HOW TO SELECT THE BEST SOLID- STATE STORAGE ARRAY FOR YOUR ENVIRONMENT

Similar documents
BUYING PROCESS FOR ALL-FLASH SOLID-STATE STORAGE ARRAYS

Essentials Guide CONSIDERATIONS FOR SELECTING ALL-FLASH STORAGE ARRAYS

TIPS TO HELP EVALUATE AND DEPLOY FLASH STORAGE

Hybrid cloud computing explained

WHAT S INSIDE NEW HYPER- CONVERGED SYSTEMS

E-Guide THE LATEST IN SAN AND NAS STORAGE TRENDS

3 common cloud challenges eradicated with hybrid cloud

Managing Virtual Desktop Environments

FIVE PERVASIVE FLASH-BASED STORAGE MYTHS

E-Guide HOW THE VMWARE SOFTWARE DEFINED DATA CENTER WORKS: AN IAAS EXAMPLE

Data warehouse software bundles: tips and tricks

E-Guide VIDEO CONFERENCING SOFTWARE AND HARDWARE: HYBRID APPROACH NEEDED

E-Guide BEST PRACTICES FOR CLOUD BASED DISASTER RECOVERY

E-Guide GROWING CYBER THREATS CHALLENGING COST REDUCTION AS REASON TO USE MANAGED SERVICES

Expert guide to achieving data center efficiency How to build an optimal data center cooling system

E-Guide CLOUD COMPUTING FACTS MAY UNCLENCH SERVER HUGGERS HOLD

Aligning Public Cloud Strategies to Improve Server Efficiency

Securing the SIEM system: Control access, prioritize availability

E-Guide NETWORKING MONITORING BEST PRACTICES: SETTING A NETWORK PERFORMANCE BASELINE

Evaluating SaaS vs. on premise for ERP systems

E-Guide SIX ENTERPRISE CLOUD STORAGE AND FILE-SHARING SERVICES TO CONSIDER

The changing face of scale-out networkattached

Hyper-V 3.0: Creating new virtual data center design options Top four methods for deployment

2013 Cloud Storage Expectations

E-Guide MANAGING AND MONITORING HYBRID CLOUD RESOURCE POOLS: 3 STEPS TO ENSURE OPTIMUM APPLICATION PERFORMANCE

E-Guide CONSIDERATIONS FOR EFFECTIVE SOFTWARE LICENSE MANAGEMENT

Cloud Storage: Top Concerns, Provider Considerations, and Application Candidates

E-Guide to Mobile Application Development

HOW MICROSOFT AZURE AD USERS CAN EMPLOY SSO

Key best practices for cloud testing

How to Develop Cloud Applications Based on Web App Security Lessons

Managing Data Center Growth Explore Your Options

Preparing for the cloud: Understanding the infrastructure impacts Eight essential tips for a successful cloud migration

Advanced analytics key component for decision management systems

The skinny on storage clusters

Exchange Server 2010 backup and recovery tips and tricks

Benefits of virtualizing your network

Desktop virtualization: Best practices for a seamless deployment

Oracle FS1 Flash Storage System

CLOUD APPLICATION INTEGRATION AND DEPLOYMENT MADE SIMPLE

Server OS Buyer s Guide Vendor-neutral tips for choosing the best server operating system for your organization

HyperQ Storage Tiering White Paper

Advantages on Green Cloud Computing

Solution Spotlight BEST PRACTICES FOR DEVELOPING MOBILE CLOUD APPS REVEALED

A Guide to MAM and Planning for BYOD Security in the Enterprise

Software Defined Networking Goes Well Beyond the Data Center

Streamlining the move to the cloud. Key tips for selecting the right cloud tools and preparing your infrastructure for migration

Is Your Data Safe in the Cloud?

Seagate Kinetic Open Storage Platform Ecosystem. Build a more efficient cloud

Social channels changing contact center certification

GUIDELINES FOR EVALUATING PROCUREMENT SOFTWARE

Strategies for Writing a HIPAA-Friendly BYOD Policy

Unlocking data with document capture and imaging

Getting Started With Cloud Storage

E-Guide WHAT IT MANAGERS NEED TO KNOW ABOUT RISKY FILE-SHARING

Nexenta Performance Scaling for Speed and Cost

5 free Exchange add-ons you should consider Eliminating administration pain points on a budget

Solution Spotlight KEY OPPORTUNITIES AND PITFALLS ON THE ROAD TO CONTINUOUS DELIVERY

All-Flash Arrays: Not Just for the Top Tier Anymore

Discover how customers are taking a radical leap forward with flash

E-Guide BIG DATA: IMPLICATIONS ON STORAGE

Best Practices for Scaling a Big Data Analytics Project

LTO tape technology continues to evolve with LTO 5

Flash Memory Technology in Enterprise Storage

5 ways to leverage the free VMware hypervisor Key tips for working around the VMware cost barrier

Mixed All-Flash Array Delivers Safer High Performance

The State of Desktop Virtualization in 2013: Brian Madden analyzes uses cases, preferred vendors and effective tools

Solutions Brief. Unified All Flash Storage. FlashPoint Partner Program. Featuring. Sustainable Storage. S-Class Flash Storage Systems

Flash Memory Arrays Enabling the Virtualized Data Center. July 2010

Does consolidating multiple ERP systems make sense?

Deploying Flash in the Enterprise Choices to Optimize Performance and Cost

ios7: 3 rd party or platform-enabled MAM? Taking a look behind the scenes with Jack Madden

Understanding Microsoft Storage Spaces

6 Point SIEM Solution Evaluation Checklist

Everything you need to know about flash storage performance

E-Guide CONSIDER SECURITY IN YOUR DAILY BUSINESS OPERATIONS

How To Speed Up A Flash Flash Storage System With The Hyperq Memory Router

The Do s and Don ts of Server Virtualization Back to basics tips for Australian IT professionals

The Economics of Intelligent Hybrid Storage. An Enmotus White Paper Sep 2014

FLASH GAINS GROUND AS ENTERPRISE STORAGE OPTION

E-Guide UNDERSTANDING PCI MOBILE PAYMENT PROCESSING SECURITY GUIDELINES

Flash Controller Architecture for All Flash Arrays

Cloud Security Certification Guide What certification is right for you?

Getting More Performance and Efficiency in the Application Delivery Network

ATA DRIVEN GLOBAL VISION CLOUD PLATFORM STRATEG N POWERFUL RELEVANT PERFORMANCE SOLUTION CLO IRTUAL BIG DATA SOLUTION ROI FLEXIBLE DATA DRIVEN V

FAS6200 Cluster Delivers Exceptional Block I/O Performance with Low Latency

Optimizing enterprise data storage capacity and performance to reduce your data footprint

E-Business Risk: The Coming SaaS As a Service

Rethink defense-in-depth security model

VIOLIN CONCERTO 7000 ALL FLASH ARRAY

Tips to ensuring the success of big data analytics initiatives

CLOUD SECURITY CERTIFICATIONS: HOW IMPORTANT ARE THEY?

Understanding Enterprise NAS

Big Data and the Data Warehouse

WHITE PAPER NETAPP ALL FLASH FAS: PERFORMANCE OF FLASH WITH FEATURE-RICH ENTERPRISE STORAGE FUNCTIONALITY SITUATION OVERVIEW

MDM features vs. native mobile security

Introduction to NetApp Infinite Volume

Microsoft Windows Server Hyper-V in a Flash

DIABLO TECHNOLOGIES MEMORY CHANNEL STORAGE AND VMWARE VIRTUAL SAN : VDI ACCELERATION

Solution Brief Network Design Considerations to Enable the Benefits of Flash Storage

Transcription:

E-Guide HOW TO SELECT THE BEST SOLID- STATE STORAGE ARRAY FOR YOUR ENVIRONMENT SearchSolidState Storage

P erformance is the driving factor for the vast majority of companies considering a solid-state storage array. While there are some other benefits, most companies just need faster storage. In this e-guide, learn about all-flash arrays and hybrid flash arrays and determine which storage array system is best for. PAGE 2 OF 10

HOW TO SELECT THE BEST SOLID-STATE STORAGE ARRAY FOR YOUR ENVIRONMENT Performance is the driving factor for the vast majority of companies considering a solid-state storage array. While there are some other benefits, most companies just need faster storage. Some common use cases for flash storage include high-density, virtual server infrastructures; virtual desktop infrastructure; high-transaction databases; and Web-facing applications. When shared storage is required (as opposed to putting flash directly into the application server), there are two options: all-flash arrays (AFA) and hybrid flash arrays. This article looks at both types of systems and discusses how to determine which solid-state storage array is best for. ALL-FLASH SOLID-STATE STORAGE ARRAYS As the name implies, all-flash arrays are 100% flash solid-state storage systems. Some use drive form-factor solid-state drives (SSDs), while others use custom flash modules to populate the array chassis. They are available in scale-up PAGE 3 OF 10

and scale-out architectures using both proprietary and commodity hardware nodes. AFAs support file, block or object storage protocols, and some provide a unified approach that supports multiple protocols. The majority of AFAs offer fairly complete services to support data protection, data handling, efficiency and so on. Early on, however, many all-flash arrays lacked these features. Similarly, storage management feature sets have evolved, with most AFAs providing an administrative experience similar to traditional storage systems. All-flash array capacity currently ranges from a few tens of terabytes to multiple petabytes; and data reduction technologies like deduplication can be especially effective in AFAs. Flash as a storage medium costs less to operate than hard disk-based systems. It consumes less power, creates less heat (requiring less cooling) and takes up less physical space in the data center. Because their storage media is homogeneous, AFAs don't require complex decision making or data movement. This gives them more consistent performance and improved scalability -- factors that can make them a better fit for large, multi-tenant environments. HYBRID SOLID-STATE STORAGE ARRAYS A hybrid flash array combines flash, usually in 2.5-inch form-factor drives, PAGE 4 OF 10

with hard disk drives (HDD) to lower the effective cost and increase effective capacity. This type of array also comes in scale-up and scale-out architectures, using purpose-built or commodity hardware to provide combined raw capacities (disk and flash) larger than most all-flash solid-state storage arrays. Current hybrid offerings support block, file and object-based protocols, and unified systems are also available. Storage services and management features are similar to traditional arrays, which makes the switch to a hybrid flash solidstate storage array easy from an operational perspective. Since most performance requirements are temporary, the storage system can move particular data objects to flash when the compute process needs them and back to the HDDs when it doesn't. This creates a multiplier effect that enables a smaller amount of flash to accelerate a much larger total data set. Hybrid arrays today use caching or tiering to accomplish this data movement. FLASH CACHING AND TIERING Read caching involves keeping a copy of the most frequently accessed data objects in flash so that read requests can be fulfilled without incurring hard disk latencies. Since cache capacity is at a premium, the better a hybrid solid-state storage PAGE 5 OF 10

system is at keeping the right data in cache, the more overall performance will improve and application data will be accelerated. While supporting read transactions is the most common use of flash in hybrid arrays, most of them also use a cache to accelerate write operations. Write caching involves storing write data in flash first, while acknowledging the write transaction to the host, and then copying that data to HDDs. All data must eventually be copied to hard disk storage, so the solid-state storage array must have a large enough write cache (i.e., less flash capacity available for reads) or enough non-write time to allow the cache to empty. Otherwise, write performance suffers. Instead of creating a second copy of data in a cache, flash tiering moves hot data objects out of the hard disk area and into flash to support periods of maximum activity. Ideally, all read and write activity is performed in flash. Eventually, data is copied back into the HDD tier, a process that can be performed manually or based on policies, as it is with caching. Speed is a critical factor for the applications that typically drive flash usage, and those applications (and users) often get accustomed to flash performance. When unexpected demands cause a cache or tier miss, applications must read data from disk drives. However, the drives typically used in a hybrid solid-state PAGE 6 OF 10

storage array are often very slow with high capacities. As a result, latency can cause unacceptable wait times for users, slow online transactions and bottlenecks in other production applications, among others. For this reason, workload predictability is key to the effective use of flash in a hybrid array. OTHER FACTORS TO CONSIDER Certain use cases don't work well with all-flash arrays or hybrid arrays, so the first step is to identify if any conditions in or workloads make one of these options a bad fit. For AFAs, the most obvious factor is capacity required and its effective cost. If the application's current or expected data set is too large for available flash or the budget is too small to buy more, then an AFA is not an option. Look at the effective capacity of the flash system after data reduction, as well as the raw capacity, when making your decision. For environments that need 100% consistency and no chance of a cache or tier miss, an AFA is probably the better solid-state storage array option. These include the use cases that all-flash storage was first developed for in the financial, Internet-based and high-performance computing industries. AFA efficiency advantages also make these systems effective for multi-tenant cloud environments that need low overhead and predictable performance as PAGE 7 OF 10

they scale. AFAs are more attractive when IT can't make the assumptions required to support data movement in a hybrid array. But even when this isn't the case, the simplicity of an all-flash array still wins out for many companies. If they can afford enough flash capacity to support the applications that need performance, they buy an all-flash array. If not, they buy a hybrid. If workloads can handle the occasional cache or tier miss, a hybrid solidstate storage array offers the best economics as it allows more workloads to be accelerated for a given investment. It's also reasonable to assume that performance will improve as users become more familiar with their applications' storage demands and as caching parameters are fine-tuned. Hybrids include high-capacity disk drives, so they also provide better and more cost-effective scalability, although at HDD performance levels. In reality, most people under-buy flash for a hybrid array because they simply don't know how much flash they need or they're more focused on saving money than improving performance. Hybrid vendors are also guilty of underselling flash because it makes their cost advantages over AFAs more dramatic. By and large, statistics show that a 5% flash to hard disk capacity is typical for a new hybrid configuration, but so is a cache hit rate of two-thirds, meaning PAGE 8 OF 10

one out of three transactions aren't served from cache. In most environments, moving the flash investment to 10% of total capacity can practically eliminate cache misses. PAGE 9 OF 10

FREE RESOURCES FOR TECHNOLOGY PROFESSIONALS TechTarget publishes targeted technology media that address your need for information and resources for researching products, developing strategy and making cost-effective purchase decisions. Our network of technology-specific Web sites gives you access to industry experts, independent content and analysis and the Web s largest library of vendor-provided white papers, webcasts, podcasts, videos, virtual trade shows, research reports and more drawing on the rich R&D resources of technology providers to address market trends, challenges and solutions. Our live events and virtual seminars give you access to vendor neutral, expert commentary and advice on the issues and challenges you face daily. Our social community IT Knowledge Exchange allows you to share real world information in real time with peers and experts. WHAT MAKES TECHTARGET UNIQUE? TechTarget is squarely focused on the enterprise IT space. Our team of editors and network of industry experts provide the richest, most relevant content to IT professionals and management. We leverage the immediacy of the Web, the networking and face-to-face opportunities of events and virtual events, and the ability to interact with peers all to create compelling and actionable information for enterprise IT professionals across all industries and markets. PAGE 10 OF 10