Predictive Policing: What It Is, What It Isn t, and Where It Can Be Useful

Similar documents
Street level Drug Enforcement What Works Briefing

Predictive Analytics Workshop With IBM SPSS Modeler

WYNYARD ADVANCED CRIME ANALYTICS POWERFUL SOFTWARE TO PREVENT AND SOLVE CRIME

The Los Angeles Predictive Policing Experiment. Charlie Beck, Chief of Police Los Angeles Police Department

Pensacola Police Department

Alison Hayes November 30, 2005 NRS 509. Crime Mapping OVERVIEW

PREDICTIVE ANALYTICS vs HOT SPOTTING

LAW ENFORCEMENT AND GEOGRAPHIC INFORMATION SYSTEMS

PREDICTIVE ANALYTICS VS. HOTSPOTTING

Applications of GIS in Law Enforcement. John Beck Global Law Enforcement Manager Esri 12/10/2014

PRESCOTT POLICE DEPARTMENT

WPI Personnel Location Briefing. Joe Heaps Deputy Chief Information and Sensor Technologies Division National Institute of Justice

White Paper. Big Data and UK Policing

CMPD s Predictive Crime Analytics Implementation. Harold Medlock Deputy Chief Charlotte-Mecklenburg Police Department

Working with Local Criminal Justice Boards

LAW ENFORCEMENT OFFICER

Dashboards Help Lift the Fog of Crime By Chief Bence Hoyle

Using a Geographic Information System for Tactical Crime Analysis

Connecting the Dots: Data Mining and Predictive Analytics in Law Enforcement and Intelligence Analysis

CHAPTER. What is Criminal Justice? Criminal Justice: Criminal Justice: Criminal Justice: What is the Definition of Crime?

Effectiveness and Cost Efficiency of DNA Evidence in Volume Crime Denver Colorado Site Summary

East Haven Police Department

3 Sources of Information about Crime:

Program: Drug Market Intervention Initiative (DMI) Reviewer: Taylor Vogt Date: October 2012

ASSEMBLY COMMITTEE ON PUBLIC SAFETY Bill Quirk, Chair. AB 8 (Gatto) As Introduced December 1, 2014

GIS AT WORK IN THE CRIMINAL JUSTICE SYSTEM

Curriculum Vitae Eric S. McCord

Crime Mapping and Analysis Using GIS

HOW DOES A CRIMINAL CASE GET DISMISSED WITHOUT A TRIAL? Many criminal cases are resolved without a trial. Some with straight forward dismissals.

d CRIMINAL INVESTIGATION ADMINISTRATION OF JUSTICE 5 Spring 2015

Adult Criminal Justice Case Processing in Washington, DC

Curriculum Vitae Eric S. McCord

Community Policing. Defined

The South Dakota 24/7 Sobriety Project: A Summary Report 1

Crime Scene Search and Processing

Texas Highway Safety Operations Center: Using Data to Combat Crime, Crash, and Traffic Enforcement Issues

CALIFORNIA HIGHWAY PATROL C.T.I.P. TASKFORCE

Big Data for Public Safety: 4 use cases for intelligence and law enforcement agencies to leverage Big Data for crime prevention.

Georgia State University Police Department Operation Clean Sweep

STATE POLICE TROOPER

Criminal Justice Upper Division Restricted Electives Undergraduate Courses

Criminal/Juvenile Justice System Primer

Alternatives to Arrest for Young People

Setting the Standard for Safe City Projects in the United States

HOW TO HELP SECURE YOUR HOME

The Illinois Uniform Crime Reporting Program

Auto Theft Tracking Program Bait Car (ATTP)

The Start of a Criminal Career: Does the Type of Debut Offence Predict Future Offending? Research Report 77. Natalie Owen & Christine Cooper

Crime Hotspots Analysis in South Korea: A User-Oriented Approach

Home Invasion Safety. Protecting Your Family

The Effect of Neighborhood Watch. Programs on Neighborhood Crime in. Medford Oregon

MICHAEL N. FEUER CITY ATTORNEY REPORT RE: NEIGHBORHOOD JUSTICE PROGRAM PROGRAMMATIC OVERVIEW AND ACCEPTANCE OF CALIFORNIA ENDOWMENT GRANT AWARD

JUSTICE STRATEGIES. Crime Trends and Incarceration Rates in Oregon. Judith A. Greene June 2004

JUVENILES AND THE LAW

Crime in Arkansas 2001

Reducing Non-Emergency Calls to 9-1-1: An Assessment of Four Approaches to Handling Citizen Calls for Service

Applied Sociology Course Descriptions

Katharine Browning. Senior Social Science Analyst, Office of Research and Evaluation, National Institute of Justice

UC Safety and Reform: Update and Discussion

For More Information

Preventing Burglaries

North Carolina Criminal Justice Analysis Center Governor s Crime Commission

LAW-ENFORCEMENT RECORDS and the FREEDOM OF INFORMATION ACT

The Impact of Arizona s Probation Reforms in 2010

August Emory University, Atlanta, GA Double major: Sociology and Political Science December 2005

The Criminal Justice Dashboard (The Dashboard) Category: Information Communications Technology (ICT) Innovations. State of Maryland.

WHITE-COLLAR CRIMES IN CALIFORNIA DOMENIC J. LOMBARDO

Housing Services Office (HSO) Newsletter Alameda County Behavioral Health Care Services (BHCS)

Crime Mapping and Crime Prevention

OVERVIEW OF THE MULTNOMAH COUNTY DISTRICT ATTORNEY'S OFFICE

Denver Police Department Law Enforcement Advocate Program. Scanning: When a developmentally delayed youth was involved in a police shooting in 2003,

The State of Insurance Fraud Technology. A study of insurer use, strategies and plans for anti-fraud technology

M.C.C. IMMIGRATION COMMITTEE RECOMMENDATIONS. For Enforcement of Immigration Laws By Local Police Agencies. Adopted by: Major Cities Chiefs 1

WASHINGTON ASSOCIATION OF SHERIFFS AND POLICE CHIEFS Model Policy on Identity Theft Policy, Procedures, and Victim Referral Information

WHAT IS THE ILLINOIS CENTER OF EXCELLENCE AND HOW DID IT START? MISSION STATEMENT

Build Stronger Cases with Mobile Device Link Analysis

Keywords: domestic violence offenders; police attitudes; justice system; victim safety

Justice Griffith. Youth Justice Conferences and Indigenous Over-representation: Micro Simulation Case Study.

BCJ 4601, Criminal Justice Current Topics Course Syllabus. Course Description. Prerequisites. Course Textbook. Course Learning Objectives

Using Social Media Data to Assess Spatial Crime Hotspots

PERSONALIZED SAFETY PLAN FOR DOMESTIC VIOLENCE

Transcription:

Predictive Policing: What It Is, What It Isn t, and Where It Can Be Useful John S. Hollywood, Susan C. Smith, Carter Price, Brian McInnis, Walt Perry NLECTC Information and Geospatial Technologies Center of Excellence RAND Corporation, Arlington, VA NATIONAL INSTITUTE OF JUSTICE OFFICE OF SCIENCE AND TECHNOLOGY This presentation and supporting research were funded by a cooperative agreement with the Office of Science and Technology of the National Institute of Justice. The views in this presentation are those of the authors and do not represent official findings of the National Institute of Justice.

Bottom Line Up Front What it is: using computer models, supported by prior crime and environmental data, to anticipate risks of crime and inform actions to prevent crime What it isn t: Minority Report, a crystal ball, ESP, a revolution that will change everything, etc. If you are doing crime mapping you are already doing a basic form of predictive policing Where it can be useful: to find smarter ways to deploy resources and find and fix problems leading to crime Does require a commitment to taking actions to prevent crime 2

Outline 1. Introducing predictive policing 2. Methods to make predictions revealed 3. Problems with predictions 4. Taking action on predictions 5. Review 3

The Big Picture Universities and technology companies Developing computer programs based on private sector models of forecasting consumer behavior Police agencies Use computer analysis of information (crimes, environment, intelligence) Predict and prevent crime The idea Improve situational awareness (tactically /strategically) to create strategies to police more efficiently and effectively 4

How Does It Work In Real Life? With situational awareness and anticipation of human behavior, police can identify and develop strategies to prevent criminal activity By repeat offenders On repeat victims By locations or types of targets Police use their limited resources To work proactively Using effective strategies to prevent the activity BUT - The effectiveness of the strategies must be measureable Reduced crime Higher arrest rates for serious/stranger offenses Broader social and justice outcomes and impacts 5

Predictive Policing Process Data collection Criminal response Analysis Police operations 6

A Private Sector Example Predictive analytics is used by businesses to determine sales strategies Example: Wal-Mart analyzes weather patterns to determine what it stocks in stores They overstocks duct tape, bottled water and strawberry Pop-Tarts before major weather events The Pop-Tarts* represent a non-obvious relationship There are many of these relationships in law enforcement that can be explored with predictive policing *For example: Olivia Katrandjian, Hurricane Irene: Pop-Tarts Top List of Hurricane Purchases, abcnews.com, August 27, 2011 7

What Kinds of Questions Might We Answer? Investigative (Past) Impacts of changes to neighborhoods Farther past Linked crime series Larger areas Related crimes Persons linked to crime scenes Where Most activity in this quadrant Immediate crime threats Crime hot spots Most likely offenders Crime rates for neighborhoods & precincts Problem locations Farther future Preemptive (Future) Likely perpetrators Most likely violent conflicts Larger groups Who 8

Who Is Interested In It? Researchers Have the background and expertise to design predictive model Civil Rights Activists Have concerns of these techniques intruding on the rights of citizens, especially the poor and minorities Practitioners (Analysts) Have a professional interest on how this can make their work better / more useful Police Chiefs Eager to find new techniques to reduce crime The U.S. Government New forum for funding, research, literature, and evaluation The Private Sector Sees potential for funding of research grants, consulting and software development 9

What the U.S. Government Says First Predictive Policing Symposium* Held in Los Angeles, November, 2009 Sponsored by NIJ and BJA By Invitations Only (100+/-) Police Chiefs, Researchers, Government, Analysts Explored Policy Implications, Privacy Issues and Technical Elements Second Predictive Policing Symposium Held in Providence, RI, June, 2010 Sponsored by NIJ and BJA By Invitations Only (150+/-) Police Chiefs, Researchers, Government, Analysts Agencies with grants to implement/evaluate provided progress reports *Symposia summaries available from NIJ s web site at http://www.nij.gov/topics/law-enforcement/strategies/predictivepolicing/symposium/welcome.htm 10

A Theoretical Motivation (1) "The naysayers want you to believe that humans are too complex and too random that this sort of math can't be done," said Jeff Brantingham, a UCLA anthropologist who is helping to supervise the university's predictive policing project [for LAPD, NIJ funded]. "But humans are not nearly as random as we think," he said. "In a sense, crime is just a physical process, and if you can explain how offenders move and how they mix with their victims, you can understand an incredible amount. * Above supported by Routine Activities Theory, Rational Choice, Crime Pattern Theory** and the brand new Blended Theory, which is new as of this presentation *Joel Rubin, Stopping Crime Before It Starts, LATimes.com, August 21, 2010. ** For descriptions, see, for example, Ronald Clarke and Marcus Felson (eds.), Routine Activity and Rational Choice, New Brunswick, NJ: Transaction Publishers, 2003 11

A Theoretical Motivation (2) A Blended Theory U(x)? Crime pattern Criminals and victims follow common life patterns; where those patterns overlap can lead to crimes Geographic and temporal features influence the where and when of those patterns Criminals make rational decisions using factors such as area & target suitability, risk of getting caught, etc. Can ID many of these patterns and factors; can steer criminals decisions through interventions Best fits stranger offenses like robberies, burglaries, and thefts less so vice and relationship violence 12

Methods Revealed: A Quick Guide to Ways to Finding High-Risk Locations Predictions based on prior crimes: Hot spot methods Add crimes just committed: Near repeat methods Add proximity to crime attractors and diverters: Risk terrain modeling Add other crimes, disorder, suspicious activity, environmental factors, etc.: Regression and data mining methods Add changes over time: Spatiotemporal methods Can combine these methods, as well Understanding the mathematics of these methods usually requires specialized knowledge. Understanding the ideas behind them do not. 13 13

Hot Spot Analyses / Crime Mapping Elliptical Methods Kernel Density Estimation Find oval-shaped areas with the greatest numbers of crimes Averages out crimes; flags areas with the greatest crime density Implicit prediction areas recently seeing high crime will have high crime in the future Source: Eck et al., Mapping Crime: Understanding Hot Spots, NIJ Special Report, 2005. Maps are of London Metropolitan Police Force data, June August 1999

Near Repeat Methods Key assumption of hot spot methods: areas recently seeing higher levels of crime will see higher crime in the future Take the same idea and shrink it to micro-place and micro-time levels If there s just been a crime, the risk of crime is increased for a short distance away, for a short time Strong effects for burglaries less for other types of crime Examples include self-exciting point process methods* used by Santa Cruz and Los Angeles (which have seen heavy media coverage) and the NIJ-funded Near Repeat Calculator** *G. Mohler, M. Short, P. Brantingham, F. Schoenberg, and G. Tita, Self-exciting point process modeling of crime, Journal of the American Statistical Association, 106 (493), 100, 2011. ** JH Ratcliffe, Near Repeat Calculator (version 1.3), Temple University, Philadelphia, PA and the National Institute of Justice, Washington, DC, August 2009. 15

Regression and Other Data Mining Methods Hot spot and near repeat methods estimate future crimes based on recent histories for that single type of crime [Future crime] ~= f[past crime] Regression and other data mining methods estimate future crimes based on recent crime histories plus many other factors that might help explain crime [Future crime] ~= f[past crime, past other types of crime, past reports of disorder, past suspicious activity, demographics, economics, weather, etc.] 16

Regression Example (from Forthcoming NIJ-Sponsored Research) Map shows robbery risk predictions from a regression model Robbery risk as a function of prior crimes plus disorderly and suspicious activity calls Found corridors and landmarks associated with greater risk 17

Risk Terrain Modeling Family of Methods Identify types of locations associated with higher crime and predict future crime risk based on nearness to those locations Example: Find that robberies occur near main streets and bars ; color areas near main streets and bars as higherrisk Hot spot analysis (density mapping) Risk terrain modeling Source: Paul Joyal, NSI, Recent History of Policing Presentation to the NIJ Technology Working Group on Modeling and Simulation, Arlington, VA, April 2011 18

Using Time: Temporal and Spatiotemporal Methods Insight: crime patterns can change over time Day/night cycles Weekend vs. weekday Paydays, sporting events, concerts Time of year Can create simple models to account for these changes Example: to predict where crime will be on paydays, look at where crime has been on paydays historically Other methods predict changes in crime levels given recent trends ( time series analyses ) 19

More Methods: From Hot Places to Hot People Geographic profiling uses crime positions to identify the anchor sites for serial criminals Assumes we have linked crimes are models for doing this based on statistical similarity Can then overlay with lists of addresses / anchor points of prior offenders GPS tracking may take this to another level who was near this crime scene? Models to assess risk of reoffending: can identify persons coming out of jails and prisons who are most likely to reoffend in various ways using regression and other data mining models 20

So, What Are Some Pitfalls? Consider this example Goal is to be as accurate as possible in predicting purse snatchings E.g., have 99%+ of future purse snatchings (green triangles), land in hot spots (red and yellow areas) Source: Peter Borrissov, Crime Forecast of Washington DC, Wikimedia Commons, 2009. Public domain image. 21

What Output is Actionable? Do We Need to Trade Off Accuracy and Usefulness? Note the large proportion of DC colored as red Source: Borrissov, 2007. Public domain image. 22

Is the Data Complete and Correct? Why aren t there any purse snatchings on the National Mall or Capitol Hill? Source: Borrissov, 2007. Public domain image. 23

Do We Understand the Causes? Why is this area highlighted? Source: Borrissov, 2007. Public domain image. 24

What About Civil and Privacy Rights? Supreme Court has ruled that standards for what constitutes reasonable suspicion are relaxed in high crime areas (e.g., hot spots) What constitutes a high crime area is a completely open question Issue minor in comparison to civil and privacy rights issues raised by identifying hot people What do we do with a prediction of re-offending that, while much better than chance (~80% accurate), is still far from definitive? 25

And What About All the Media Hype? Thearrests were routine. Two women were taken into custody after they were discovered peering into cars in a downtown parking garage in Santa Cruz, Calif. One woman was found to have outstanding warrants; the other was carrying illegal drugs. But the presence of the police officers in the garage that Friday afternoon in July was anything but ordinary: They were directed to the parking structure by a computer program that had predicted that car burglaries were especially likely there that day. (emphasis added) The program is part of an unusual experiment by the Santa Cruz Police Department in predictive policing deploying officers in places where crimes are likely to occur in the future. Erica Goode, Sending the Police Before There s a Crime, New York Times, August 15, 2011. 26

Reality of Predictions Recall that Santa Cruz s model includes a Near Repeat component the computer sent the officers there because there had recently been crimes there Very useful, but much less exciting A typical prediction might be that a given area will see an average of 0.2 robberies per month Obviously, will not actually see 0.2 robberies Instead, will see long stretches of no robberies interspersed with spikes, with the spikes coming largely at random He who lives by the crystal ball soon learns to eat ground glass. - Edgar R. Fiedler 27

Taking Action on Predictions Most of the focus on predictive policing tends to be on the predictions Much less has been written on the policing the specific interventions done to act on the predictions Three levels of interventions Generic: putting more resources into areas (and times) at increased risk Crime-specific: assigning those resources to carry out interventions tailored to combating the expected types of crime Problem-specific: Identifying specific problems generating crime risk and fixing them Hypothesis: Crime- and problem-specific interventions require more analysis, but will be better targeted and hence more effective 28

Generic Interventions Increasing Resources Examples have included foot patrols, vehicle patrols (marked / unmarked), and checkpoints There appear to be Goldilocks conditions on getting best results from the special deployments Size of patrol needs be balanced. Too large effect diluted; too small units are overly constrained Time-wise, Koper curve * suggests being in one area for 13-15 minutes has the maximum deterrent effect Increased contacts and field reports during deployments have been reported to be useful Focus is on getting information about criminal activity in the area and describing how to report suspicious activity *: C. Koper, Just enough police presence: Reducing crime and disorderly behavior by optimizing patrol time in crime hotspots, Justice Quarterly, 12(4): 649-672, 1995. 29

Crime-Specific Interventions Analysts now generate recommendations to assign resources to an area to carry out specified interventions to combat those types of crimes seeing increased risk A significant change to business practices for crime analysis Interventions can be selected from problem-oriented policing guides Center for Problem-Oriented Policing s web site at http://www.popcenter.org/ Also see the Office of Justice Programs' summaries of interventions and evaluations at http://www.crimesolutions.gov/ 30

Problem-Specific Interventions What to do to take action on hot spots is highly dependent on the specific crime problems Analysts can dive into the data supporting predictive policing forecasts to determine what the specific problems are Can do this by looking at maps, overhead photos, and narrative descriptions of hot spots and the crimes within them, looking for common themes 31

Two Examples* Clerkenwell, England identified hotspots for vehicle theft After examining photos from crime sites, determined the big problem was stealing scooters and motorcycles from racks outside a few establishments Chula Vista, CA identified hot spots for store robberies Hot spots were fairly spread out, so additional site characteristics were considered Found that the big problem was targeting of a specific chain of convenience stores *Source: Wartell, Julie, GIS for Proactive Policing and Crime Analysis Presentation to the Technologies for Critical Infrastructure Protection Conference, National Harbor, MD, August 31, 2011 32

Solving Specific Problems (Cont d) If forecasts can be associated with specific problems, departments can tailor specific strategies Examples Working with specific sites identified as high-risk to improve their security measures Working with neighborhood groups on neighborhood watch / reporting efforts Working with city agencies and neighborhood groups to prevent, or at least maintain, foreclosures Documentation for these interventions is a shortfall if you can describe a promising intervention for acting on predictions in detail, we would like to hear from you 33

Review Predictive policing is using computer models, supported by prior crime and environmental data, to anticipate risks of crime and inform actions to prevent crime For the predictions, numerous models and applications have been developed However, the part in italics is often overlooked Very promising but it is not Minority Report or a crystal ball Be wary of pitfalls data correctness, forecasting accuracy v. utility, meaning, etc. For those already doing crime mapping and analysis, predictive policing is an incremental improvement Key need: best approaches to act on the predictions 34

Questions? Contact: John Hollywood, johnsh@rand.org Susan Smith, ssmith@rand.org 35