Everything You Need to Know About Network Failover

Similar documents
ECESSA. White Paper. Optimize Your Network on a Limited IT Budget

Managing SIP-based Applications With WAN Optimization

WAN Traffic Management with PowerLink Pro100

How Proactive Business Continuity Can Protect and Grow Your Business. A CenturyLink White Paper

Optimal Network Connectivity Reliable Network Access Flexible Network Management

Truffle Broadband Bonding Network Appliance

FatPipe Networks

PREPARED FOR ABC CORPORATION

Top IT Pain Points: Addressing the bandwidth issues with Ecessa solutions

The Key to Cost-Effective WAN Optimization - White Paper

White Paper. McAfee Multi-Link. Always-on connectivity with significant savings

FatPipe Networks

VitalPBX. Hosted Voice That Works. For You

Whitepaper. StoneGate Multi-Link. Ensuring Always-on Connectivity with Significant Savings

Multi-Link - Firewall Always-on connectivity with significant savings

PowerLink Bandwidth Aggregation Redundant WAN Link and VPN Fail-Over Solutions

The Hybrid Enterprise. Enhance network performance and build your hybrid WAN

IBM Virtualization Engine TS7700 GRID Solutions for Business Continuity

COMPARING STORAGE AREA NETWORKS AND NETWORK ATTACHED STORAGE

Uninterrupted Internet:

Achieving High Availability & Rapid Disaster Recovery in a Microsoft Exchange IP SAN April 2006

Disaster Recovery Checklist Disaster Recovery Plan for <System One>

A Link Load Balancing Solution for Multi-Homed Networks

Network Enabled Cloud

White Paper. Complementing or Migrating MPLS Networks

Virtual Leased Line (VLL) for Enterprise to Branch Office Communications

Cloud Computing Disaster Recovery (DR)

VCStack - Powerful Simplicity. Network Virtualization for Today's Business

VoIP Logic: Disaster Recovery and Resiliency

A SWOT ANALYSIS ON CISCO HIGH AVAILABILITY VIRTUALIZATION CLUSTERS DISASTER RECOVERY PLAN

HIGH AVAILABILITY FOR BUSINESS- CRITICAL PROCESSES WITH VIPRINET

Fault Tolerance, Security, Speed for Private or Public WANs

Telecom Business Continuity Solutions FOR INTERNAL USE ONLY

Business Continuity. Proactive Telecom Strategies for Decision Makers

Business Continuity White Paper

THE VX 9000: THE WORLD S FIRST SCALABLE, VIRTUALIZED WLAN CONTROLLER BRINGS A NEW LEVEL OF SCALABILITY, COST-EFFICIENCY AND RELIABILITY TO THE WLAN

November Defining the Value of MPLS VPNs

Barracuda Link Balancer

DOMINO Broadband Bonding Network

Astaro Deployment Guide High Availability Options Clustering and Hot Standby

SIP Trunking Guide: Get More For Your Money 07/17/2014 WHITE PAPER

Contents. Foreword. Acknowledgments

F5 and VMware Solution Guide. Virtualization solutions to optimize performance, improve availability, and reduce complexity

Layer-2 Design: Link Balancers Simplified

Broadband Bonding Network Appliance TRUFFLE BBNA6401

Reliable high throughput data connections with low-cost & diverse transport technologies

Template Courtesy of: Cloudnition LLC 55 W. 22 nd St Suite 115 Lombard, IL (630)

High Availability with Windows Server 2012 Release Candidate

Efficient Network Monitoring Access

Optimal Network Connectivity Reliable Network Access Flexible Network Management

Accelerate Private Clouds with an Optimized Network

An Introduction to SIP

Break Internet Bandwidth Limits Higher Speed. Extreme Reliability. Reduced Cost.

White Paper: Broadband Bonding with Truffle PART I - Single Office Setups

Avaya P333R-LB. Load Balancing Stackable Switch. Load Balancing Application Guide

Broadband Bonding Network Appliance TRUFFLE BBNA6401

White Paper AN INTRODUCTION TO BUSINESS CONTINUITY PLANNING AND SOLUTIONS FOR IT AND TELECOM DECISION MAKERS. Executive Summary

Smart Tips. Enabling WAN Load Balancing. Key Features. Network Diagram. Overview. Featured Products. WAN Failover. Enabling WAN Load Balancing Page 1

High Availability and Disaster Recovery Solutions for Perforce

Small, Medium and Large Businesses

Disaster Recovery Design Ehab Ashary University of Colorado at Colorado Springs

Blackboard Managed Hosting SM Disaster Recovery Planning Document

WAN Optimization Integrated with Cisco Branch Office Routers Improves Application Performance and Lowers TCO

Improving Network Uptime

Whitepaper. Controlling the Network Edge to Accommodate Increasing Demand

Solution Brief. Secure and Assured Networking for Financial Services

Cisco Disaster Recovery: Best Practices White Paper

courtesy of F5 NETWORKS New Technologies For Disaster Recovery/Business Continuity overview f5 networks P

The Art of High Availability

White paper. Business Applications of Wide Area Ethernet

Clustering and Queue Replication:

F5 and Oracle Database Solution Guide. Solutions to optimize the network for database operations, replication, scalability, and security

Voice over IP Networks: Ensuring quality through proactive link management

VPN Only Connection Information and Sign up

APPLICATION NOTE. Benefits of MPLS in the Enterprise Network

Elfiq Networks Vital for Hospitality

HyperQ DR Replication White Paper. The Easy Way to Protect Your Data

HA / DR Jargon Buster High Availability / Disaster Recovery

High Availability and Disaster Recovery for Exchange Servers Through a Mailbox Replication Approach

How can I deploy a comprehensive business continuity and disaster recovery solution in under 24 hours without incurring any capital costs?

Reduce your downtime to the minimum with a multi-data centre concept

Elfiq Link Load Balancer Frequently Asked Questions (FAQ)

Technical Brief. DualNet with Teaming Advanced Networking. October 2006 TB _v02

How To Use The Cisco Wide Area Application Services (Waas) Network Module

Aljex Software, Inc. Business Continuity & Disaster Recovery Plan. Last Updated: June 16, 2009

Enterprise Network Solution

Layer 4-7 Server Load Balancing. Security, High-Availability and Scalability of Web and Application Servers

Assessing Business Continuity Solutions

Transcription:

Everything You Need to Know About Network Failover Worry-Proof Internet 2800 Campus Drive Suite 140 Plymouth, MN 55441 Phone (763) 694-9949 Toll Free (800) 669-6242

Overview Everything You Need to Know About Network Failover The Internet has become so pervasive and integral for conducting business and communicating with customers, partners and employees, that network performance, high-availability, and uptime are required for running the day-to-day operations of an organization. Network downtime not only costs money and loss of productivity, it can also adversely affect a company s reputation among customers and partners. For many companies, their entire business strategy depends on how well its network performs. There are many events that can cause a network or site to go down, such as natural disasters, security attacks, a backhoe cutting a network line, or failing network infrastructure. Few organizations plan for, and have the budget to implement appropriate network infrastructure to ensure their datacenters and remote offices have the protection they need in anticipation of disaster. According to market research firm Infonetics, large enterprises typically lose between 2-16 percent of their annual revenues due to losses associated with network downtime. The more distributed a company s network is, the more likely it is to suffer service-provider interruptions. According to a recent Infonetics survey, retailers are affected the most, with service providers accounting for more than 30 percent of their downtime costs. Another cause of downtime is human error, which accounts for about one-fifth of the downtime costs. For financial institutions, this percentage jumps to nearly one-third. Failover Failover within a communications network is the process of instantly transferring tasks from a failed component to a similar redundant component to avoid disruption and maintain operations. Automated failover is the ability to quickly reroute data automatically from a failed component such as a server or network connection, to a functioning component, and is essential for mission-critical systems. Different components may be configured for either cold standby (requiring human intervention), warm standby (automatic but delayed) or hot standby (automatic) failover. The three critical elements requiring failover configuration are power, network connectivity and server capacity. This white paper describes the different types of failover, the requirements of failover design, and strategies for successful failover implementation. Device Failover In a failover situation, such as a firewall, router, WAN controller, server load balancer, disk drive, web server, etc., data is transferred to the same type of redundant component to ensure there is limited interruption in data flow and operation. If a primary component becomes unavailable because of either failure or scheduled downtime, the secondary component serves as a backup, and takes over for its failed counterpart.

The capability to switch automatically to a redundant or standby system, or network upon failure happens without human intervention (see Failover Heirarchy for other types of failover). Automated failover is essential in servers, systems or networks requiring continuous availability, and a high degree of reliability those that are responsible for mission-critical processes and data (see examples below). Failover Hierarchy As mentioned earlier, there are different types of failover, some that are not entirely automatic by intention and require manual intervention. This is called automated with manual approval activity is automatic once approval is given. When hardware is on cold standby, failover must be performed manually, which invites error. In contrast, where hardware is on warm standby, the backup system runs in the background, so the transfer takes place automatically. The data on both systems is automatically synchronized. To the user, failover resembles a very fast automatic service reboot. However, the current transaction may be aborted because it was not possible to synchronize the data prior to failure. The most reliable failover scenario is hot standby, where both systems permanently run in parallel data on both systems is 100% synchronized at all times. Users will not be aware of any failures. This level of failover protection usually requires a corresponding modification to the client. To run both with systems complete synchronicity, the connections to the client must be mirrored 100%. This normally requires clients that have connections with two or more servers at the same time, and can communicate with all of them. A normal web browser cannot do this. Some enterprises implement hot failover and cold failover for disaster recovery. It is important to differentiate between failover and disaster recovery. Failover is a methodology to resume system availability in an acceptable period of time, while disaster recovery is a methodology to resume system availability when all failover strategies have failed. Critical Role of Failover The convergence of voice, data, and video over a single IP network is making the network infrastructure one of the most critical elements in operational success. These voice, video, and data services are increasingly integrated with business-critical applications such as VoIP, e-mail, customer relationship management (CRM), etc. Therefore, all forms of communication with customers, suppliers and employees are inextricably tied to network operation. If the network fails, access to critical information can be lost or potentially compromised, with potentially calamitous results: for example, an airport risks massive delays that impact passengers; or patients health may be compromised by a major medical center experiencing application delivery delays. Examples of Organizations that Need Failover Small and medium-sized businesses need inbound and outbound load balancing and failover services for an increasing assortment of critical-business traffic, from VoIP to email. For example, the local corner store that does online banking and bill-pay over the Internet; or a manufacturing company that needs email, web services, hosted ERP, and ecommerce applications available all the time. Companies with a central headquarters and a number of branch offices and remote employees need secure and reliable data communications. They need reliable performance and high-availability of their VPN data, including the ability of the VPN connection to automatically failover if a WAN link goes down. Web hosting companies, MSPs, ASPs and small ISPs need incoming link aggregation and failover to ensure that their services are reliable, with extra bandwidth and redundancy available to their servers. Their missioncritical applications need to be up and running 24/7. If a WAN link goes down, the failover process has to be smooth and transparent to users. Many of these companies are deploying VoIP applications to cut expenses and enhance productivity. These companies now need quality of service levels and traffic-shaping for guaranteed bandwidth to critical services and applications such as VoIP.

Companies that have ERP, CRM or any other software accessed over the Internet. etc Failover Requirements Most corporate and government networks are comprised of three main elements LAN, WAN and network infrastructure devices and services. The LAN provides interconnectivity around a single organizational location. The WAN provides interconnectivity between these locations (interconnecting specific geographical sites), other business partners, and access to public networks such as the public switched telephone network in the case of voice traffic, and the Internet for data traffic. The network infrastructure services element provides the services that allow control of the network and flow of data (DNS, DHCP, WINS, FTP), and contain access to the network using Active Directory, RADIUS, and TACACS, etc. These three elements of network infrastructure services need the consideration of several requirements for creating a failover environment, the most basic of which is a connecting cable between the two devices. The second device initiates its systems only when it detects a problem in the first device. Some systems have the ability to page or send a message to a specific technician or support center. There may also be a third spare parts device that has running spare components for hot switching to prevent downtime. The following are other critical elements that comprise a failover environment: Power With power failures being one of the most common reasons for network and systems failures, all critical network components at either the primary datacenter, call center or failover site must be connected to a power source that has very high-availability 99.999% in the case of a datacenter. A LAN that provides critical services such as a hospital or bank should be equipped with uninterruptible power supplies (UPS) for each component of its distribution and access portions. These should be connected to emergency power sources to maintain internal communication. The WAN routers, switches, firewalls, etc. need the same form of protection to provide continuous communication and interconnection to external sites and other public networks. Large datacenters and critical operations, such as call centers, must rely on multiple electric power companies to provide utility power to their locations. The power is brought into the critical site from different geographical locations. So, if power is interrupted by a car-pole accident that severs electric lines at a particular location, the other utility can continue to provide uninterrupted power. Emergency power generators may be used instead of alternate utilities. These generators, together with UPS equipment, can provide a continuous stream of electrical power for days if necessary, while utility power is being restored. Network Redundancy Levels of redundancy should be determined for the primary and backup networks based on the identification of critical network components, impact analyses, and established recovery objectives. There should be consideration for redundancy of network devices such as switches, routers, gateways, etc. There should also be consideration given to redundant components such as power supplies, CPUs, and circuit cards for the network switches and routers. WAN Link Aggregation Consideration must be given to the redundancy and diversity of WAN links in conjunction with automated failover. Redundancy can be achieved by providing multiple links and multiple types of links for a single site, and between multiple sites. For example, if the WAN network utilizes MPLS or ATM, it might be prudent to provide different links such as frame-relay, so that if a carrier s entire service goes down, the organization can have a backup strategy, which many include satellite or microwave links. Diversity of links can be accomplished either by link diversity two or more links travel different routes to

your locations or through carrier diversity. Multiple carriers are used to provide Internet access diversity and redundancy to companies that rely heavily on Internet connectivity. WAN Bandwidth Capacity Several capacity factors of alternate sites must be properly assessed in order to avoid failures caused by unanticipated high traffic volumes from a primary site. One factor is the peak capacity coming from the primary site that failed. The second factor is the peak capacity of the secondary site where the traffic will be rerouted to. The size of the WAN links should allow for both peak capacities, plus an additional 25-40% accommodating new peak traffic volumes. Additional traffic may come from new applications such as VoIP and other business applications, and/or traffic congestion caused by customers, suppliers, and employees. Aggregated bandwidth should be ample enough to provide ISP failover and redundancy. If one link were to fail, you will still need enough bandwidth for users to be productive. Intelligent link load balancing monitors bandwidth availability throughout the network, and priority-assigns traffic to the link with the greatest available bandwidth in order to guarantee that time-sensitive traffic (i.e. voice and video and other critical applications) receive the bandwidth required for smooth performance. In addition to the availability of WAN links, there is a need for a mechanism to connect users to available servers. If a server where the user is connected suddenly becomes unavailable, the load balancer redirects the request to one of the other replicated servers. This action causes the loss of the original session-to-credential mapping where the user is new to this substitute server, and is normally forced to login again. WAN Link Load Balancing and Failover Many companies deploy WAN Optimization as a Service (WaaS) to merge WAN link load balancing and failover to cost-effectively eliminate downtime for business-critical, time-sensitive applications and ensure network performance. These devices enable redundant WAN and ISP access, and can provide both outbound and inbound WAN/ISP load balancing and failover. Bandwidth aggregation combines multiple WAN links into what is effectively one large network connection. Alternately, it can use bandwidth aggregation to maintain these links separately and allocate Internet traffic across them. Both techniques result in larger pools of available bandwidth, and greater reliability. WAN Virtualization For WAN Virtualization, WAN Optimization Services with intelligent link load balancing are installed at both a local and remote site and direct traffic over the Internet between the two sites using the combined (or bonded) bandwidth of multiple ISP or WAN connections. Each site connected by such a bonded link is assigned a unique identifier that allows it to be differentiated from other sites. Each site is also configured with addressing

information for both the local and remote end of the bonded link. This allows the micro-appliance at each end to identify traffic that should be sent across the bonded link and direct it to the specified IP addresses on the WAN link(s) of the remote site. When the micro-appliance identifies such outgoing traffic, it is disassembled at the packet level into separate streams of data, then encapsulated for transmission through the virtualized WAN and sent over all available WAN links. Since each encapsulated packet contains addressing information for a specific remote location, data is easily reassembled at that location. Ecessa s WAN Optimization as a Service (WaaS) Delivers Industry Leading Price/Performance Value WAN Optimization as a Service (WaaS) is Ecessa s affordable solution for bandwidth aggregation, load balancing and failover. WaaS enables redundant WAN and ISP access, and provides both outbound and inbound load balancing and failover to ensure uptime. Ecessa s WAN Optimization as a Service optimizes WAN infrastructure as defined by 24/7 availability, highperformance, flexible scalability, and secure operations - while streamlining IT costs. PowerLink simplifies the management of network links, and optimizes user access to datacenters and remote sites. To ensure business continuity WaaS provides reliable access to datacenters and remote locations, ensuring business continuity when disaster strikes or WAN infrastructure is compromised. It enables you to intelligently control bandwidth throughput by managing multiple and diverse WAN and ISP links, and automatically applying failover techniques to avoid link failures and bottlenecks. Many businesses need to redirect Internet traffic to a disaster recovery site should a catastrophe disrupt a main site. WaaS ensures that site failover and failback occur automatically, reliably, making this functionality practical and affordable even for the smallest businesses. Ecessa s WAN Optimization as a Service intelligently and efficiently distributes user traffic among multiple, diverse WAN and ISP links. WaaS capabilities include WAN and ISP link aggregation; automated inbound and outbound load balancing and failover; site failover and fallback, and VPN load balancing and redundancy; plus 90 days of free service and support from U.S.-based factory technicians, a 30-day money-back guarantee, and a three-year warranty. WAN Optimization as a Service Ensures each user gets the best network experience possible over the WAN Provides application high-availability over the WAN Directs traffic to only available WAN links and sites Enables administrators to optimize WAN traffic using cost-efficient WAN links Helps thwart network security threats Enables WAN link redundancy, ISP failover and Internet high-availability among multiple WAN links for important internal and customer applications Enable WAN Virtualization between multiple locations, providing uninterrupted communication for reliable performance of applications such as VPN, VoIP, etc Provide redundant hardware failover and monitoring capabilities for mission-critical applications

Provide traffic shaping and application prioritization capabilities for bandwidth management that guarantee your most critical applications get the bandwidth required for smooth and consistent performance Offer the best service and support in the industry, with 90 days of free service and support from U.S.-based factory technicians, a 30-day money-back guarantee, and a three-year warranty Summary The Internet has become so pervasive and integral for conducting business and communicating with customers, partners and employees, that network performance, reliability and uptime are becoming required for running the day-to-day operations of many organizations. Network downtime not only costs money and loss of productivity, it can also adversely affect a company s reputation among customers and partners. There are many events that can cause a network or site to go down, such as natural disasters, security attacks, human errors, and other network infrastructure elements that can fail. When evaluating how to avoid network failures, it is important to evaluate the many options available to ensure high-availability, network uptime and optimal network performance. It is also critical to examine the solutions that will not only help avoid network failures, but are also affordable, and when deployed, will be operationally cost-effective. Summary of Key Network Failover Issues Improve network performance and eliminate downtime for business-critical, time-sensitive applications Globally manage WAN resources Provide redundant hardware failover and monitoring capabilities for mission-critical applications to eliminate all potential single points of WAN link failure Establish reliable network connections Ensure inbound and outbound traffic management over best performing WAN link Provide WAN link load balancing for ample bandwidth for critical applications Cost-effectively increase scalability and throughput of WAN connectivity Failover to secondary datacenter if all links at primary datacenter are down Coordinate WAN Virtualization among all locations, providing uninterrupted Internet access for reliable performance of applications such as VPN and VoIP