Abstract. 1IntroductionandMotivation



Similar documents
>

Your AutoCheck Vehicle History Report

Your AutoCheck Vehicle History Report

Company Car Tax 2014/2015

Monthly Report on the Corporate Services Price Index ( Preliminary Figures for February 2011 ) Index

Introduction to Motorcentral. Illustration of the common functions you can perform using Motorcentral

How To Lease A Mazda 6

What is benefit in kind tax and how quickly will it be applied to my pay?

Government grant on the purchase of environment-friendly vehicles

Commercial Automobile Insurance Manual

AutoCheck Vehicle History Report

Vehicle & Equipment Finance

Dime.Scheduler, what else?

McMillan Shakespeare Limited (ASX:MMS)

InsureMyRide motorbike insurance

BE MINI. MINI ROADSIDE ASSISTANCE & ACCIDENT MANAGEMENT.

HOW TO GET A DEALER LICENSE AND START A PROFITABLE USED CAR BUSINESS

Your AutoCheck Vehicle History Report

TAX TABLES 2010/11. INCOME TAX 2010/ /10 Rates

Annual Resale Certificate for Sales Tax Guidelines to help business owners determine whether their purchases qualify for resale exemption

Driver Card. Driver Helpline. Your. Your

what to do in case of an auto accident

BMW Roadside Assistance & Accident Management 133 BMW bmw.com.au

2009 Economic Impact Report

INTRODUCING MAXXIA MYCAR A GUIDE TO NOVATED LEASING AND SALARY PACKAGING THE CAR YOU WANT

Florida Annual Resale Certificate for Sales Tax

How To Sell Spare Parts

Student Activities. Lesson Eight. Cars And Loans 04/09

Rules of On-line Auctions (hereinafter the Rules )

Transport University of Bristol Students Union V1.0

Annual Resale Certificate for Sales Tax Guidelines to help business owners determine whether their purchases qualify for resale exemption

SMARTSANTANDER: MAKING THE SMART CITY PARADIGM A REALITY

Access Your Global Network.

Leading the way in motor body repairs. KSR Corporate Fleet VIP Program

Student Activities. Lesson Nine. Cars and Loans 04/09

CHAPTER SEVEN FEES, CHARGES AND INCOME GENERATION. Summary. Introduction. Landing and Navigation Charges

CLAIMS WALK THROUGH. Note that this is a general indication and may differ from claim to claim. THE CLAIMS PROCESS. Truck is involved in an event.

UK group update. April 2016

JOB DESCRIPTION. Team Leader Fleet Engineering. Environment & Sustainable Communities / Highways. Transport Operations / Vehicle Fleet & Depot

GET THE CAR YOU LOVE THE SMART AND EASY WAY

University of Otago - A Guide to Relocation Expenses

Florida Department of Revenue. Repair of Tangible Personal Property Standard Industry Guide

Frequently Asked Questions - Car Loan

ASTRA Applications. Invoicing. This shows which ASTRA modules can be used by different companies.

GEORGE MUNICIPALITY MOTOR VEHICLE INSURANCE POLICY

CHURCH AND COMMERCIAL PROPERTY CLAIM FORM

GreenShareCar Fleet Solutions

Affinity 4WD. Insurance

Honda Warranty Plus. Honda Warranty Plus. Peace of mind motoring with 5 years Honda Premium Roadside Assist and 5 years or 140,000 km warranty cover

Your AutoCheck Vehicle History Report

INSTRUCTIONS FOR LEASING/RENTAL MOTOR VEHICLE LICENSE

RISK ELIGIBILITY. All professional truck owners operating and domiciled within eleven Western states and satisfying other standards as outlined here.

Linux as a Data Integration Platform

Microsoft Office 365 how to make a booking for meeting rooms and resource calendars

Proactive database performance management

Tan Bee Guan Assistant Director Computer Center (NUS)

Your AutoCheck Vehicle History Report

Road Traffic Accidents. Everything you need to know

MySQL High-Availability and Scale-Out architectures

Efficiency in preventive maintenance

Partnership/LLC/Sole Proprietorship Organizer

Student Activities. Lesson Nine. Cars and Loans. Practical_Money Skills for Life 04/09

Car Costs ASSESSMENT ONE: Assessment #1

GT Car Center (GTCC) FAQ - Question and answers

Strategic Analysis of Fleet Vehicle Leasing Market in Ireland

MODERN LOW EMISSION VEHICLE FLEET MANAGEMENT SERVICE

Application for Withdrawal Significant Financial Hardship

AutoCheck Vehicle History Report

OFF-ROAD VEHICLE AND BOAT DEALERS

You just realized that with work, school, sports and other obligations you REALLY need a set of wheels.

FIRST COMMERCIAL INSURANCE COMPANY USED AUTO DEALER PROGRAM UNDERWRITING GUIDELINES

Your AutoCheck Vehicle History Report

Leased Vehicles and Insurance Fraud. Per Norström Deputy CEO Larmtjänst AB, Sweden Sponsor of the Insurance Crime Platform Insurance Europe

ACCIDENT AND VEHICLE DAMAGE REPORTING

Transcription:

AScalableArchitectureforAutonomous HeterogeneousDatabaseInteractions SteveMilliner,AthmanBouguettayaandMikePapazoglou fsteve,athman,mikepg@icis.qut.edu.au QueenslandUniv.ofTechnology Brisbane,QLD4001,Australia SchoolofInformationSystems ing,interestinworldwidedatabaseinteroperabilityhasgainedmomentum.scalability andlanguagesupportforthisnewenvironmentremainopenquestions.weproposea est.datasharingisthenpursued,withanyrelationshipinformationdiscoveredbeing schemewheredatabasenodesaredynamicallyclusteredaroundcurrentareasofinter- fedbackforre{clustering.inordertoachievescalability,theproposedarchitecture Withtheexponentialproliferationofdatabasesandadvancesinwideareanetwork- Abstract Keywords:InteroperableHeterogeneousAutonomousDatabases,DatabaseClustering, DistributedDatabaseLanguage,ScalableArchitectureforInteroperability. sub{dividesboththerelationshipandinformationspaces. Thesesystemstendtobedevelopedinisolation,andthisresultsinstructuralandsemantic beenaproliferationofdatabasesystemstohandleeverincreasingvolumesofinformation. theirdierentplatforms(softwareandhardware).inmanylargeorganizationstherehas Sharinginformationamongautonomousheterogeneousdatabaseshasbeenresearchedextensively.Inessencetheproblemhasbeentomakecomponentdatabasesinteroperabledespite 1IntroductionandMotivation heterogeneity,andrelatedproblems.thepromiseofacommercialcompetitiveedgevia information)issmall.recentadvancesincommunicationstechnologyhaveledtoexpectationsoflargescale,worldwidedatabaseinteroperability.therearevariousfundamental dicultiesassociatedwithlargescaledatabaseinteroperability.theseincludescale,autonomyandheterogeneity[4].thecaseofthefailed31/2year$125millionconfirmproject However,thisisonlyreasonableprovidedthenumberofparticipatingdatabases(andglobal thelogicalintegrationofexistingdatabasesystems,hasattractedintenseinterest.amajor assumptionhasbeenthatcomponentdatabaseshavea-prioriknowledgeofremoteschemas. 1

betweenthesystems[21]. reasongivenforfailurewas\technicaldiculty"associatedwithconstructinginterfaces organizationsspanningonlythreegeneralareas:hotel,airlinesandcarrentals.thenal clearlydemonstratesthelimitsofcurrenttechnology.thisprojectentailedthelinkingof andthecomplexityofquerieswhichmaybeformedbasedupontheseinter-relationships. thecomplexityofimplicitinter-relationshipsofinformationitemsbetweendatabasenodes, Therearethustwodistincttypesofspacethatmustbeexploredoneconcernsthesearch priateinformationbecomesparamount.thisisfurthercomplicatedinthedatabasecaseby forappropriateinformation-theinformationspace,theotherconcernsthesearchforrelationshipsbetweennodes-therelationshipspace.topromotescalability,atwolevel Inlargecollectionsofautonomousdistributedresourcesthequestionofndingappro- notsub{dividedexhaustivesearchingmustbeperformed.ifexhaustiveinteractionsbetween searches,andallowforthesharingofdatainatractablemanner. databasenodesarepermitted,thencommunicationsandprocessingbottleneckswilloccur. architectureisintroducedwhichsegmentsbothofthesespaces.iftheinformationspaceis andsharingofinter-relationshipmeta-information[5,18]ispursued.amainobjectiveisto andinformationspaces.thus,inbothlevelsofthearchitecture,anincrementalbuilding tationofdatabasenodesneedstobeintroducedtolterinteractions,accelerateinformation Hence,inthecaseoflargenumbersofautonomousdatabases,anorganizationandsegmen- letdatabasesknowdynamically(asopposedtostatically)howtheyrelatetoremotesites, andwhatthesedatabasescontain.relationshipinformationdiscovery,anddatasharing, mustbedrivenbythestatesoftheindividualdatabasenodesasthesystemexecutes.in particular,theaimhereistoconsiderhowalargecollectionofdatabasenodesmaybe Systemsizeandcomplexityprecludesthestaticapriorisub{divisionoftherelationship theleandoperatingsystems,thedbmsandtransactionmanagementlevels,areoutside thescopeofthispaper. languageanddatabaseapplicationlevels.heterogeneityresolutionoflowerlevelssuchas organizedsothatinformationresourcesmaybeeasilyidentiedandshared.thisworkis ispresented.section3providesanoverviewoftheproposedarchitecture,whilesections4 concernedwithintegrationattheschemaandmodellevels,aswellasinteroperationatthe inthenalsection6. 2RelatedWork and5describetheinitializationandexecutionofthesystem.theconclusionispresented Theorganizationofthispaperisasfollows.Insection2anoverviewofrelatedwork usersknowthespecicinformationofinterestanddatabasesarewillingtoreleaseacertain ateddatabases,thefocushasmainlybeenonsharinginformation.thesesystemsassume amountoftheirautonomy.inmostmultidatabasesystems,sharingisprovidedthrough partialortotalintegration[14,16].infederateddatabases,loosepartialintegrationisthe Relatedworkhasbeencarriedoutinareasincludingmultidatabases,federateddatabases, informationretrieval,anddistributedsystemnaming.inmultidatabasesystemsandfeder- 2

typesthatcarrylittleornostructure(orbehavior)inanetworkofcomputersystems[28]. tems. hasmainlyfocusedonaccessingtextdocumentsinacentralizedenvironment.research [23]describesaninterestingsystemfordiscoveringresourcesinanetworkofcomputersys- indistributednamingsystemshasmainlybeengearedtowardsndingsimpleinformation meansusedforsharinginformation[11,24].ontheotherhand,informationretrievalsystemshavetraditionallybeenmoreinterestedinaccessmethods[22].inthisarea,research Multidatabases onemightmapanunderstandingofentitiesfromoneschematoanother[2].inexisting systems,translationsandintegrationaredoneinanadhocfashion.inadditionautonomy 15]whichisusuallyobtainedbyintegratingmultipleschemas.Globalqueriesarethenexecutedagainstthisglobalschema.Themajorproblemassociatedwiththistechniqueisthe Mostmultidatabasesystemsprovideresourcesharingthroughaglobalschema[27,19, translationoflocallanguagesandschemasintoaglobalformat.noautomatictranslation, schemaupdateandintegrationhasbeenperformedsofar.themaindicultyconcernshow issacricedanddecentralizeddecisionmakingisnotachieved.nodesarerequiredtoreveal canbeformed.becauseofthescaleofsystemsbeingconsideredhere.globalschemasare detailsoftheirschemassothatacentralschema,designedbyasingleschemaadministrator, entityintoasetofproperties,eachofwhichisastring.thesearchisusuallyinstancebased GlobalNaming viewsresourcesassimpleentities.thenameserviceisinchargeofmappingthenameofan notconsidered,astheyleadtoseriousdesignbottlenecks. organizationalmanagement.[23]presentsaninterestingmodelforndingresourcesina ratherthantypebased.thedatainvolvedbelongstoasmallsetofbasictypes.hence, tocopewithextensibility[3].thesehierarchiesaremeanttoprovidemeansforbetter littleornosemanticsareattachedtothedata.mostservicesuseonesinglehierarchy Anotherareaofrelatedresearchisglobalnaming[28].Inthisscheme,thesystem Themostinterestingideainthislatterpaperisthestressontheseparationofconcerns theresearchwasconductedfromasystempointofview,databasesissuesweresimplied. betweenresourceprovidersandresourceconsumers. InformationRetrieval networkofcomputersystems.inthisproject,resourcesaretypicallyunstructuredtext.as indexingschemetoecientlyaccessinformationgivensomehintsabouttheresource[22]. Mostofthedistributedinformationretrievalsystemsaredesignedtoworkinahomogeneous environment.therehasbeensomeworktoextendschemestoanetworkofheterogeneous indexcontainsanetworkaddressalongwithasetofcondenseddescriptionscalledskeleton. indexingforndinginformationinanetworkofinformationsystems.eachnodeofthe informationretrievalsystems[26].in[1,25],anapproachisdescribedthatreliesonexternal Inmostinformationretrievalsystems,theemphasisisusuallyonhowtobuildan Resourceprovidersareaddedtotheindexusingknows-aboutrelationships.Thisapproach tendstocentralizethesearchasasingleindexisusedfortheactualresourcediscovery. Potentially(ifusersmakequeriesaboutallexistinginformationspace),allnodeswould 3

havethesameindex.itisnotclearfromtheabovereferenceshowthesystembehavesif selectionisperformed. FederatedDatabases severalnodescanansweragivenquery.thereisalsonoreferenceofhowtheactualnode informationsharingoccursthroughimportandexportschemas.alldatabasesareregistered amountofautonomyforindividualdatabasesystemsismaintained.inthisapproach, existingdatabasesandavailableschemas,andsecond,importsallknownschemas(whenever isachievedintwosteps.first,therequestingdatabaseconsultsthefederaldictionaryfor inafederaldictionary.inthecurrentstateoffederateddatabases,locatinginformation interesttoourresearch,isthefederatedapproach.infederateddatabases[11,24],acertain Aworkthatsharessomephilosophicalcommonalitieswithoursandisofparticular Thefederatedapproachasdescribedin[11]doesnotaddresstheissueofhowthefederal dictionaryistobedesignedinpresenceofalargenumberofdatabases.thefederated Inthisframework,noincrementalsharingisimplied.Instead,databasesshareactualdata negotiationisinitiatedwiththeexportingdatabasetoqueryaspecicinformationtype. possible)andbrowsesthroughthemforacertaininformationtype.oncethisisdone,a alargenetworkofdatabaseshastorelyondeningaexiblearchitecture,avariablegrainedinformationsharing,andamoreuserorientedcenteredsharing(versusdatabase approachwasnotspecicallydesignedtoaddresstheissueofnetworksofdatabases.the administrator-centeredsharing).itshouldbeborneinmindthatthefederateddatabases purposehasbeentoprovideabetteralternativetotheglobalintegrationapproachandto AcademicandCommercialInformationRetrievalDatabases alargeextent,hassucceededindoingso. theseproductsarecommercialwhileothersareacademic.thebasicassumptionunderlying mostoftheseproductsisthattheparticipatingdatabaseshavelittleornostructureat toclients.inthecaseofgopherandwww,serversareconnectedinagraph-likefashion. accessfreestyledocuments.thearchitecturecentersaroundserversprovidinginformation Web(orWWW)[9],andGopher[17]useindicesandbrowsingoracombinationthereofto all(i.e.text-based)[20,23].academicproductslikearchie[8],wais[12],worldwide Thereareseveralproductsthatoeraccesstoawidevarietyofdatabases.Someof andinonesinglestep.webelievethatanyviableapproachtosharinginformationin approachimplicitlyassumesthatonlyafewdatabasesparticipateinsharinginformation. InthecaseofWWW,hypertextlinksconstitutethegraph. requiresauniforminterfaceandaccesscanonlybethroughspecializedterminals.all arehookedtogethertoprovideawiderangeofinformationservices.however,thisservice Minitelservice[7].ThisserviceisprovidedbythestaterunPTT.Hundredsofdatabases ofdatabaseautonomyisnotaconcern.inmostcases,databasesareactuallyplaintext databaseshookedtothisservicearetext-based. AninterestingcommercialproductthatissomewhatmoresophisticatedistheFrench les.inthesecases,nointeractionwithadatabasemanagementsystemsisassumed,thus noproblemofdatabaseheterogeneityarises.however,theseissuesarefundamentalto Insummary-aconstantacrossallthesystemsdescribedabove,isthattheproblem 4

addressingtheproblemofdatasharingindatabasesystems.datasharingindatabases 3OverviewoftheRelationshipandInformationSpace relationshipsbetweendatabases. requiresthat,beforedatacanbeaccessed,werstneedtounderstandschemasandinter- Inordertosub{dividetherelationshipspace,ahighlevel\contextabstraction"isused. Thisistobeimplementedthroughtheuseofdynamicmetaobjectstermedglobalconcepts (GCs).GCsarebasedupon\descriptions"(metadata)ofeachlocaldatabase'sdomain,and correspondtothecurrentareasofinterestwithintheuniverseofdiscourse(uod).database nodesthenformlinkstoeachgc,andassociateanupdatableweightwitheachofthese. Architectures Thisresultsinaclusteringofdatabasenodes[6]aroundthevariousGCs(asshownin Figure1). implementedviareferencetothelinkweights.whilethisstructuremayappear\at", thelinkweightsactuallyimposeadynamicorderingandstructureuponthegcsandthe Byclusteringdatabasenodes,therelationshipspaceissub{divided,andsearchingis Figure1:DatabaseNodesLinkedtoGlobalConceptsandClusters. databasenodesclusteredaroundthem.whenseveraldatabasenodesalllinkstronglyto thesamegc(eg.weight10/10),adynamicclusteraisformed.however,eachofthese samedatabasenodeswillalsolinklessstrongly(eg.weigh8/10)toothergcswhichwill havetheirownassociatedclustersb,c,dandsoon.databasenodesinclusterawill isbaseduponindividualdatabasenode\states",andthuscontrolremainslogicallydistributed.consequently,theorganizationisinherentlyexible,andavoidstheshortcomings ofstricthierarchicalandobjectorientedorganizationsnotedin[13,23].searchgranularity isdeterminedbythenumberofgcsandthenumberofnodesclusteredaroundthem. thetassililanguagewasdeveloped[5].theconstructsofthislanguagearealsousedto Linkweightsupdatesareperformedlocallyateachdatabasenode.Theorganization Inordertoestablish,andmaintainadynamicsubdivisionoftheinformationspace, thereforeoverlapwithallotherclusterstovariousdegrees. 5 Global Concept A Database Node 1 Global Concept B Database Node 2 Global Concept C Database Node 3....... Global Concept n Database Node m Database Node x Global Concept A Database Node p Global Concept B Global Concept C Global Concept n......... Cluster B Cluster C.... Cluster n 10 10 10 8 4 n Cluster A.... Database Node f

informationspace.linkingofdatabasenodestooneanotherresultsintheformationof queryandextractinformationfromthesystem,aswellasforeducatingusersaboutthe databasenodesintheinformationspace,metalevelrelationshiptypesarespecied.their fortheexchangeofstructuralinformationbetweendatabasenodes,asapreludetodata sharing.inaddition,relationshipsmaybeformedbetweentwoclusters,orbetweena tothoseformedintherelationshipspace.clustersformedintheinformationspaceallow logicalassociations,anddoesnotresultinthesharingofphysicalinformation.bygrouping singledatabasenodeandacluster.intherelationshipspace,clusteringprovideshighlevel databaseclusters.itshouldbenotedthatthese\informationspace"clustersaredierent formationisdrivenbythesystem,andtheyrepresenthowdatabasenodesphysicallyrelate backintotherelationshipspaceforlinkweightandgcadjustment.ameta-information adatabaseandacluster,ortwoclusters. alterationincurrentareasofinterest.hence,informationregardingrelationshipsisfed toeachother.formationandalterationofinformationspacerelationshipsrepresentan fromacluster,andasecondwhichisinstantiatedbyrelationshipsbetweentwodatabases, typeisaunitwhichdescribesthestructureandbehavior,ofsemanticallyrelatedportions ofdatabaseschemas.twobasicformsofmeta{informationtypesareused;onewhicharises CheapRent Database Car Electrical Rentals Housing Machinery... Vehicle Sales Dealers Manufacturers Insurance Vehicle Spare Parts Vehicle Dealers Vehicle Government Vehicle Specifications Insurance Manufacturers Manufacturers Vehicle Wreckers Consumer Organizations.. GC GC GC GC representing representing representing representing Sales Spare Parts Car Registration Insurance Vehicle Insurance House Insurance Insurance 10 Boat Vehicle............ Insurance Registration relatingtocars.assumethedealerdatabasenoderequirescontinualinformationfrom moreweaklylinked(eg.weightof3/10)toothergcsdealingwiththeareaofinterests stronglylinked(eg.weight10/10)toagcrepresentingtheareaofinterest\sales",and Considerforinstance,asecond{handcardealer'sdatabasenode.Initiallyitwillbe Figure2:APartialViewofaNetworkofRelationshipsandClusters 10 4 > 7 3 > 8 2 > 6 6 Government Government Police Insurance Insurance Vehicle Agents Safty Manufactures Consumer Organisations Space Dealer... Database Database Node Nodes

representingthecurrentareasofinterest.databasenodeswhichnowsharingphysicaldata, linkstotheremotegcsisincreased(asshowninthefigure2insert).linkspicturedas linesinthefigure2insert,donotrepresentrelationships,butoverlapsbetweenclusters theinformationattheseremotesitesisfoundtobeappropriate,thenthedealerdatabase nodewillexaminegcsitislessstronglylinkedto,andwilllocatetheseremotesites.if areinitiallystronglylinkedtogcsrepresentingthesethreeareas.thedealerdatabase severalremotesitesregardingcarregistration,carinsuranceandcarsparepartswhich clusteringisimplementedbyhavingthedealerdatabasenodejoinwith\vehiclesales" fortheresultinginformationspacesub{division.astimeprogressesseveninformationspace cluster.informationspacerelationshipsarethenformedbetweenthe\vehiclesales"cluster formaninformationspaceclustering.figure2depictstheinformationspacesub{division, clustersandtheirassociatedrelationshipsareformed. andwillbereferredbacktothroughouttheremainderofthepaper.theinformationspace linkedtothegcrepresentingrentals{andlessstronglyconnectedtogcsrepresentingother andthe\vehiclespareparts",\insurance"and\vehicleregistration"clusters(shownas solidlinesinthegure).inthisway,therelationshipspacesub{divisioncreatesaplatform contactsremotesitesandeventuallyjoinstherentalsinformationspacecluster-thisis depictedinfigure2bythesolidboldlineleadingfromthecheaprentdatabasesymbol tothecollectionofdatabasescomprisingtherentalscluster.cheaprentalsoentersinto areasofinterest(suchascars).afterexplorationoftherelationshipspace,itsdatabase arelationshipwiththevehiclesparepartscluster.thisisdepictedinfigure2bythe ConsidertheCheapRentcarrentalcompanyintheFigure.Itwillinitiallybestrongly comprisingthevehiclesparepartscluster.oncetheseinformationspaceassociationshave beenestablished,thisrelationshipinformationisfedbackintotherelationshipspacelevel brokenboldlinebetweenthecheaprentdatabasesymbolandthecollectionofdatabases architecture,causingthelinkweightupdatingshown. User DB DB however,theseusersmustinteractwiththeinterfaceprocess.co{databases(co-db)are withthelocaldatabase(asindicatedbythebrokenarrow).toaccessremotesystems usersandadministratorsinteractwiththesystem.generalusersarepermittedtointeract Figure3depictshowdatabasenodesmaybeconnectedoveranetwork,andhowgeneral Figure3:DatabaseNodesConnectedOveraNetwork Interface Interface Process Administrator Process CO DB 7 CO DB Node Network

objectorienteddatabaseswhereinformationandknowledgeoftherelationshipspaceand informationspacesub{divisionsarestored.generalusersmayalsosuggestupdatestolocal co{databases,however,persistentupdatesareperformedonlybytheadministrators(as indicatedbythearrowsinthegure). interoperabilitylevel,aninteraction/negotiationlevel,andanexplorationlevel.theseare discussedinsection5. theproposedarchitecture.thesearetheinitializationphaseandexecutionphase.during initializationgcsarecreatedandlinkweightstothemareestablished.thisisessentially basisonly.duringexecutionthesystemoperatesonfourlevels:anarchitecturallevel,an apre{clusteringprocess,wheregroupingsofdatabasenodesareestablishedonatentative Therearetwobasicphasesinthelifetimeofadistributedsystemorganizedaround 4.1DatabaseNodeDescriptions descriptions,globalconceptinstantiationandlinkweightinitialization. Theinitializationphaseconsistsofthreebasicactivities:presentationofdatabasenode 4SystemBootstrapping Initialclusteringisbaseduponadescriptionwhicheachdatabasenodeforwardstoacentrallocation.Clusteringbaseduponthesedescriptionsisthenperformed.Thisstepis categoriesaredenedstaticallyatinitialization,thereisnointrinsicreasonwhyfurther description,otherdescriptivecategoriesmaybeincludedtofurtherlterdatabasenodes corporatestructuremaybeincluded,andsoon.althoughitisassumedthatdescriptive performedonlyonce,andshouldbeviewedaspre{clusteringofthesystem.asinformation spaceclustersareformed,inaccuraciesinthepre{clusteringphaseareeliminatedandlink weightadjustmentresultsinre{clusteringofthesystem.inadditiontothedatabasenode 4.2Pre{ClusteringandGlobalConceptInstantiation categoriescannotbeaddedorexistingcategoriesdeleted. involvedintheinformationspaceclusteringprocess.forexample,geographicallocationand The\topic"basedclusteringofdatabasenodes,isdepictedinFigure4.Afterbeingclustered,eachdatabasenodeformsaweightedlinkwiththeotherclusters.InFigure4,each nodeswillbemoststronglyconnected(eg.haveaweightof10/10)totheclustertheywere initiallyassignedto.weightsfortheotherlinksareautomaticallyinitializedbyhavingeach byahumanoperatorisrequiredbeforethesystembecomesuseful.theeventualoutcome nodecalculatetheratioofsimilarityofalldatabasenodesinitsclustertoalldatabasenodes intheremoteclusteritisformingalinkto.thisprocesswilloccurforeachclusterset,to produceaseriesofdistinctfullylogicallyconnectedgroupings.vericationandrenement nodeincluster#1formsaweightedlinkwithcluster#2,cluster#3andsoon.database 8

Cluster #1 Cluster #2 Cluster #n "Rentals" "Insurance" Figure4:CreationofLinksAfterInitialClustering.... "Vehicle Spare Parts"............. DB1 DB 2 DB x DB 3 DB 8 DB y DB p DB q DB z isacollectionofabstractglobalconceptsaroundwhichnodescancluster.thesetofgcs whichformsabasisforrelationshipspaceby: Cluster #1 Cluster #2 Cluster #n "Vehicle "Rentals" "Insurance".... Spare Parts" Initialclusteringmaynotresultinuniformsizegroupings.Hence,anadditionalsub-division ofgroupsmayberequired[10].atuningphasemayalsobeintroducedifnodedescriptions............. donotprovideanadequatebasisfortheclusteringprocess(eg.whenasmallproportion 1.Sub-dividingthenodestoproduceareasonablyuniformdistribution, 2.Providinganappropriatedegreeofsearchspacegranularity. DB1 DB 2 DB x DB 3 DB 8 DB y DB p DB q DB z ofclusterscontainalargepercentageoftheclustereditems).thissituationcorresponds toanovergeneralizationofkeyfeaturesandcanberesolvedbyemployingasubdivision algorithmwhichrenesanddecomposesovergeneralizedgcs. 5TheExecutionPhase teroperabilitylevel,aninteraction/negotiationlevel,andanexplorationlevel.inthear- chitecturallevelalogicalinterconnectionofnodesispursued,andclustersareformedin therelationshipspace.intheinteraction/negotiationlevel,thegcorganizationisusedas aplatformforinformationspaceclustering.informationconcerningphysicalrelationships formedintheinformationspace,isthenfedbackintotherstlayerforadjustmentofthe relationshipspacestructure(vialinkweightandgcupdates).togetherthesetwolayers alloworganizationofinteractionsbetweenthesystem'sdatabasenodes.remoteinformationmustbeunderstood,thisisachievedintheinteroperabilitylevelthroughtheuseof Duringexecution,activitiesarecharacterizedbyfourlevels:anarchitecturallevel,anin- 9

demonstrations.lastly,theappropriateinformationmustbelocated.thisisachievedin Thislevelsuppliesanarchitecturefordatasharingbetweendatabasenodes,usingtheclustersformedinboththerelationshipandinformationspaces.Byformingclusters,ameans Byadjustinglinkweightslocally,eachdatabasenodeitselfdecideswhichrelationshipspace languageandexistinginformationspaceclusters. 5.1TheArchitecturalLevel theexplorationlevelusingrelationshipspacegcclusters,inconjunctionwiththetassili databasenodesimplicitlyagreetoworktogether(andthussacricetheirautonomytosome clustersitwillparticipatein.thus,controlremainsdecentralized.byjoiningacluster isprovidedforthesynchronizingofbothrelationshipformationanddatasharingactivities. dynamicallyupdated,formed,anddissolvedinanincrementalfashion. degree).however,nodesretaincontrollocallyandjoinorleaveclustersbaseduponlocalconsiderations(byfollowingtheappropriateprotocol-describedlater).consequently, maximumlocalautonomyismaintainedandboth,inter{relationshipspaceandinformationspacecontrol,remainsdistributed.inaddition,inter-noderelationshipscontinuetobe interoperabilityproblembecomesintractable. involved.ifthissubdivisionisnotperformedtheinformationspaceremainshugeandthe abilityprocessanddatasharing{thisisrequiredtorestrictthepotentialnumberofnodes anyinformationtypedenedbyaparticularclusteringofnodesispotentiallyaccessible. Onceinter{noderelationshipshavebeeninitiated,aplatformisprovidedfortheinteroper- Thesystemthusallowsthesharingamongdatabasesofallinformationtypesavailable. Becausedatabasenodesarefullylogicallyinterconnected,viaGCsandlinkweights, identied,accesstotheremoteinformationmaybenegotiatedtodeterminewhichtasks viously,apre{clusteringofnodeshasbeenperformed.oncetheappropriatenodesare getdelegatedtowhichremoteservers.thislatterprocessisperformedthroughthetassililanguage,andmayresultinupdatestoboththeinformationspaceclusters,aswellas involvessearchingoftheinter-noderelationshipspacebymeansofsearchheuristics.pre- Thereareseveraldatabasenodeinteractionphases.Therstformofnodeinteraction 5.2TheInteraction/NegotiationLevel whicharestoredinthenodeco{database.inordertoextract/explore(orexport)informationanodemaycontactandinteractwiththerelevantnodesinainformationspace databasecluster.onceagain,thisinteractionisperformedusingtassililanguageprimitives{understandingofremotedataisfacilitatedthroughtheuseofdemonstrationsas relationshipspaceclusters(i.e.gclinkweights,andgcsthemselves). Thesecondformofnodeinteractionresultsinthediscoveryofinteroperabilityfacts describedinsection5.3. 10

5.2.1InformationSpaceClusterConstructionandUpdate domaininterest.iftheserequestsaresmallandnotpersistent,amappingtoaremote orientedinformationspaceschema. providedbythetassililanguage,andresultinthecreationandmaintenanceofanobject Theabilitytoform,andcontroljoiningandleavingofclusters,isrestrictedtoselected ensue.thedatabasewilltheneithersharethemeta{informationtyperepresentedbythe users.theprimitivesfortheseinteractionsandsemi{automatednegotiationsessionsare remote\popular"databases,oranewinformationtypewillbeformed. informationtypewillsuce.ifthenumberofrequestsremainshigh,re{clusteringmay Insomeinstances,usersmayaskaboutinformationthatisnotinthelocaldatabase theavailableinformationspaceclusterinformation,thecheaprentadministratorjoinsthe whichremotedatabasesshouldbecontacted.afterexaminingtherelationshipspace,and/or rentalscluster.thatis,afteridentifyingtheappropriate\areaofinterest",joiningofthe informationspaceclusterandsharingofdataensues.intassilithisnegotiationprocessis performedusingthethefollowingprimitive: InquireatGM-Spare-PartsWithMessage\Wishtoestablisharelationship.Whatare IntheCheapRentcarrentalcompanycase,informationretrievalbeginsbydetermining themainattributesofyourresource?" partsclusters.ageneralusercanthusinvestigatethislatterclusterinthehopeofresolving tionregardingdatabasesintheclusteritself.thecheaprentadministratorwillnow,for sparepartsclusterforexample{becauseoftherelationshipbetweenthesalesandspare instance,haveknowledgeofthevehiclesalescluster,andindirectknowledgeofthevehicles relationshipsbetweentherentalsclusterandothercluster/databases,aswellasinforma- fails,adiagnosticisreturned.itsco-databaseisthenloadedwithinformationregarding Amessageissentalongwiththequerytoexplainwhatisexpected.Ifthequery anav-cost-of-partsqueryforinstance.ifthisinvestigationprovesfruitfulashortterminteractionwiththisclustersitewillensue.inordertoobtainremotestructuralinformation, thefollowingtassiliprimitiveisused: Sendqueryissuccessful,nothingisreturned.Ifthequeryfails,adiagnosticofthefailureis renement.thisprocessofnegotiationendswhenevertheinvolvedentitiesdecideso.ifthe servicingentityspecications,aninquirequeryissentbacktothetargetentityforfurther theinformationrequestedtotheservicingdatabaseorcluster.ifthespecicationsmeets theservicingneeds,nofurtheractionistaken.however,ifthespecicationsdonotmeetthe Thisqueryisusedbythetarget(representative)databasetosendinformationabout SendtoCheapRentObjectGM-Spare-Parts.template. therelationshipabstraction,andtoendtherelationship.thisresultsinformationand/or returned.otherprimitivesexisttocreatedatastructuresatlocalco-databasestoimplement existingclustermember.thisupdateisthenpropagatedtotheotherclustermembers. modicationoftheobjectorientedschema. updateoccurs.anewclass(representingtherentalcompanynode)isinstantiatedviaan Whenthecarrentalcompanyjoinstherentalclusterainformationspaceschema 11

information.forexample,thecheaprentnodemaywishtoallowaccessto\rental-rate", Thesechangesareachievedusingtheprimitive: \model"and\year"attributeswhicharecontainedwithinitsdatabase.thisisachievedby addingmethodstoitsclassviathetassiliprimitive: Therentaldatabasemanagermaythenchoosetoallowremoteaccesstocertainlocal InstantiateClassRentalsWithObjectCarWithName=CheapRent. AddMethodRental-priceWithBody ifdate.month>=octanddate.month<=janthen elsereturn(base-price) ToClassRentals. OtherTassiliprimitivesexisttoremovemethodsandobjects(ie.whenanoderelinquishesaccesstolocalinformationorleavesacluster),andtoaltermethodsorobjects. Therearealsomorebasicprimitiveswhichareusedtoestablishacluster,andpropagate administrators. andvalidatechanges.eachoperationhastobevalidatedbytheparticipatingdatabase itself.theadministratorofthatclusterwillthendecidehowtheinformationspaceschema providesomeinformationaboutthedataitwouldliketoshareaswellasinformationabout setbythatcluster.ifadatabasewouldliketobeamemberofacertaincluster,ithasto istobeaugmentedifthedatabaseisacceptedasanewmember.duringthisinformal exchange,manyparametersneedtobeset.forinstance,athresholdfortheminimumand maximumnumberofclustermembersisnegotiatedandset.likewise,athresholdonthe Foranydatabasetoenterorleaveacertaincluster,ithastofullltherequirements return(1.2*base-price) minimumandmaximumnumberofrelationshipswithdatabasesandclusterisalsoset.in theexampleshowninfigure2,thecheaprentadministratorhasdecidedthatlongterm tothecreatoroftheobject.basedonthisfeedback,thecreatorwilldecidewhetherto thisisdone,therootoftheschemaissenttoeveryparticipatingdatabaseforvalidation. intowiththevehiclesparepartscluster'snodes(ie.informationowfromthevehiclespare Iftheoperationisnotvalidated,therejectingnodesendsaneditedversionoftheobject partsclustertothecheaprentdatabase). connectionisrequiredwiththevehiclesparepartscluster.thus,arelationshipisentered changetheobjectornot.thisprocesswillcontinueuntilthereisaconsensus.changesare onlymadeatasinglesiteuntilconsensusisachieved-atwhichtimethechangeismade persistentandpropagatedtotheappropriatedatabasenodes. Initially,adatabaseadministratorcreatestherootclassoftheclusterschema.Once \owns"it.priortoanychanges,thedatabaseownertellseveryparticipatingdatabase tolocktheobjecttobechanged.afteranacknowledgmentfromthosedatabases,the Ifexistingclasses/methodsaretobeupdatedresponsibilitylieswiththedatabasethat 12

localdatabaseadministratorproceedswithimplementingthechanges,andpropagatesthe update. everyparticipatingdatabaseschema,alongwithallobjectsbelongingtotheclassesofthat cluster.allclusterswithwhichthereisarelationshiparenotiedthattheclusternolonger exists.localschemasareupdatedbytheiradministrators.thedecisiontodismantlea thesameasdenedforclusters.theonlydierencebeingthatchangesintheclustercase inthecluster.theupdateofco-databasesresultingfromrelationshipschangesispractically clusterisreachedbyaconsensusofparticipatingdatabases,orwhenonlyonenoderemains Adatabaseclusterisdismantledbydeletingthewholecorrespondingsubschemain Rentjoinstherentalsclusterco-databasesmustbeupdatedtoreectthenewinter-node relationshipstructure.inthiswaycheaprentbuildsupitslocalknowledgeofremotesites bothitandtheclustermembersmustupdatetheirco-database.similarly,whencheap- lteringtheamountofinformationwhichmustbeassimilatedatthecarrentalnode.fur- obeyastrictersetofrules. therrelationshipsandclustersarecontactedbycheaprentusersastheyattempttoac- cessrequiredinformation.therentaldatabaseadministratormaythenchoosetoenter toexploretheinformationspaceusingtheunderlyinginformationspacegcsub{division. andformsappropriaterelationshipswiththosecontainingapplicableinformation.thereby AfterCheapRentcreatesarelationshipconnectionwiththevehiclesparepartscluster, into/createfurtherrelationshipsandclustersbaseduponusersneeds.whennoinformation spacemeta{typesexist,orwhenthereareahugenumber,itbecomesnecessaryforusers Inalargescalesystem,interpretationofremoteinformationisamajorproblem,evenif underlyingrelationshipspacesub{divisionmaybeutilizedtorestrictthesearchspace[18]. 5.3TheInteroperabilityLevel Thatis,whentherearenoinformationspaceclusters,orwhentherearetoomany,the thedatamodelisthesameacrossdatabases.beforeinformationcanbeaccessedinterderstandingofremoteinformationishandledthroughtheintroductionofdocumentationsrelationshipsbetweendatabasesmustbeorganizedandschemasmustbeunderstood.un- arisewheninteractingwithdatabasesinthevehiclesparepartsclusterbecauseofdierences remotenodemethodsadvertisedinthevariousclustersitmustinteractwith.confusionmay localusageswillvaryanddierentbehaviorsmaybeexhibited. Thesearesamplebehaviorsorstructuresofcertainclassesofinformation,whichareattachedtoeachinformationtypethatissharedwiththeoutsideworld.Theiraimisto inpricelistings(eg.onedatabasemayincludesalestax,othersmaynot),dierencesin domains(eg.adatabasemayonlystockpartsforonetypeofcar),dierencesinthetypes explain/denethatinformationtype.eveniftwodatabasescontainthesameinformation, ofbusinesses(eg.acarwreckermayonlydisplaypartavailability,notprice)andsoon. Demonstrationsmayalsoprovidedetailsofinformationneededbytheremotenodetoaccess Intheexample(Figure2)documentationisrequiredbyCheapRenttomakesenseof therequireddata.forexample,avehicle'syearandmakewillberequiredtoobtainaspare part'sprice. 13

ifacarisdamagedbeyondrepair,andsoon.inthevehiclesalesclusterdatabasesmay policywithanother.forexample,onecompanymayprovidecoverforboththevehicleand asimplepolicystatement,orincludegraphical/video/audiodatacomparingonecompanies driver,othersmaynot.dierentcompaniesmayalsopayoutdierentmarketvalueprices listpricesofmodels.videoandaudiodemonstrationsmaybeincludedtohighlightvehicle beincludedtodierentiatepoliciesoeredbyvariousinsuranceagents.thismayinclude Similarly,inthecaseofinterpretinginsuranceclustermembers,demonstrationsmay vehiclesafetyclustertoexplainattributesinasafetystandardsdatabase. features.asimilardemonstrationformatmaybeincludedbyagovernmentdatabaseinthe objectstousers'screens.thisassumesusershaveaccesstohighresolutionworkstations. system,andmayincludeseveralofthefollowingfeatures: graphicaldescriptionofdatabaseinformation. GraphicalInterface:Thedocumentingdatabaseischargedwiththesendingbinary StructuredText:ThisissimilartothemanpagesdenedinUNIXandoersanon- Documentationisoeredbytheprovidingdatabasesandisnotanintegralpartofthe ofoperatingsystemstochoosefrom.lastandnotleast,thedocumentationrunsona ofuserscanusethedocumentation.databasesarealsoencouragedtoprovidedocumentationthatmayrununderdierentoperatingsystems.theuserispromptedforachoice areencouragedtoprovidemanyplatformsofimplementationsothatthemaximumnumber theirdisposal,databasesmaydocumentinformationwithsoundcapability. AudioCapability:Ifusershaveaudiocapability,andadequateamountofstorageat multitudeofhardware. Demonstrationsthusprovideawayofconvertingdata(eg.priceofpartsversusprice SystemDependencies:Ifthedocumentationreliesonaprogrammingtool,databases translatingdata(eg.demonstrationsmaybeoeredinseveraldierentlanguages),and withsalestax),evaluatingdata(eg.the\best"insurancepolicy-costbenetanalysis), featuresinagovernmentvehiclesafetydatabase(meantforexpertconsumption).thus, interpretingdata(eg.whatisthedenitionofa\safe"car).notealsothatdemonstrations onthesametopicwillvaryfromdatabasetodatabase.forinstance,safetyfeaturesin amanufacturer'sdatabase(meantforpublicconsumption)maynotequatewithsafety UoDmaybepursuedviatherelationshiporinformationspaceorganizationrepresentations. Onceanumberofinformationspaceclustershavebeenestablished,explorationofthe 5.4TheExplorationLevel thelocal\meaning"ofattributes/objectsisdened,throughthetassiliquerylanguage. spacebasedsearches.thesyntaxspecicationsoftassiliqueriesprovideconstructsto educateusersabouttheavailableinformationspaceorganization,aswellasconnecting Althoughanexplosioninthenumberofinformationspaceclustersmaylimitinformation andgraphicalrepresentationareusedasahandleforidentifyingtheappropriateinformation databasesandperformingremotequeries.theinformationtypename,structure,behavior, 14

spacequeries(localandremote)aredirected. resources.nodeco-databasesmaintainschemasanditistoco-databasesthatallinformation Co-database Root Class Relationships Root Class Cluster Root Class Cluster 1 Root Class Cluster n Root Class..... Eachsubschemarepresentseitheraclusterorarelationshipandcontainsalatticeofclasses. Cluster Relationships Root Class Relationships Root Class Eachclassrepresentsasetofdatabasesthatcananswerqueriesaboutaspecictypeof information(e.g.queriesaboutcarparts).agraphicalinterfacehasbeenimplementedso usersmaynavigatethroughtheinformationspace.therelationshipsubschema(leftsideof Figure5:ASkeletonofaTypicalCo{DatabaseSchema Figure5)consistsoftwosubschemas,therstdepictsrelationshipsthatclusters(itismemberof)havewithotherdatabasesandclusters.Thesecondisasubschemaofrelationships Aco-databaseinformationschemaconsistsoftwosubschemasasdepictedinFigure5. Cluster-Database Class thedatabaseinquestionhaswithotherdatabasesandclusters.eachofthesesubschemas, Cluster-Cluster Class Database-Cluster Class Database-Database Class whichrepresentsaclusterthedatabaseinquestionisamemberof. tactwiththoseclustersthatareinvolvedinarelationshipwith.otherdescriptionsprovide inturn,consistsoftwosubclassesthatdescriberelationshipswithdatabasesandclusters. Theclustersubschema(rightsideofFigure5)consistsofoneormoresubschemas,eachof informationtolocaldatabasessothebestpointofcontactcanbechosen.itshouldbe notedthatthesubschemarepresentingthesetofrelationshipsprovidingclusterswillbethe sameforalldatabasesthataremembersoftheprovidingcluster. Clusterrelationshipdescriptionsincludeinformationaboutpointsofentriesandcon- etc.adescriptionoftheinformationtypeincludesitsgeneralstructureandbehavior informationtype(s)theycontain.someattributesdescribetheinformationtypewhilethe intheschema.everyclasscontainsadescriptionoftheparticipatingdatabasesandthe descriptionsincludeinformationaboutthedatamodel,operatingsystem,querylanguage, remainingattributesdescribethedatabasesthatcontainthisinformationtype.database Asetofdatabases,containingacertaininformationtypeisrepresentedbyaclass 15

thisstructuralinformationandvarioustassiliqueryprimitives,auseratthecheaprent anexampleofaclassdescriptionshowingsomedetailsoftheclassroot-cluster.using fromdemonstrationsinthattheyonlyoergeneralstructuralinformation.followingis company(figure2)canbegintoresolvecomplexqueries.thecheaprentco-databaseis onlythecommonpartsoftheviewarerepresentedintheclass.thesedescriptionsdier (ifapplicable).sincedatabasesmayhavedierentviewsonthesameinformationtype, BecauseoftheserelationshipsCheapRenthasknowledgeofthevehiclesalesclusterstored amemberoftherentalsclusterandhasarelationshipwiththevehiclesparepartscluster. initsco-database.thisinformationisaccessedbyauserthroughthetassiliprimitives: ThisprovidesalistofclustersCheapRentisamemberof. DisplayClustersofCheapRent. CheapRentuserscandiscovertheclusters:vehiclespecications,insuranceandvehicle with(eg.vehiclesalesandvehiclespareparts).asimilarquerymaybeusedtoexamine registration.lastly,byexaminingtherelationshiplinkstotheinsurancecluster,thevehicle therelationshiplinksofthevehiclesparepartsandvehiclesalesclusters.inthisway safetyclustercanbefound. ThisprovidesalistofclusterstheCheapRentdatabaseandrentalsclusterhasarelationship DisplayClusterRelationshipsRentals. nulllistisreturned.inthiscaseausermayeithersubmitanotherinformationnameterm, attempttonavigatethroughthesystemanddiscovertheinformation\manually",ormake requiresthatnodesmaintainanappropriatelistofthesaurusterms.ifnomatchismadea connectionstoremoteclusters/databaserelationships.usersmayutilizeotherprimitives andstipulatean\informationname"-forexample\partprices"-whichreturnsalistof possiblyremoteclusters/relationshipsthathaveacorrespondingclassname.thisprocess Primitivesalsoexistwhichdisplaytheclassesofrelationshipsandclusters,andallow sparepartsmayhavebeenreturnedbystipulatingtheinformationnamesparepartsorsimply useoftheunderlyingrelationshipspacesearchstructure.inthelastcasethreebasicsearch heuristicshavebeenproposedin[18],basedonlinkweightrelaxation. bylistingrelationships.onceanappropriatecluster/relationshiphasbeenfound,tassili providesprimitivesforinvestigatingitsclasses.forexample: InthecarrentalcasetherelationshipbetweentheCheapRentdatabaseandthevehicle Thequery: willdisplayallthesubclassesofthevehiclesparepartscluster. DisplaySubClassesvehicle-spare-parts spareparts. Lastly,thequery: willdisplayinformationassociatedwiththesubclasspartpriceswithintheclustervehicle FindInformationpart-prices 16

\1990". willdisplayactualinformation.clearlythesequeriesrequireincreasinglygreaterknowledge oftheclusterschema.thusbothexpertandnoviceusersarecateredfor. thersttwoofthethreeclassqueriesabove).forexample,the\displaysubclass"query FindInformationWithAttributesparts:\exhaust";model:\JaguarXJS";year: willreturnthelist:cars,trucks,motorbikesandsoon.theuserthenissuesthequery: displayed.similarly,tassiliallowsattributesofinstancestobedisplayed. Byleavingthe\instance"termblankallinstancesassociatedwiththesub-class\Car"are FurtherTassiliprimitivesareavailableforexploringobjectsmorefully(asrequiredin Finally,Tassiliallowsforfurtherunderstandingofaninformationtypeusingtheprimitive: DisplayDocumentationofInstanceFord-spare-partsOfInformationpart-price. DisplayInstancesByAttributeOfInformationCar. providesomeinformationabouttheenvironmentcurrentlyused.thelistofinformationthat mayberequestedispresentedinaprecedingsection.ifthereisnobehavioralcapabilityor nosuitableenvironmentispresent,thequeryfails.otherwise,documentationisdisplayed. mayrequireacertaintypeofhardwareand/orsoftwaretoberun.theuserispromptedto Theanswercanbeintextualorgraphicalform(asnotedpreviously).Thequeryitself disparatedatabasenodes.theproposedformofinteractionresultsinthecreationofdynamicclustersofdatabasescenteredaroundsubjectareasofinterestorexpertisecalletiallyrepresentcentroidsofadatabaseclusterpertainingtoanareaofinterest.database nodesthenformweightedlinkstoglobalconceptsinawaywhichreectstheirowninterests. globalconcepts.globalconceptsarehigh-levelabstractmeta-schemaobjectswhichessen- anarchitecturalframeworkfororganizinginteractionsamongalargenumberofautonomous 6Conclusion Thispaperaddressesissuesrelatingtolarge-scaleinteroperation.Inparticular,wepropose drivenbythestatesoftheindividualdatabasenodesasthesystemexecutes. degreeofexibilityasitallowsrelationshipinformationdiscoveryanddatasharingtobe systemprovidesfacilitiesforqueryingandextractinginformationregardingtheinter-cluster lishandmaintainthesubdivisionoftheinter-databaseinformationspace.moreover,the relationshipsandtheinformationspaceingeneral.theproposedapproachallowsforahigh Thustheyorganizetheinter-databaseinformationandrelationshipsearchspace. Theproposedapproachfulllsthreefundamentaltasks:itprovidesacommonframework(theglobalconcepts)towhichparticipantdatabasescontribute;itspeciesarelatively Linguistictoolsarealsoprovidedinordertoallowapplicationprogrammerstoestab- clustersanddatabasenodes.othervirtuesofthisapproachareitssimplicity,dynamic informationsearches;andimplicitlyprovideslocalnodeswithanabstractmodelofother smallsetofdatabases/nodesforinteraction(viz.databaseclusters)therebyaccelerating 17

nodesprovideandcontroltheirownclassication. nature,andextensibilityinadditiontothethefactthatitretainslocalautonomybecause References [3]A.D.Birell,R.Levin,R.N.Needham,andM.D.Schroeder.Grapevine:Anexercisein [1]RafaelAlonso,DanielBarbara,andLuisL.Cova.Datasharinginlargeheterogeneousinformationnetworks.InWorkshoponHeterogeneousDatabases,Chicago,Dec.1989.IEEE-CS [2]C.Batini,M.Lenzerini,andS.B.Navathe.Acomparativeanalysisofmethodologiesfor distributedcomputing.communicationsoftheacm,25(4):260{274,april1982. databaseschemaintegration.acmcomputingsurveys,18(4):324{364,dec.1986. TechnicalCommitteeonDistributedProcessing. [5]AthmanBouguettaya.Largemultidatabases:Beyondfederationandglobalschemaintegration.InR.Sacks-Davis,editor,ProceeedingsoftheFifthAustralasianDatabaseConference, [4]A.BouguettayaandR.King.Largemultidatabases:Issuesanddirections.InIFIPDS-5 ElsevierPublishers,Lorne,Victoria,Australia,1993. InteroperableDatabaseSystems(Editors:D.K.Hsiao,E.J.Neuhold,andR.Sacks-Davis). [7]WallysW.Conhaim.Maturingfrenchvideotextbecomeskeyinternationaltool.Information [6]AthmanBouguettaya.On-lineclustering.ToappearintheIEEETransactiononDataand Today,9(1):28,January1992. Christchurch,NewZealand,January1994.GlobalPublicationsServices. KnowledgeEngineeringJournal,1994. [10]B.Everitt.ClusterAnalysis.HalstedPress,1980. [11]D.HeimbignerandD.McLeod.Afederatedarchitectureforinformationsystems.ACM [8]A.EmtageandP.Deutsch.Archie:Anelectronicdirectoryservicefortheinternet.Proc. [9]T.Berners-Leeetal.World-wide-web:Theinformationuniverse.ElectronicNetworking: TransactionsonOceInformationSystems,3(3):253{278,July1985. Research,Applications,andPolicy,1(2):52{58,Spring1992. Winter1992UsenixConf.,pages93{110,1992. [12]B.KahleandA.Medlar.Aninformationsystemforcorporateusers:Wideareainformation [13]V.KashyapandA.Sheth.Semantics-basedinformationbrokering:Asteptowardsrealizing [14]W.LitwinandA.Abdellatif.Multidatabaseinteroperability.IEEEComputerMagazine, [15]W.Litwin,J.Boudenant,C.Esculier,A.Ferrier,A.M.Glorieux,J.LaChimia,K.Kabbaj, servers.connexions-theinteroperabilityreport,5(11):2{9,november1991. DistributedDatabases,pages311{343,Amsterdam,1982.North-HollandPublishingCompany. C.Moulinoux,P.Rolin,andC.Stangret.SIRIUSsystemfordistributeddatamanagement.In 19(12):10{18,Dec.1986. theinfocosm.technicalreportdcs-tr-307,rutgersuniversity,march1994. 18

[16]WitoldLitwin,LeoMark,andNickRoussopoulos.Interoperabilityofmultipleautonomous [17]M.McCahill.Theinternetgopherprotocol:Adistributedserverinformationsystem.Connexions-TheInteroperabilityReport,6(7):10{14,July1992. Systems,pages169{202,March1994. [18]S.MillinerandM.Papazoglou.Reassessingtherolesofnegotiationandcontractingforinteroperabledatabases.InInternationalWorkshoponAdvancesinDatabasesandInformation databases.inacmcomputingsurveys,volume22(3),pages267{293.acmpress,september 1990. [19]E.J.NeuholdandB.Walter.Anoverviewofthearchitectureofthedistributeddatabase [22]GerardSaltonandMichaelJ.McGill.Introductiontomoderninformationretrieval.In [21]EyOz.Whenprofessionalstandardsarelax.CommunicationsoftheACM,37(10),1994. [20]KatiaObraczka,PeterB.Danzig,andShi-HaoLi.Internetresourcediscoveryservices.IEEE systemporel.indistributeddatabases,pages247{290,amsterdam,1982.north-holland PublishingCompany. [23]MichaelF.Schwartz.InternetresourcediscoveryattheUniversityofColorado.IEEEComputerMagazine,26(9):25{35,September1993. ComputerMagazine,26(9):25{35,September1993. McGrawHillComputerScienceSeries,NewYork,1983.McGrawHillBookCompany. [24]AmitP.ShethandJamesA.Larson.Federateddatabasesystemsandmanagingdistributed, [25]P.SimpsonandR.Alonso.Amodelforinformationexchangeamongautonomousdatabases. [26]PatriciaSimpson.Queryprocessinginaheterogeneousretrievalnetwork.In11thInternational heterogeneous,andautonomousdatabases.inacmcomputingsurveys,volume22(3),pages TechnicalReport,Dept.ofComputerScience,PrincetonUniversity,May1989. 183{226.ACM,September1990. [28]R.Watson.Identiers(naming)indistributedsystems.InB.W.Lampson,M.Paul,and [27]M.Templeton,D.Brill,A.Chen,S.Dao,andE.Lund.Mermaid-experienceswithnetwork operation.proc.2nddataengineeringconference,292-300:292{300,feb.1986. H.J.Siegert,editors,LectureNotesinComputerScience:DistributedSystems-Architecture France,June13-15,1988.ACMSIGIR. ConferenceonResearch&DevelopmentinInformationRetrieval,pages359{370,Grenoble, andimplementation,pages191{210.springerverlag,newyork,1981. 19