NINTH GRADE STUDENTS UNDERSTANDING OF THE NATURE OF SCIENTIFIC KNOWLEDGE



Similar documents
Educational research on teaching the nature and process of science

PRE-SERVICE SCIENCE AND PRIMARY SCHOOL TEACHERS PERCEPTIONS OF SCIENCE LABORATORY ENVIRONMENT

Running Head: STUDENT UNDERSTANDING OF SCIENCE AND SCIENTIFIC INQUIRY

ASQ Advancing the STEM Agenda in Education, the Workplace and Society Session 3-1

THE NATURE OF SCIENCE AND SCIENTIFIC KNOWLEDGE: IMPLICATIONS FOR DESIGNING A PRESERVICE ELEMENTARY METHODS COURSE

PORTUGUESE SCIENCE TEACHERS VIEWS ABOUTNATURE OF SCIENCE AND SCIENTIFIC MODELS

Attitudes Toward Science of Students Enrolled in Introductory Level Science Courses at UW-La Crosse

PRESERVICE SECONDARY MATHEMATICS TEACHERS COMPARATIVE ANALYSES OF TURKISH AND AMERICAN HIGH SCHOOL GEOMETRY TEXTBOOK

Advanced Placement Environmental Science: Implications of Gender and Ethnicity

AN INNOVATIVE INTEGRATED MATHEMATICS, SCIENCE, AND TECHNOLOGY EDUCATION TEACHER CERTIFICATION PROGRAM: CHARACTERISTICS AND FORMATIVE EVALUATION

April 2013 NGSS Release Page 1 of 10

METACOGNITIVE AWARENESS OF PRE-SERVICE TEACHERS

Students Attitude towards Science and Technology

EVALUATION OF PROSPECTIVE SCIENCE TEACHERS COMPUTER SELF-EFFICACY

The Nature of Science Virginia Science Standards Institute Denny Casey, Ph.D.

Problems with Science and Technology Education in Turkey

Procedia Computer Science

Kindergarten to Grade 4 Manitoba Foundations for Scientific Literacy

High School Psychology and its Impact on University Psychology Performance: Some Early Data

Early childhood teacher candidates` qualifications in science teaching

Psychology. Administered by the Department of Psychology within the College of Arts and Sciences.

Examining Science and Engineering Students Attitudes Toward Computer Science

Multivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine

Course Descriptions Psychology

Physics Teacher Education Program Web Site. Journal of Physics Teacher Education Online 10/22/11 7:53 AM 1

The Relation between Life Long Learning Tendency and Leadership Level of Education Managers

SCIENCE-RELATED ATTITUDES AND INTERESTS OF STUDENTS

Lutfullah Turkmen. Journal of Baltic Science Education, Vol. 6, No. 1, 2007 ISSN Introduction

Mind Maps and Scoring Scale for Environmental Gains in Science Education

Peer Review of Students' Academic Success

PROFESSIONAL DEVELOPMENT: A VISION FOR SAUDI SCIENCE TEACHERS

DOES OUR INITIAL TRAINING PROGRAM FOR PRIMARY TEACHERS REALLY WORK? DESIGN, IMPLEMENTATION AND ANALYSIS OF A QUESTIONNAIRE

PSYCHOLOGY. Professor McKenna Associate Professors Maxwell (chair) and Templeton Assistant Professors Bruininks and Peszka

Learning Objectives for Selected Programs Offering Degrees at Two Academic Levels

The College of Saint Elizabeth Report Narrative

SOCRATES PROGRAMME Education, Audivisual and Culture Executive Agency European Commision, BOUR - B-1049 BRUSSELS

Action Research Project Design Document

Assumptions of Instructional Systems Design

Arkansas Teaching Standards

Teaching the Nature of Science in the Nature: A Summer Science Camp

Turnover on Information Security Professionals: Findings from Korea

İLKÖĞRETİM ÖĞRETMENLERİNİN ZAMAN YÖNETİMİNE İLİŞKİN DAVRANIŞLARI

Total Credits: 30 credits are required for master s program graduates and 51 credits for undergraduate program.

IHE Master's Performance Report

University Students' Perceptions of Web-based vs. Paper-based Homework in a General Physics Course

A CONCEPTUAL FRAMEWORK IN THE UNDERSTANDING OF SCIENCE EDUCATION BİLİM EĞİTİMİNİ ANLAMADA KAVRAMSAL BİR ÇERÇEVE

Bibliography. Transitional Programs to Middle Level School

CARI. Assessment: Getting to the essence. Introduction. Assessments can be undertaken at varying degrees of diagnostic detail.

Psychology. 42 Credits Complete the requirements shown in the General Education Requirements section of this catalog. Include this specific course.

A Review of Physical Education Teachers Efficacy in Teaching-Learning Process Gökhan ÇETİNKOL [1], Serap ÖZBAŞ [2]

The University of North Carolina at Pembroke Academic Catalog

Research into competency models in arts education

OMANI SCIENCE TEACHERS USE OF COOPERATIVE WORK IN BASIC EDUCATION SCHOOLS

Analyzing Research Articles: A Guide for Readers and Writers 1. Sam Mathews, Ph.D. Department of Psychology The University of West Florida

Analysing Qualitative Data

E-Commerce Digital Learning by Commercial Vocational Students in Taiwan

Vocational school students attitudes toward computer technology Marmara University sample

Journalism and the Public Relations Profession

CREDIT TRANSFER: GUIDELINES FOR STUDENT TRANSFER AND ARTICULATION AMONG MISSOURI COLLEGES AND UNIVERSITIES

Section 2: Program Summary Economics (CA): Secondary Major and Minor

RELATIONSHIP BETWEEN PROBLEM-SOLVING ABILITY AND ACHIEVEMENT IN PHYSICS AMONG SENIOR SECONDARY SCHOOL STUDENTS IN OSUN STATE, NIGERIA

The Essentials of Critical Care Orientation (ECCO) Program's Impact on New Graduate Nurses' Critical Thinking Development

Recommended Course Sequence MAJOR LEADING TO PK-4. First Semester. Second Semester. Third Semester. Fourth Semester. 124 Credits

PSYCHOLOGY 200 THE CURRICULA

A STATISTICS COURSE FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS. Gary Kader and Mike Perry Appalachian State University USA

Teaching With and About Nature of Science, and Science Teacher Knowledge Domains

PERCEPTIONS OF TURKISH COMPUTER EDUCATION AND INSTRUCTIONAL TECHNOLOGY PROGRAM STUDENTS AND ALUMNI TOWARDS GAME USE IN EDUCATION

A. The master of arts, educational studies program will allow students to do the following.

Elementary School Students Perceptions of Science and Scientific Processes: A Qualitative Study

A Study in Learning Styles of Construction Management Students. Amit Bandyopadhyay, Ph.D., PE, F.ASCE State University of New York -FSC

Master Degree of Arts in Education: Teaching English to Speakers of Other Language (TESOL) In Cooperation with

Teachers Perception for Adoption of Instructional Technology in Schools

A Study of Iranian Students Attitude towards Science and Technology, School Science and Environment, Based on the ROSE Project

The Administrative Creativity Skills of the Public Schools Principals in Tafila Directorate of Education

The nature of science in science curricula Methods and concepts of analysis

Treatment Satisfaction among patients attending a private dental school in Vadodara, India

Cognitive Behavior Group Therapy in Mathematics Anxiety

School of Advanced Studies Doctor Of Management In Organizational Leadership. DM 004 Requirements

Preparation for Teaching in Catholic Schools

School of Advanced Studies Doctor Of Education In Educational Leadership With A Specialization In Educational Technology. EDD/ET 003 Requirements

THE BARRIERS AND NEEDS OF ONLINE LEARNERS

AP Psychology Ms. Samuelson Per 6

Exploring the gender gap and students career choices in engineering: Experiences from Turkey

It is widely accepted by those in the scientific community that women have been

Using Classroom Community to Achieve Gender Equity in Online and Face-to-Face Graduate Classes

APPENDIX I Engineering Design in the NGSS Key Definitions

Chapter 5: Analysis of The National Education Longitudinal Study (NELS:88)

Requirements. Elective Courses (minimum 9 cr.) Psychology Major. Capstone Sequence (14 cr.) Required Courses (21 cr.)

School of Advanced Studies Doctor Of Management In Organizational Leadership/information Systems And Technology. DM/IST 004 Requirements

ATTITUDES OF ILLINOIS AGRISCIENCE STUDENTS AND THEIR PARENTS TOWARD AGRICULTURE AND AGRICULTURAL EDUCATION PROGRAMS

THE EFFECT OF USING COMPUTER ANIMATIONS AND ACTIVITIES ABOUT TEACHING PATTERNS IN PRIMARY MATHEMATICS

International Journal of. Human Sciences ISSN: Volume: 4 Issue: 2 Year: 2007

DRAFT TJ PROGRAM OF STUDIES: AP PSYCHOLOGY

The Technology Acceptance Model with Online Learning for the Principals in Elementary Schools and Junior High Schools

Core Ideas of Engineering and Technology

MODELING INSTRUCTION AND THE NATURE OF SCIENCE. Jon E. Fishwild. The Master of Science Degree. Thesis Chair: Dr. Virginia Epps

Financial Education in schools: the experience of the Bank of Italy and the Ministry of Education

Psychology. Academic Requirements. Academic Requirements. Career Opportunities. Minor. Major. Mount Mercy University 1

An Analysis from Different Variables of Views of Pre-Service Science Teachers in Turkey on the Nature of Science

College of Psychology and Humanistic Studies (PHS) Curriculum Learning Goals and PsyD Program Learning Goals, Objectives and Competencies (GOCs)

Transcription:

Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 28: [2005] 127-133 NINTH GRADE STUDENTS UNDERSTANDING OF THE NATURE OF SCIENTIFIC KNOWLEDGE DOKUZUNCU SINIF ÖĞRENCİLERİNİN BİLİMSEL BİLGİNİN DOĞASINI ANLAMA DÜZEYLERİ Kerem KILIÇ *, Semra SUNGUR **, Jale ÇAKIROĞLU ***, Ceren TEKKAYA **** ABSTRACT: The purpose of this study was to investigate the 9 th -grade students understandings of the nature of scientific knowledge. The study also aimed to investigate the differences in students understanding of the nature of scientific knowledge by gender, and school types. A total of 575 ninth grade students from four different school types (General High, Anatolian High, Vocational High and Super Lycee) participated in the study. Data were collected utilizing an adapted version of the Nature of Scientific Knowledge (NSKS). Data were analyzed by using MANOVA. Results revealed statistically significant differences in the student s perceptions of nature of scientific knowledge by gender and school types. It was also found that many of the participants had inadequate understanding of nature of scientific knowledge. Keywords: scientific knowledge, nature of science, school type, gender ÖZET: Bu çalışmanın amacı lise 1 öğrencilerinin bilimsel bilginin doğasını nasıl algıladıklarını ve bu bilginin cinsiyete ve okul türüne bağlı olarak değişip değişmediğini saptamaktır. Araştırmaya dört farklı okul türünden (devlet lisesi, anadolu lisesi, meslek lisesi ve süper lise) 575 öğrenci katılmıştır. Veriler Bilimsel Bilginin Doğası Ölçeği kullanılarak toplanmış ve çoklu varyans analizi kullanılarak analiz edilmiştir. Sonuçlar lise 1 öğrencilerinin bilimsel bilginin doğasını algılamasının cinsiyete ve okul türüne bağlı olarak değiştiğini göstermiştir. Ayrıca katılımcıların büyük bir kısmının bilimsel bilginin doğası hakkında yeterli bilgiye sahip olmadığı saptanmıştır. Anahtar Sözcükler: bilimsel bilgi, bilimin doğası, okul türleri, cinsiyet 1. INTRODUCTION The Nature of Science (NOS) has been defined in numerous ways over the years, but there is a common theme within the varied definitions. In particular, the nature of science typically refers to the values and assumptions inherent to science, scientific knowledge and/or the development of scientific knowledge (Lederman, 1992). However, A.B.D.-El-Khalick and Lederman (2000) claimed the existence of the disagreement among philosophers, historians, science educators and sociologist concerning a universal definition of NOS. It is necessary to note that conceptions of NOS are tentative and dynamic and these conceptions have changed throughout development of science and systematic thinking about its nature working (Lederman, A.B.D.-El-Khalick, Bell, & Schwarts, 2002). Although disagreement exists regarding the specifics of NOS, there is an acceptable level of generality regarding NOS that is relevant and accessible to K-12 students (A.B.D.-El-Khalick & Lederman, 2000). Some aspects of NOS such as independence of thought, creativity, tentativeness, empirically based, subjectivity, testability, and cultural and social embeddedness might fall under this level of generality. Two additional important aspects are the distinction between observations and inferences and the functions of and relationships between scientific theories and laws (Lederman, 1992; A.B.D.-El- Khalick & Lederman, 2000). The development of students and teachers conceptions of the NOS has been a concern of science educators for several years (McComas, 1996; Clough, 1997; A.B.D.-El-Khalick Bell & Lederman, 1998; Akerson, A.B.D.-El-Khalick & Lederman, 2000; Morrison & Lederman, 2003; Tao, 2003; Schwartz, Lederman & Crawford, 2004; A.B.D.-El-Khalick & Akerson, 2004; Kang, Scharman, & * Yüksek Lisans Öğrencisi, Orta Doğu Teknik Üniversitesi, Eğitim Fakültesi, İlköğretim Bölümü ** Yrd. Doç. Dr., Orta Doğu Teknik Üniversitesi, Eğitim Fakültesi, İlköğretim Bölümü *** Yrd. Dr., Orta Doğu Teknik Üniversitesi, Eğitim Fakültesi, İlköğretim Bölümü **** Doç. Dr., Orta Doğu Teknik Üniversitesi, Eğitim Fakültesi, İlköğretim Bölümü

128 Kerem KILIÇ, Semra SUNGUR, Jale ÇAKIROĞLU, Ceren TEKKAYA / H. Ü. Eğitim Fakültesi, 28 (2005), 127-133 Noh, 2005). However, these studies have consistently shown that kindergarten through Grade 12 (K- 12) students, as well as teachers, have not acquired desired understanding of NOS. For example, Aikenhead and Ryan (1992) used the Views on Science-Technology-Society (VOSTS) instrument to assess high school students viewpoints on the epistemology of science. They found that majority of the students were apparently influenced by a classic but erroneous notion that many discoveries occur by accident, a notion heralded in the media and by popular writers of the history of science (p.566). In another study, with a Likert-scale instrument Nature of Scientific Knowledge Scale (NSKS), Rubba, Horner and Smith (1981) indicated that even high ability secondary students tended to be neutral toward the statement of scientific theories and laws are true beyond a doubt. Haidar and Balfakih (1999) reported that Emirate high school students held mixed understanding about the nature of science. Their study suggested that cultural background influence students views about the nature of science. In a separate study, Kang et al., (2005) reported that most Korean students had an absolutist/emprical perspective of the nature of science. In addition, they found no clear distiction in the distribution of 6the, 8th, and 10th graders views on the NOS, indicating little influence of secondary school science on the development of students views. Moss, Abrams & Robb (2002) demonstrated that students conceptions of the NOS remained unchanged over the year despite their participation in the project-based, hand-on science course. However, Khishfe & A.B.D.-El-Khalick (2002) found that an explicit and reflective inquiry-oriented approach was more effective than an implicit inquiry-oriented approach in promoting 6th graders NOS conceptions. Studies on teachers views on the NOS revealed that teachers also held many naive views (Lederman, 1992; A.B.D.-El-Khalick & Boujaoude, 1997). For example, these studies reported that majority of teachers believed that scientists follow a receipt so called scientific method in their investigation and scientific models are copies of reality rather than human invention. In addition, they overlook the role of creativity and imagination in science. It is also indicated that teachers adopted a naive, simplistic, and hierarchical relationship between hypotheses, theories and laws. Although a large research tradition has developed around the conceptions of nature of science in many countries, less has been done especially on students understanding of the nature of science in Turkey. Therefore, this study aims at examining Turkish high schools students understanding of the nature of scientific knowledge. The study was also interested in investigating the differences in students understanding of the nature of scientific knowledge by gender and school types. 2. METHOD 2.1. Sample To assess the nature of scientific knowledge, 575 ninth grade students were surveyed during the spring 2003 semester by means of identical written questionnaire. The sample consisted of 295 girls and 280 boys. Data were collected from four different school types namely General High Schools (GHS), Anatolian High Schools (AHS), Vocational High Schools (VHS) and Super Lycee (SL). 2.2. Instrument Students understanding of the nature of scientific knowledge was assessed by utilizing the Nature of Science Knowledge Scale (NSKS) developed by Rubba and Andersen in 1978. The NSKS is a 48 item Likert-type scale ranging from strongly agree to strongly disagree. It covered 6 tenets or postulates of nature of scientific knowledge. Scientific knowledge is characterized as: 1) amoral i.e., provides people with many capabilities, but does not provide instruction on how to use them; 2) creative i.e., is a product of human intellect; 3) developmental, i.e., is never proven in the absolute and final sense; 4) parsimonious, i.e., tends toward simplicity but not to the exclusion of complexity; 5) testable i.e., is capable of public empirical test; and 6) unified i.e., is born out of an effort to understand the unity of nature. Each of the six tenets includes 8 items. The NSKS was translated and adapted into Turkish by the researchers. The reliability of the Turkish version of the scale was found to be 0.74 by using Cronbach alpha. The validation of the scale was examined by a group of panel

Kerem KILIÇ, Semra SUNGUR, Jale ÇAKIROĞLU, Ceren TEKKAYA / H. Ü. Eğitim Fakültesi, 28 (2005), 127-133 129 judges. Responses to the NSKS questionnaire were scored according to the point-value system designed by Rubba and Anderson (1978). A maximum score of 40 was possible for each tenet and 240 points for the total NSKS score. In analyzing data we elected to collapse strongly agree and agree into one category and to do the same for disagree and strongly disagree. 3. RESULT Descriptive analysis indicated that 9 th grade students generally had a moderate (average) understanding of scientific knowledge (Total mean= 26.93). A testable tenet of the NSKS has the highest mean score (M=30.25), however parsimonious tenet has the lowest mean score (M=24.99) (Fig. 1). Generally, participants believed that scientific knowledge is capable of empirical test, but were hesitant about the tendency of scientific knowledge toward implicity. Tenets Testable Developmental Amoral 0 10 20 30 40 Mean Scores Figure 1. Distribution of mean scores with respect to six tenets of NSKS Table 1 presents the students understanding of nature of scientific knowledge with respect to 6 tenets of NSKS. For example, more than 40% of the students attending General High Schools, Anatolian High Schools, and SL thought that a piece of scientific knowledge should not be judged good or bad (amoral). On the other hand only 38% of students in Vocational High Schools agreed with this statement. More than half of the students (65%) in General High Schools, Anatolian High Schools, and Super Lycee agreed that scientific knowledge express the creativity of scientists (creativity). But this ratio decreased to 54% in Vocational High Schools. Majority of students in General High Schools, Anatolian High Schools, and Super Lycee agreed that today s scientific laws, theories and concepts may have to be changed in the face of new evidence (development). However only 38% of students in Vocational High Schools shared this idea. Table 1. Responses to the NSKS with respect to gender and school type Gender (%) School Type (%) Male Female Tenets of NSKS Item GHS AHS VHS SL Moral judgment can be 43.2 38.3 Amoral passed on scientific 47.6 37 33 38.9 knowledge. A piece of scientific 46.8 43.4 knowledge should not be judged good or bad. 43.2 49 38.3 48.6 Scientific knowledge expresses the creativity of 61.8 69.8 69.5 66.1 54.3 68.9 Creative scientist. Scientific knowledge is a 50.7 47.5 product of human imagination. 47.4 50.3 46.9 52.5 Developmental The truth of scientific 28.9 25.1 knowledge is beyond doubt. 47.8 40 50 44.6

130 Kerem KILIÇ, Semra SUNGUR, Jale ÇAKIROĞLU, Ceren TEKKAYA / H. Ü. Eğitim Fakültesi, 28 (2005), 127-133 (Table 1 cont.) Gender (%) School Type (%) Male Female Tenets of NSKS Item GHS AHS VHS SL Today s scientific laws, 61.1 71.2 theories and concepts may have to be changed in the 62.9 82.5 38.3 72.8 face of new evidence. Scientific knowledge is 31.4 21 unchanging. 26.8 22.5 38.3 19.5 Scientific knowledge is 49.2 37.3 Parsimonious stated as simply as possible. 43.7 47.3 45.8 33 If two scientific theories explain a scientist s 58.2 47.3 42.6 53.4 observations equally well, 50 53.2 the simpler theory is chosen. The evidence for scientific 69.6 82.2 knowledge must be repeatable. 76.6 88.4 54.3 75.7 Testable Consistency among test results is a requirement for 58.2 69.5 the acceptance of scientific 59.7 76.4 36.2 78.6 knowledge. The laws, theories and concepts of biology, 66.4 84.1 chemistry and physics are 75.1 85.5 52.1 81.6 Unified Biology, chemistry and 58.6 66.7 physics are similar kinds of knowledge. related. 57.3 72.1 54.3 67 A two-way multivariate analysis of variance (MANOVA) was conducted to determine the effect of gender and school types on six tenets of nature of scientific knowledge: amoral, creative, developmental, parsimonious, testable, and unified at 0.05 significance level. Both gender and school types were found to have significant effect on the dependent measures, Wilks Λ= 0.970, F(6, 562)= 2,919, p= 0.008 and Wilks Λ= 0.856, F(18,1590)= 5.005, p= 0.000, respectively. No interaction were found between gender and school types Wilks Λ= 0.951, F(18, 1590)= 1.574, p= 0.059. Concerning gender difference, the univariate ANOVAs for amoral (F(1, 567)= 4.095, p=0.043) and unified tenets (F(1, 567)=7.640, p=0.006 ) of NSKS were significant in favors of girls while the univariate ANOVAs for creative, developmental, testable and parsimonious tenets were not significant (p> 0.05). The mean scores displayed in Table 2 indicated that girls had higher scores on amoral and unified tenets of the NSKS. These results indicated that there was significant mean difference between boys and girls with respect to amoral, and unified tenets of the NSKS. Table 2. Descriptive Statistics on the six tenets of the NSKS by gender Tenets Girls (N= 295) Boys (N= 280) M SD M SD Amoral 25.83 4.17 24.42 4.09 Creative 27.37 4.52 26.25 4.07 Developmental 25.33 3.78 25.24 3.77 Parsimonious 25.08 3.35 24.91 3.25 Testable 31.43 5.02 29.02 5.23 Unified 30.56 4.83 27.60 5.12

Kerem KILIÇ, Semra SUNGUR, Jale ÇAKIROĞLU, Ceren TEKKAYA / H. Ü. Eğitim Fakültesi, 28 (2005), 127-133 131 Regarding school types, the univariate ANOVAs for amoral (F(3, 567)= 3.637, p=0.013), creative (F(3, 567)=3.097, p=0.026), developmental (F(3, 567)= 6.140, p=0.000), testable (F(3, 567)=20,156, p=0.000) and unified (F(3, 567)=12,490, p=0.000) tenets of the NSKS were significant. However, parsimonious tenet of NSKS scale was found to be nonsignificant. These results revealed that there was significant mean difference among school types on amoral, creative, developmental, testable and unified tenets of NSKS. However, there was no significant mean difference in parsimonious subscale of the NSKS with respect to school types. Post hoc analysis revealed that when the amoral tenet of the NSKS is considered there is a significant mean difference between students attending Super Lycee and Vocational High School. Moreover there is a significant mean difference between students attending Super Lycee and General High School. What is more, it was found that there were significant mean differences between Anatolian High Schools and Vocational High Schools, and Super Lycee. Regarding creative tenet, the results showed that mean score of the students in Vocational High Schools was significantly different from that of students in other school types. As it can be deduced from Table 3, students attending Vocational High Schools had the lowest score on this tenet. Concerning developmental tenet, there was significant mean difference between students in General High School and Anatolian High Schools, and Vocational High Schools. In addition, it was found that the mean scores of students in Anatolian High Schools and Vocational High Schools were significantly different in favor of Anatolian High Schools. When the testable and unified tenets were considered, there was significant mean difference between all school types except Anatolian High Schools and Super Lycee. Table 3 Descriptive statistics on the six tenets of the NSKS for school types GHS AHS VHS SL M SD M SD M SD M SD Amoral 24.54 3.43 25.79 4.72 24.05 3.75 26.34 4.66 Creative 26.69 4.24 27.67 4.42 24.90 3.03 27.50 4.85 Developmental 25.26 3.30 26.66 3.79 23.82 3.58 25.20 4.36 Parsimonious 25.08 2.99 25.46 3.57 24.49 3.05 24.55 3.56 Testable 29.52 5.08 32.60 4.21 25.99 4.24 31.91 5.22 Unified 28.76 4.45 31.10 4.66 24.79 3.93 30.64 5.91 4. DISCUSSION This study provides insight to 9th-grade students understanding of nature of scientific knowledge. Generally speaking, students participated in this study have difficulty in understanding that there is a continous effort in science to develop a minimum number of concepts to explain the greatest possible number of observations. In other word, they failed to recognize that scientific knowledge tends toward simplicity, but not to do disdain of complexity. They also were not clear whether the scientific knowledge is absolute or not. Scientific claims, however, change as new evidence or as old evidence is reinterpreted in the light of the new theoretical advances or shifts in the directions of established research programs. On the other hand, participants appreciated that scientific knowledge involves human imagination and creativity. Lederman (1992) stresses that even though scientific knowledge is at least partially based on and/or derived from observations of natural world; it involves human imagination and creativity. He stated that science involves the invention of explanation, which requires a great deal of creativity. Many participants in this study agreed with the model on the testable and unified nature of scientific knowledge. They believe that scientific knowledge must be subject to testing and the interaction of the various disciplines of science contributes to the overall understanding of nature. Results also revealed that student ideas of nature of scientific knowledge is changing depending on their gender and school type they attend. It was found that students attending Vocational High School have more traditional views about the nature of scientific ideas than students attending other

132 Kerem KILIÇ, Semra SUNGUR, Jale ÇAKIROĞLU, Ceren TEKKAYA / H. Ü. Eğitim Fakültesi, 28 (2005), 127-133 school types. Concerning gender difference, the only significant difference was found in two tenets of NKSK-unified and amoral. These findings are worthy of further examination. Helping students develop adequate conceptions of nature of science should be the main objective of science education. Therefore, students and teachers must be informed about the nature of scientific knowledge that scientific knowledge is partially a product of human creativity and imagination, scientific knowledge is tentative, scientific knowledge is partially a function of human subjectivity, and scientific knowledge necessarily involves a combination of observation and inference. Moreover, students held a hierarchical view of the relationship between theories and laws. They thought that theories become laws depending on the availability of supporting evidence. This notion leads to the ideas that laws have higher status than theories. Lederman (1992) claims that they (theories and laws) are different kinds of knowledge and one can not develop or be transformed into the other. In addition, contrary to popular belief, the sequence of processes and the specific processes used by scientist can vary from one investigation to another. Therefore, it must be emphasized that there is no single set and sequence of steps known as the scientific methods. All these aspects of nature of science should be integrated into present science curricula and teacher education programs. Although the generalizability of this study might be limited by the sample size and student background, we believe that findings of this study can help science educators in revising science programs and textbooks such a way that it enhances students views on understanding of nature of science. REFERENCES Abd-El-Khalick, F. & Lederman, N.G. (2000). Improving science teachers conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22 (7), 665-701. Abd-El-Khalick, F., & Akerson, V. (2004). Learning as conceptual change: Factors mediating the development of preservice elementary teachers views of nature of science. Science Education, 88, 785-810. Abd-El-Khalick, F., & BouJaoude, S. (1997). An exploratory study of knowledge base for science teaching. Journal of Research in Science Teaching, 34, 673-699. Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82, 417-436. Ainkenhead, G. & Ryan, A.G. (1992). The development of a new instrument: Views on Science-Technology-Society (VOSTS). Science Education, 76(5), 477-491. Akerson, V., A.B.D.-El-Khalick, F., & Lederman, N. G. (2000) Influence of a reflective explicit activity-based approach on elementary teachers conceptions of nature of science. Journal of Research in Science Teaching, 37, 295-317. Clough, M. P. (1997). Strategies and activities for initiating and maintaining pressure on students naive views concerning the nature of science, Interchange, 28, 191-204. Haidar, A. H. & Balfakih, N. M. (1999) United Arab Emirates science students views about the epistemology of science. Paper presented at the annual meeting of the national association for research in science teaching, Boston, MA. Kang, S., Scharmann, L.C. & Noh, T. (2005) Examining students views on the nature of science: results from Korean 6 th, 8 th, and 10 th graders. Science Education, 89, 314-334. Khishfe, R. & A.B.D.-El-Khalick, F. (2002) Influence of explicit and reflective versus implicit inquiry-oriented instruction on 6th-graders views of nature of science. Journal of Research in Science Teaching, 39, 551-578. Lederman N.G., A.B.D.-El-Khalick, F., Bell, R.L. & Schwarts R.S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners conceptions of the nature of science. Journal of Research in Science Teaching, 39, 497-521. Lederman, N.G (1992). Students and teachers conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29, 331-359. McComas, W. (1996). Ten myths of science: Reexamining what we think we know about the nature of science. School Science and Mathematics, 91, 10-16. Morrison, J.A &Lederman, N.G. (2003). Science teachers diagnosis and understanding of students preconceptions. Science Education, 87, 849-867.

Kerem KILIÇ, Semra SUNGUR, Jale ÇAKIROĞLU, Ceren TEKKAYA / H. Ü. Eğitim Fakültesi, 28 (2005), 127-133 133 Moss, D. M., Abrams, E. D., & Robb, J. (2001) Examining student misconceptions of the nature of science. International Journal of Science Education, 23, 771-790. Rubba, P.A., & Andersen, H. (1978). Development of an instrument to assess secondary school students understanding of the nature of scientific knowledge. Science Education, 62(4), 449-458. Rubba, P.A., Horner, J. & Smith, J.M. (1981). A study of two misconceptions about the nature of science among junior high school students. School Science and Mathematics, 81, 221-226. Schwarts R.S., Lederman N.G., & Crowford, B.A. (2004). Developing views of nature of science in an authentic context: an explicit approach to bridging the gap between nature of science and scientific inquiry. Science Education, 88, 610-645. Tao, P. (2003). Eliciting and developing junior secondary students understanding of the nature of science through a peer collaboration instruction in science stories. International Journal of Science Education, 25, 147-171.