. Programme name BEng Electrical & Electronic Engineering with Foundation Year

Engaging Students Online

MASTER S DEGREE IN EUROPEAN STUDIES

OREGON INSTITUTE OF TECHNOLOGY Mechanical Engineering Program Assessment October 16, 2008 INTRODUCTION PROGRAM MISSION STATEMENT

BACHELOR S DEGREE PROGRAM NURSING SCIENCE MEDICAL UNIVERSITY OF GRAZ

A Comparative Analysis of Preferred Learning and Teaching Styles for Engineering, Industrial, and Technology Education Students and Faculty

International Journal of Education and Development using Information and Communication Technology (IJEDICT), 2009, Vol. 5, Issue 1, pp

Faculty Experiences with K-State Engineering LEA/RN

Adoption of a New Project-Based Learning (PBL) Curriculum in Information Technology

Natural Occurrence in Sport. Tap into Prior Knowledge

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Aerospace Engineering and Engineering Mechanics. EM 311M - DYNAMICS Spring 2012 SYLLABUS

Green Education through Green Power: Photovoltaics as a Conduit to Interdisciplinary Learning

DEPARTMENTAL PLAN FOR ASSESSMENT OF STUDENT LEARNING

Roles and Responsibilities Teaching Service

Program Rating Sheet - Athens State University Athens, Alabama

College of Education and Allied Professions MAT/MAED Dispositions Assessment, Fall 2014

M.Tech. Control and Instrumentation Engineering

This Performance Standards include four major components. They are

Executive Summary. Florida Connections Academy. Ms. Marcie Trombino 5401 S. Kirkman Road Suite 550 Orlando, FL 32819

Transcription:

Analysis of an Experience of Problem Based Learning in a Physics Course of Technical Telecommunications Engineering Degree Erica Macho-Stadler Escuela Técnica Superior de Ingeniería de Bilbao (UPV/EHU) (Spain) erica.macho@ehu.es Abstract Active learning methods can be appropriate in engineering disciplines, as their methodology promotes meta-cognition, self-directed learning, critical thinking and problem-solving skills. Problem based learning (PBL) is the educational process by which problem solving activities and instructor s guidance facilitate learning. Its key characteristic is posing a concrete problem to students to initiate the learning process that is generally implemented by students small groups. In this approach, learning is more student-centered and less teacher-directed. Many universities have developed and used active methodologies with good results in the teachinglearning process. During the last years, the University of the Basque Country (UPV/EHU) has promoted the use of active methodologies in the new degrees through a training program, called ERAGIN, for some of its teachers. The author of this work has been part of this group of teachers, and in this paper describes and analyzes the results of the educational experience using the PBL method in a Physics course for undergraduate programs of Technical Telecommunications Engineering in the Higher Technical School of Engineering of Bilbao. 1. Introduction The modern engineering profession requires a good level of technical competence but other skills are also important. Some studies conducted to determine the abilities required of engineers by industry, show that engineering graduates need to have strong communication and teamwork skills, and a broader perspective of other issues related to their profession. The results show that graduates have a good knowledge of fundamental engineering science but, in many cases, they don t know how to apply that in practice [1]. The lack of effectiveness of traditional pedagogy to develop some skills, led to the use of new didactic approaches. Problem-based learning is a pedagogical stgy centered in the student who learns by facing real life problems and working in teams [2]. Its use in engineering programs has been reported by several authors [3] [4]. The starting point and the basis of the PBL learning process is a real-life problem that allows the learning content to be related to the context, promoting student motivation and comprehension [5]. The majority of the learning process takes place in groups, where personal competencies are developed [6]. During the learning process, teachers are coaches and facilitators. This work presents the results of a problem based learning experience in a Physics course for undergraduate programs of Technical Telecommunications Engineering in the Higher Technical School of Engineering of Bilbao. The responsible teacher was formed in the ERAGIN program of the Basque Country University [7]. This professional development program introduces teachers to activeand collaborative-learning teaching methods. The experience was carried out with students on their

third year period with no previous experience on PBL, during 2010-2011 and 2011-2012 academic years. Both, academic results and students opinion are analyzed. 2. Subject characteristics "Physics II" is an optional subject included in the last year of the BSc in Technical Telecommunications Engineering. It is offered to students who wish to continue their studies in the Master in Telecommunications Engineering, in order to complement their knowledge of basic Physics. During the first year of the BSc, students work in Physics I with contents related to Electromagnetism and Waves. In Physics II the contents focus on Mechanics and Thermodynamics: Mechanics: Kinematics Particle dynamics Dynamics of particle systems Thermodynamics The laws of Thermodynamics Thermal processes. Cooling of electronic equipment The teaching model in centred in the students learning process. The learning objectives can be summarized as follows: To know the basic magnitudes and the scientific theories of Mechanics and Thermodynamics To analyze, interpret and solve problems of Mechanics and Thermodynamics. 3. Methodology Learning begins with a problem that students have to solve working together in small groups. The problem is selected and edited to meet educational objectives. The first year, 2010-2011, only the Mechanics was implemented using PBL, and the problem proposed rather basic questions. The second year, 2011-2012, the problem was redefined and extended to the entire subject (Table 1). Contents developed using PBL Mechanics Mechanics - Thermodynamics Number of weeks 9/15 15/15 Problem deal with Motion of objects Telecommunication satellites Related questions How do objects move? Relationship between the motion and its causes Table 1. Summary of the proposed problems. Putting the satellite into orbit Satellite active and passive thermal control When the teacher presents the problem, students gene hypotheses about the causes or the effects, the possible resolution, etc. They identify what they know and what they don't know, and they list what they need to know or to understand in order to complete the problem task. The problem solution is combined with classroom work sessions and lecture. In classroom sessions, students work in some activities related to the learning issues. The activity-based learning is a central part of the process, and requires activities involving research, decision-making and writing. The student workbook includes all the activities [8]. Students are evaluated through their participation in classroom activities, the written reports and the post-tests (Table 2).

Group Individual Activity type Quantity % in final rating Quantity % in final rating Classroom activities 21 15 24 15 Teamwork reports 6 35 5 35 Individual reports 3 10 0 0 Post-tests 2 40 2 50 Table 2. Summary of the activities and the evaluation. 4. Results In my opinion, the implementation proved to be quite satisfactory, especially in classroom activities and teamwork. One of the highlights of the experience was the good working environment in the classroom, where students participate actively in the activities. This general attitude is unusual in the traditional methodology. Table 3 shows some of the obtained results. Score Academic year 2010-2011 2011-2012 Number % Number % Enrolled students 32 100 45 100 Drop-out 4 12.5 10 22.2 Success 20 62.5 28 62.2 F Failed 0.0-4.9 8 25 7 15.6 C Pass 5.0-6.9 18 56.25 24 53.3 B Outstanding 7.0-8.9 2 6.25 4 8.9 A Excellent 9.0-10 0 0 0 0 Table 3. Summary of the obtained results. The dropout (10-20%) is similar to that of other elective subjects of the Spanish University. Some students dropped-out because they could not assist regularly to worksessions. The main reason was that they were working, but in some cases they were enrolled in too many subjects and they could not acomplish all the activities. The increase of the drop-out in 2011-2012 year, results in a decrease of the fail, since the success s are similar. Table 4 details the results of the different activities. Failure Success Average score Failure Success Average score Classroom activities 0% 87.5% 5.5 0% 77.8% 7.4 Teamwork reports 0% 87.5% 7.0 0% 77.8% 6.8 Individual reports 3.1% 84.4% 6.2 --- --- --- Post-tests 56.2% 31.3% 4.6 37.8% 40.0% 4.7 Total 25% 62.5% 5.7 15.6% 62.2% 5.7 Table 4. Summary of the results of the different activities. The class average score for the complete evaluation was 5.7, the two years. As it can be seen, the success for classroom activities and teamwork reports is very high: all students that follow the

course passed these parts of the evaluation. However, this is not true for the post-tests, where the failure is quite high. This may be because more interested students lead team activities, obtaining better results. In order to detect problems in teamwork and to identify those students that have not worked conveniently, the opinion of the all the members of each team has been collected, and these opinions have been included in the calculation of the teamwork scores. Very few cases of parasitic students have been detected but in the majority of the teams one of the students has worked better that the rest. Some comments obtained from interviews, indicate that students have difficulties searching and manipulating information obtained from several resources, resulting in an inefficient activity. This could explain the difference between the scores of the team activities and the post-tests. 5. Students opinion The opinion of the students has been collected using an opinion poll that includes 35 questions. The questions are related to the materials included in the workbook, the activities, the teamwork and the PBL methodology. Students could each question from 1 (disagree) to 5 (agree). Some of the results can be seen in Table 5. Question 2010-2011 year 2011-2012 year Teamwork is satisfactory 4.30 3.63 The number of members of the group is adequate 4.15 3.41 PBL improves teamwork skills 3.56 3.63 PBL improves self-directed learning 3.41 3.30 PBL prepares for professional career 2.67 3.15 I wish there were more subjects with PBL 2.30 3.15 Table 5. Summary of the students opinion. Students opinion has evolved from 2010-2011 year to 2011-2012 year. In reference to teamwork, the opinion has worsened. This can be due to the number of components of the groups: 4 members the first year and 6 the second one. Considering that students are accustomed to working in pairs in the laboratory, this increase in the number of the members could complicate the activities achievement. On the other hand, the perception of the usefulness of PBL gets better. The reason can be that the starting point proposed problem in 2011-2012, was more suitable to promote students motivation and comprehension, because it was closer to Telecommunications field. Students think that PBL promotes the development of methodological skills, but they do not perceive their significance in the modern engineering profession. 6. Conclusions In view of the results of 2010-2011 year, some changes were introduced in the proposed activities and their development during 2011-2012 year. The most important were: The PBL was extended to all the subject (15 weeks) The initial proposed problem was changed and adapted to Telecommunications field The number of activities per week was reduced (3.6 in 2010-2011 vs. 3.0 in 2011-2012) The number of students per group increased (4 in 2010-2011 vs. 6 in 2011-2012)

The first three changes seem to have a positive effect in the students opinion about BPL. However, their interest on this type of methodology is not high. This can be due to the very traditional teachinglearning context where they are studying. The PBL approach is more demanding with the achievement of competencies than the traditional system. This fact is perceived by students as an increase in the work they have to do, so they considered appropriate to reduce the number of activities per week. When the initial proposed problem is related to the students field of interest, their satisfaction increases. Teachers efforts should be centred in the generation of good problems, related to the context, and that promote student motivation and comprehension. The relationship between the formulation of the problem and the students experience, relates to their previous knowledge, increasing their motivation. Students think that PBL helped them to improve some abilities, as communication and teamwork skills. We can say that PBL promotes the development of methodological skills that are essential in the modern engineering profession, although students did not percive this fact clearly. The continuous assessment is a positive aspect of PBL. The influence of all the activities in the final score maintains the students interest and supports the continuous work. The number of students per group is important. The students are used to work in pairs in laboratory work. However they do not work in groups of more than 3-4 people, so they have difficulties when the teams are composed by six students. 7. Acknowledgements The Basque Country Government and the University of the Basque Country supported this work partially. I would like to extend my gratitude to the people of the Research team on the teaching of Physics, Mathematics and Technology created and funded by the University of the Basque Country and the Basque Country Government. The professional development program in active-learning ERAGIN of the University of the Basque Country is also acknowledged. References [1] J.D. Lang et al. (1999). Industry expectations of new engineers: A survey to assist curriculum designers. Journal of Engineering Education Vol. 88 (1) pp. 43-51. [2] D. Gijbels et al. (2005). Effects of problem based learning: a meta-analysis from the angle of assessment. Review of Educational Research Vol. 75 (1) pp. 27-61. [3] D. R. Woods et al. (1997). Developing problem solving skills: The McMaster problem solving program. Journal of Engineering Education Vol. 86 (2) pp. 75-91. [4] P.A. Johnson (1999). Problem-based cooperative learning in the engineering classroom. Journal of Professional Issues in Engineering Education and Practice Jan 1999 pp. 8-11. [5] C.P.M. van der Vleuten et al. (1991). Pit-falls in the pursuit of objectivity: Issues of reliability. Medical Education Vol. 25 pp 110-118. [6] A. Kolmos (1999). Progression in collaborative skills. Themes and variations in PBL (Vol. 1) Australian Problem Based Learning Network, Callaghan (NSW) pp.129-138. [7] http://www.ehu.es/ehusfera/helaz/eragin/ [8] http://cvb.ehu.es/ikd-baliabideak/ik/macho-03-2011-ik.pdf