Stand der Maßnahmen zur Sicherheit von CO 2 -Speicherung in geologischen Formationen Frank R. Schilling Frank.Schilling@gfz-potsdam.de Well locations Injection well Observation well
Using a case study - Ketzin Long term SAFE storage of CO 2 in saline aquifers Risk Assessment Providing a unique large scale laboratory for Monitoring Tests Modeling Safety assessment Abandonment Open for the interested community
Global CO 2 -Cycle Carbon (in Billion Tons) Anthropogenic CO 2 ~25 Gt/a (~ 7 Gt/a C) Biosphere Atmosphere CO 2 ~800 Gt CO 2 CO 2 Caprocks Sea ~40.000 Gt Coal, Gas, Oil Limestone & Dolomite ~3.000 Gt ~55.000.000 Gt Lithosphere
Possible Storage Sites IPPC Report 2005
Possible Storage of CO 2 in Germany CO 2 emissions by power plants > 300 Mt/a (in Germany) Gas Fields 2.5 Gt Coal beds 5.5 Gt Aquifers 33 Gt Data - BGR
Ketzin the first Onshore storage project in Europe CO 2 SINK Ketzin Berlin Potsdam 0 25 50 km
Salt Tectonics NE German Basin 0 2000 4000 6000 Potential CO 2 Storage Sites in Anticline Structurs
Geological Cross-Section through the subsurface near Ketzin Surface former gas storage site (250 400 m depth) clay rich cap rock planned CO 2 storage (~700 m depth)
22.6.2007 second well 592m depth 12.6.2007 CO 2 tanks installed
Baseline - Geochemistry Rinne Nauen Havelländische meteorolgical station carbon dioxide surface soil flux determination mulitsensor in groundwater well methane determination (in 2 meter deep wells) graben structure 600m isobaths of the Schilfsandstein 800m Falkensee Oranienburger Rinne rim of subsurface channels
7 CO 2 -Flux at Storage Site Ketzin (at 60 cm depth) 6 30 CO 2 -flux (µmol/m 2 s) 5 4 3 2 1 20 10 0 temperature ( C) 8. February 06 CO 2 2 µmol/m s 9 8 7 6 5 4 3 1 0.1 28. September 06 0 Jan. Feb. March Apr. May June July Aug. Sep. Oct. Nov. Dec. -10 2005/06 CO 2 -flux at the Ketzin-test site determined at 60 cm depth ( average of 20 measurements) 2005 2006 four days average temperature at the Ketzin test site 2005 2006
Laboratory Experiments Triaxial high compression rock testing setup for simulation of CO 2 injection triaxial cell temperature 40 C/60 C confining pressure 25 MPa/30 MPa pore pressure variable 1m brine (NaCl, distilled water) supercritical CO 2 travel times, waveforms electrical resistivity stress, strain flow data liquid sampling (geochemistry) Zemke 2005
Thickness of alteration zone (mm) 14 12 10 8 6 4 2 0 Cement Tests - Abandonment wet, supercritical CO 2 CO 2 solved in water wet, supercritical CO 2 CO 2 solved in Water 0 500 1000 1500 2000 time (hours) Kinetic study at 90 C, 280 MPa COSMOS - Schlumberger
Status of Previous Exploration
Probabilistic Reservoir-Simulation a Helmholtz Centre Area of channel/sting facies CO 2 SINK drill site FLUVSIM area (10km x 9km x 80m)
Flow of CO 2 in the Reservoir Univ. Stuttgart & CO 2 SINK Team
Modelling of CO 2 Injection First results of the modeling group (WP 6.1): One example of a scenario of gas distribution 100 days after start of injection Assumptions: 3 channels ~ 500 m Darcy Mud flow facies ~0,1 m Darcy Univ. Stuttgart & CO 2 SINK Team
a Helmholtz Centre 3D Seismic Baseline Injection well Top Caprock The CO2-Sink Team 2006
3D Seismic Baseline 12-20t 2-5t The CO 2 -Sink Team 2006
7th Project Meeting, Potsdam, Sept. 18th, 2006 a Helmholtz Centre K. Zinck-Jørgensen (GEUS) & M. van der Molen (Shell) 2006
Central Graben Fault Zone Top Jurassic Time Structure Map Top Jurassic Edge Detection Map The CO 2 -Sink Team 2006
Amplitude variation Upper gas layer 7 th Project Meeting, Potsdam, Sept. 18 th, 2006 a Helmholtz Centre Amplitude brightening of upper gas layer (red colours) due to?residual gas saturation K Zinck-Jørgensen (GEUS) & M van der Molen (Shell) 2006
a Helmholtz Centre Mapping of Residual Natural Gas It does seem that the highest amplitudes correspond to local highs and therefore may represent the highest gas saturations K. Zinck-Jørgensen (GEUS) & M. van der Molen (Shell) 2006
Horizon and Fault Mapping a Helmholtz Centre IW Base Tertiary 2nd gas layer Top Sinemurian Top Triassic Top Arnstadt Top Weser Top Stuttgart Base Stuttgart The CO2-Sink Team 2006
Sleipner Field Seismic imaging of CO 2 -asscend after Injection (Sleipner-Project, North Sea, Norway)
S Risk Analysis Scenarios CO 2 injection N Quaternary Tertiary claystone Max gas 2004 Max gas 1999 Jurassic Exter Fm Liassic sand layers Arnstadt Fm Weser Fm Stuttgart Fm Grabfeld Fm Geological section through the CO 2 SINK injection site showing the distribution of main aquifers (Liassic sand, Exter Fm and Stuttgart Fm) and main aquitards (Tertiary claystone, Arnstadt-, Weser- & Grabfeld Fms). The maxium extension of natural gas in the Liassic reservoir section for 1999 and 2004, respectively, is indicated. Ca. 1 km K. Zinck-Jørgensen (GEUS) & M. van der Molen (Shell) 2006
S Risk Analysis Scenarios CO 2 injection N Quaternary Tertiary claystone Max gas 2004 Max gas 1999 Jurassic Exter Fm Liassic sand layers Arnstadt Fm Weser Fm CO 2 Stuttgart Fm Grabfeld Fm Risk scenario 1: CO 2 escape from the Stuttgart Fm to the Exter Fm and the former natural gas storage (Liassic sandstone layers) via a fault Ca. 1 km K. Zinck-Jørgensen (GEUS) & M. van der Molen (Shell) 2006
S Risk Analysis Scenarios CO 2 injection N Quaternary Tertiary claystone Max gas 2004 Max gas 1999 Jurassic Exter Fm Liassic sand layers Arnstadt Fm Weser Fm CO 2 Stuttgart Fm Grabfeld Fm Risk scenario 2: fault acts as barrier and prevent CO2 from further updip movement Ca. 1 km K. Zinck-Jørgensen (GEUS) & M. van der Molen (Shell) 2006
Coring Geological Profile
Caprock and Reservoir Caprock Reservoir rock
Advanced Logging density, porosity, Resistivity, micro resistivity NMR (porosity,pore space, permeability) Bond logs
Development of Technology Permanent installed sensors smart casing g [m] 0 Well Profile Geology 100 Specialities: 200 Gas tight casing 300 Pressure Sensor Temperature Sensor Microseismometer Sensors behind the casing 400 CO 2 -resistant cement Oriented perforation 500 600 Reservoir Cap Rock Electricalresistivity tomography 700 800 The CO 2 -Sink Team 2006
Installation of DTS and ERT cables in 1st well (May 5-6, 5 2007) The CO 2 -Sink Team 2007
Installation of DTS and ERT cables in 1st well (May 5-6, 5 2007) The CO 2 -Sink Team 2007
Temperature profiles during cementing of 5-5 2/1 casing 55 45 7.5.07 10:10h 7.5.07 11:59 (pumping of cement) 7.5.07 17:49h (cirkulation KCl fluid) 7.5.07 22:42h (T-Max. cement) Temp. ( C) 35 25 15 0 100 200 300 400 500 600 700 800 Depth (m) WP 6.4 Permanent Downhole Sensors WP 6.4 Permanent Downhole Sensors
DTS temperature data during cementing of 5-2/1 casing pumping of cement fluid circulation over filter screens setting of cement cement head 2nd filter 1st filter WP 6.4 Permanent Downhole Sensors WP 6.4 Permanent Downhole Sensors
Electric Conductivity Tomography Vertical Electric Resistivity Array VERA (by COSMOS-GT) The CO 2 -Sink Team 2006
Storage of CO 2 in Geological Formations Partership Kooperation Otway Basin Pilot Project OBPP
1st International Workshop on CSLF Pilot Projects, 28-09 09-2005 Carbon Sequestration Leadership Forum
In-situ R&D Laboratory for Geological Storage of CO 2 -CO 2 SINK Integrated Project - GeoForschungsZentrum Potsdam (D) G.E.O.S. Freiberg Ingenieurgesellschaft (D) Geological Survey of Denmark and Greenland (DK) Mineral and Energy Economy Research Institute (PL) Det Norske Veritas (N) Statoil (N) Shell International Exploration and Production (NL) University of Stuttgart (D) Vibrometric Finland (SF) University of Kent (GB) Uppsala University (S) RWE Power AG (D) International Energy Agency Greenhouse Gas Programme (GB) Vattenfall Europe Generation (D) Verbundnetz Gas AG (D) Siemens AG Power Generation (D) E.ON Energie AG (D) Schlumberger Carbon Services (Fr)
Zusammenfassung Die Gefährdung durch die CO 2 Speicherung ist gering verglichen mit Erdgas/Stadtgasspeicherung, oder Kohleabbau (Obertage Untertage) wenn Geeignete Lokationen ausgewählt werden und dabei die Geologie genau bekannt und untersucht ist Die Bohrungen beherrscht und überwacht werden Ein ausgeklügeltes Monitoringkonzept eingesetzt wird
Sicherheit zuerst Das Maß der Sicherheit und Beherrschbarkeit hängt dabei ab von Wahl der Speicherlokation Umfang der geologischen Erkundung Qualität der Bohrungen und der Qualität der Abdichtung von Altbohrungen Umfang und Genauigkeit der Überwachung (Monitoring) Teurer muss dabei nicht besser, aber kostenlos ist CO 2 Speicherung und Überwachung nicht realisierbar
Thank you for your attention! CO 2 SINK CO 2 Storage by Injection into a Saline Aquifer at Ketzin Objectives Set up a full-scale CO 2 storage test site on land: advance understanding of science and processes in underground storage of CO 2 provide real case experience develop best practice guidelines for geological storage of CO 2 Budget: > 30.000.000 (EC 8.700.000 ) Runtime: 04/2004 03/2009 Well locations CO 2 Injection well 0 s N 0.5 s Top Cap Rock Injection well Observation well Injection Site 1.0 s Seismic 3D Baseline Survey