SEROLOGICAL SERVICE IN POULTRY INDUSTRY



Similar documents
Chapter 18: Applications of Immunology

4A. Types of Laboratory Tests Available and Specimens Required. Three main types of laboratory tests are used for diagnosing CHIK: virus

COMPARATIVE PERFORMANCE OF IN-HOUSE AND COMMERCIALLY AVAILABLE ELISA KITS FOR THE DETECTION OF ANTIBODY AGAINST NEWCASTLE DISEASE VIRUS VACCINE

HPAI H5N8 outbreak in layers in the Netherlands. 20 November 2014, Ruth Bouwstra

DEPARTMENT OF VETERINARY SERVICES MALAYSIA

B I O S E C U R I T Y F O R B R E E D E R F A R M S

The Danish veterinary preparedness for avian influenza and Newcastle disease

Diagnostic Testing and Strategies for BVDV

Some Immunological Test. Presented by Alaa Faeiz Ashwaaq Dyaa Aseel Abd AL-Razaq Supervised by D.Feras

BIOSECURITY PROCEDURES IN POULTRY PRODUCTION

VS Guidance Date 04/26/13

Guidelines for Collection and Transport of Specimen for Laboratory Diagnosis of Pathogenic Leptospira spp.

QUALITY MANAGEMENT IN VETERINARY TESTING LABORATORIES

POLYCLONAL ANTIBODY DEVELOPMENT

Blood-Based Cancer Diagnostics

Topic: Serological reactions: the purpose and a principle of reactions. Agglutination test. Precipitation test. CFT, IFT, ELISA, RIA.

Basic Immunologic Procedures. Complex Serological Tests

Control of Newcastle and Infectious Bursal diseases in Poultry: Vaccines, Vaccination and Bio security

Changing Concept of FMD diagnostics: from Central to Local. Aniket Sanyal Project Directorate on FMD Mukteswar, India

JIANGSU CARTMAY INDUSTRIAL CO.,LTD mail:

Diagnostic Testing Considerations for Shelters and Rescues Part One: Fundamentals

QED Bioscience Inc. Revision 05/04/11 ADVANCED ANTIBODY TECHNOLOGIES

Algorithm for detecting Zika virus (ZIKV) 1

Cold Agglutination Titer detecting Cold Reacting Antibodies

Compensation for Salmonella Enteritidis & Typhimurium to owners in England

Course Curriculum for Master Degree in Medical Laboratory Sciences/Clinical Microbiology, Immunology and Serology

Course Curriculum for Master Degree in Food Hygiene /Faculty of Veterinary Medicine

TEST METHOD VERIFICATION AND VALIDATION

What You Will Learn in This Module: Testing for Pullorum-Typhoid Disease

Content Sheet 10-1: Overview of External Quality Assessment (EQA)

How To Treat Anaphylactic Virus

1. INTRODUCTION. Momona Ethiopian Journal of Science (MEJS), V6(2)33-38,2014 CNCS, Mekelle University, ISSN: X

CONTENTS. Brief introduction. Epidemiology. Diagnosis LOGO. D. Batchuluun, B. Batsuren, Ts. Badamsuren, Ts. Erdene-Ochir, J.

I. Flock Health Management A. A. Bickford California Veterinary Diagnostic Laboratory System Turlock, CA

Antigens & Antibodies II. Polyclonal antibodies vs Monoclonal antibodies

LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

BHV-1 SEROCONVERSION ELISA KIT

The role of IBV proteins in protection: cellular immune responses. COST meeting WG2 + WG3 Budapest, Hungary, 2015


CMP Antibody Production Service

Recommended Resources: The following resources may be useful in teaching this

Tissue Culture 1 Cell/ Microplates 2 HTS- 3 Immunology/ HLA 4 Microbiology/ Bacteriology Purpose Beakers 5 Tubes/Multi-

serology Agglutination Techniques and Blood Cell Identification

Newcastle Disease Outbreaks in Denmark 2002 Final Report

Course Descriptions. I. Professional Courses: MSEG 7216: Introduction to Infectious Diseases (Medical Students)

(From the Department of Bacteriology, Preventive Medicine and Public Health, School o] Medicine, Howard University, Washington, D. C.

Veterinary Testing. Classes of Test

VETERINARY SERVICES MEMORANDUM NO

Viral load testing. medical monitoring: viral load testing: 1

Seroprevalence of Mycoplasma gallisepticum antibody by ELISA and serum plate agglutination test of laying chicken

Biopharmaceutical Process Evaluated for Viral Clearance

Don t gamble on your HERD S health.

Comparing the Tube and Gel Techniques for ABO Antibody Titration, as Performed in Three European Centers 林 良 豐

CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS

Guidelines for Animal Disease Control

HSA Consumer Guide. Understanding Vaccines, Vaccine Development and Production. November How a Vaccine Works.

Course Curriculum for Master Degree in Veterinary Epidemiology/Faculty of Veterinary Medicine

7- Doctoral Degree in Public Health and Public Health Sciences (Majoring Microbiology)

National Pig Health Council. Code of Practice for Importation of Live Pigs into Ireland

RECOMMENDATIONS FOR PRODUCTION AND CONTROL OF INFLUENZA VACCINE (INACTIVATED) Introduction General considerations

Management is designed to produce veterinarians and veterinary officers who are

ELISA BIO 110 Lab 1. Immunity and Disease

LIAISON XL HCV Ab Accurate diagnosis of the early stage of HCV infection

Viral Hepatitis APHL survey report

CHAPTER 13. Quality Control/Quality Assurance

AVIAN MYCOPLASMOSIS (Mycoplasma gallisepticum, M. synoviae)

Custom Polyclonal Anti-Peptide Antibody, Brochure

Intra-Union Trade in Poultry for Slaughter. Notes for Guidance of the Official Veterinarian (OV) and Exporters

Quarantine Requirements for the Importation of Laboratory Animals

LAB 1 - Direct agglutination. Serology-the study of the in vitro reactions between antibody and antigen

(From the Department of Animal and Plant Pathology of The Rockefeller Institute for Medical Research, Princeton, New Jersey)

Connecticut Veterinary Medical Diagnostic Laboratory

Saving Heritage Turkeys

Basic research methods. Basic research methods. Question: BRM.2. Question: BRM.1

EFFECT OF PREDATED VACCINATION AND CHINESE HERBAL ADJUVANT RABBIT HEMORRHAGIC DISEASE VACCINE ON IMMUNE RESPONSE IN YOUNG RABBITS

POULTRY MANAGEMENT Manage poultry rearing operations

Molecular Diagnosis of Hepatitis B and Hepatitis D infections

The Facts on Equine Drug Testing

Influenza antibody profiling by protein microarray. Marion Koopmans, Professor of public health virology Head Viroscience department

Guidelines for the Safe Transport of Infectious Substances and Diagnostic Specimens

JOINT COMMISSION INTERNATIONAL ACCREDITATION STANDARDS FOR. 2nd Edition

IgM ELISA. For the quantitative determination of IgM in human serum and plasma. For Research Use Only. Not For Use In Diagnostic Procedures.

The Body s Defenses CHAPTER 24

Anti-Zona Pellucida Antibody Latex Agglutination Test

Dot Blot Analysis. Teacher s Guidebook. (Cat. # BE 502) think proteins! think G-Biosciences

Competency 1 Describe the role of epidemiology in public health

Content Sheet 5-1: Overview of Sample Management

QuantiFERON TB Gold In Tube Method (QGIT Test) Manufacturer: Cellestis Inc. (USA) a QIAGEN Company

Pandemic Influenza Vaccines: Lessons Learned from the H1N1 Influenza Pandemic

Elabscience Biotechnology Co.,Ltd

Facts about the production of Poultry Meat in Denmark 4. July 2014

Influenza and Pandemic Flu Guidelines

MEDICAL DIAGNOSTIC LABORATORIES, L.L.C Kuser Road * Hamilton, NJ Toll Free (877) * Fax (609)

Chick Quality and First Week Mortality. Why is chick quality important? What factors affect chick quality? Objectives 4/5/2012

Zika Virus. Fred A. Lopez, MD, MACP Richard Vial Professor Department of Medicine Section of Infectious Diseases

Immunoglobulin E (IgE) concentrations in Human. Immunoglobulin E (IgE) Human ELISA Kit

AU/IBAR-CHINA ASSISTANCE PROTOCOL ON THE PREVENTION AND CONTROL OF HPAI IN AFRICA

Animal health requirements for the exported pig meat, etc. to Japan from Spain are as follows.

Classic Immunoprecipitation

Content Sheet 7-1: Overview of Quality Control for Quantitative Tests

Transcription:

Issue No.30 / May 2010 SEROLOGICAL SERVICE IN POULTRY INDUSTRY By Dr Vincent TURBLIN, Deputy Regional Market Manager Poultry - CEVA Animal Health Asia Pacific In avian diagnostic medicine, the usual immediate challenge is making a definitive diagnosis for the presenting problem of morbidity or mortality. And if we deal with their occurrence in a more preventive or epidemiologic way, there are at least four main types of approach that can help in evaluating infectious diseases in poultry: Recording and analysis of productivity data (mortality, growth rate, and egg production). Recording and analysis of disease data (signs, lesions). Measurement of serological response. Isolation and identification of pathogenic agents. If we are to obtain full benefit from the money invested in disease monitoring, it is important to understand clearly what the results mean. This, in turn, depends on the theoretical basis of the test system (what it measures and what it does not measure) and the frequency of its application. Indeed, we must keep in mind that a serological response may confirm that the birds have been exposed to the organism, but it is not necessarily the cause. It must be applied fairly regularly during the period of growth or if disease breaks out. And another misconception could be to think that The more expensive the method used to evaluate infectious disease, the better it must be. In fact the opposite is usually true, because the more expensive the test, the fewer samples tested. All test systems have their weaknesses. SAMPLE COLLECTION Statistical basis of sampling We use small samples to infer about the condition of a large flock. Statistical techniques are available to determine the number of samples necessary for a given purpose. It is the economic and practical considerations, which determine the number of samples taken. First, sampling should generally be stratified. If, for example, we want to estimate the situation in a whole poultry farm, birds should be sampled in each of the houses, and not merely in the first division of the first house. On the other hand, biased sampling is sometimes necessary, and even desirable, if we are investigating a specific problem. If the problem is paralysis in breeding hens, we should not base our opinion only on examination of birds showing no symptoms. The actual number of samples needed will vary according to the number of birds in the flocks. In practice 12-24 samples per air space is typical for most tests. Sixty samples per space is recommended for detection of unwanted pathogens (Mycoplasma sp., Salmonella enteritidis). Note that it is possible to run the tests on pooled samples, but this can reduce the sensitivity of the tests.

2 Containers for sample collection and transport. Our basic target should be to obtain serum of good quality without bacterial growth or haemolysis, and in sufficient quantity to repeat a test if necessary. Glass or plastic vials are the traditional containers for blood samples (5ml for glass or 1.5 ml for plastic vials). Immediately, the blood should be stoppered and if possible, laid horizontally to encourage the formation of a long thin clot. Samples should be maintained at room temperature until the blood has clotted, then refrigerated until dispatched to the lab, or separate the serum into clean vials before shipping to the lab. One person at each site should be trained to take the samples required whenever necessary. Yolk Preparation Birds transfer a large amount of antibody into the egg yolk. For this reason, yolk extracts can be used as a substitute for serum samples for serological monitoring. A series of papers, related in appendix, has examined the relationship between serum and yolk antibody in some detail for Newcastle, Infectious Bronchitis, Gumboro virus as well as Adenovirus, Reovirus and Salmonella (enteritidis & typhimurium). All these studies confirmed that antibody titers in yolk are highly correlated with those in serum (correlation coefficients of 0.84 to 0.97). Nevertheless, because yolk is laid down in concentric rings for 7 days, the yolk should be thoroughly homogenized prior to sampling. There are two methods most commonly used for yolk preparation: The first method is simply diluting yolk with PBS, and then the mixture is used for testing in place of serum. The second method involves the addition of chloroform to the mixture (usually 30-50%) to remove the lipids, but is quite costly and as such, less often used. Table 1: Balance of advantages and inconvenients of Yolk serology. ADVANTAGES 1) Ease of collecting sample 2) Samples already packaged 3) Eggs can be easily stored 4) Eliminates bird handling and stress INCONVENIENTS 1) Sample extraction according to published methods can be laborious. 2) Extracts cannot be used for rapid plate agglutination tests 3) Samples cannot usually be identified to individual bird 4) Results are not always directly equivalent to serum SERUM SUBMISSION Consideration should be given to how and when samples will be transported to the lab. Whenever possible, samples should be taken on a day which will allow their delivery to the lab within 24 hrs (avoiding weekends). Samples should be securely packed by group where they were collected (pen, sex, house, etc.) The group should be properly identified on the tubes or the bag. Also important, clear information on the tests that are required for each sample should be indicated to the laboratory along with common information on flock health, vaccination program, etc. For this purpose, always use the laboratory s submission forms (most laboratories will have a specific form for serology samples).

3 SEROLOGICAL ARCHIVE Serum samples should be stored in a way that they can be retrieved easily. In case of storage for periods longer than 24 hours, the samples should be kept at -20 o C. The size of vial must be adapted, both for convenience and minimizing air content (to avoid lyophilisation of water in the serum). The storage period can last for: 1. One month for broilers: in case a repeat test is required, or other disease to check. 2. One year for breeders or layers is a reasonable period to retain samples for routine purposes. 3. More than one year: for epidemiology studies. Indeed, long term storage of the serum archive may provide useful information on disease patterns. Serums bank can be very useful to analyze retroactively the problems encountered in the field. Especially in layers, since the titers reached by vaccination are already very high, seroconversion evolution can be demonstrated with the monitoring of antibody titers and CV% assessed at critical stages. An index must be maintained to cross-reference the sample numbers according to bird types, company and farm of origin, and the date. Such a system can be set up in a manually recorded index book. However it is much more easily maintained and searched using a computer-based system. SEROLOGICAL TESTS Different serological test are available in laboratories: Agglutination test Agar gel precipitation HI test ELISA Immunodot Seroneutralization LABORATORY QUALITY CONTROL It is reasonable to expect that results produced by a given lab for each assay are consistent over time, and that results produced by different laboratories from the same samples are comparable also. To achieve this, each assay must be validated to identify sources of variation that might occur. We must also keep in mind that there are non-assay sources of variation. These factors include how and when a sample is taken, manipulated, stored, transported, identified, and errors in report generation. In validating an assay, the following areas need to be addressed: Specificity : a highly specific assay will have a low tendency to show "false positive" reactions in birds exposed to a closely related pathogen. Sensitivity (ability to detect low levels of specific Ab): a trade-off is that the higher the sensitivity of an assay, the lower is its specificity. In poultry production, it is common practice to apply a highly sensitive technique as a screening test, followed by more specific tests on repeat sampling of the positive flock. Accuracy in quantifying purified amounts of the antibodies sought. Precision is the ability of the assay to consistently reproduce a result from the same samples. It is expressed as %CV.

4 Much of the validation work required, are carried out by the manufacturer of test kits. A good first step in setting up a serological Quality Assurance (QA) system will be to request the manufacturer to provide data on withinplate and between-plate variations. The lab can then quickly validate the assay using known positive and negative sera. Once an assay has been validated, the continued satisfactory performance should be monitored by the use of a QA System. The Quality Assurance System should include a definition of criteria for assay acceptability, along with means for identifying sources of variation and implementing corrective procedures: One component of such a system might be to repeat an Inter-assay Precision test. Alternatively, simply calculate the %CV for all assays of each standard control serum each month and plot the results over time. A reasonable target for %CV in routine testing is 10-15%. The prime aim of in-house quality assessment is to confirm that the results generated are consistent over time. Inter-lab quality assurance schemes can be set up with other labs, in order to ensure uniformity of results. Accreditation schemes take this a step further, by independently checking procedures and standards, often with a periodic inspection, eg. the accreditation scheme for MG, MM and MS testing in most poultry exporting countries. At every point in the validation and QA of a system, it is important for staff to be educated and motivated. It is equally important for those interpreting the results to understand the inherent variability of those, and to be able to express an opinion by comparing them with other test results. This may lead to a decision, which will take into account information from a variety of sources. CLINICAL INTERPRETATION Serology is most powerful and accurate when used in association with other sources of information: Productivity data: mortality and culling, egg production, egg quality, hatchability, growth rate and uniformity, feed conversion ratios etc. Condemnations data generated at slaughter Clinical examination of affected flocks Post-mortem examinations, backed up by appropriate microbiological and necropsy results. Routine swabbing of barns after cleaning out and disinfecting, examining feed and raw materials, cull chicks etc. In diagnosing a disease, planning and implementing a control strategy is often necessary to achieve the cooperation of many different people. The key to cost-efficient use of serology lies in the planning of sample collection and choice of assays appropriate to each specific problem or objective. The samples made available and the anamnestic information on flocks will often have a considerable bearing on the interpretation of the serological results. There are 2 main strategies of serological sampling: Routine sampling is done at periodic intervals with a view to detecting a serologic response to infection or vaccination. Targeted sampling is done in order to investigate a specific disease incident using paired samples (at 12-21 days interval e.g., seroconversion time). Figure 1: Schematic evolution of Humoral Response after stimulation (seroconversion).

5 LIMITATIONS OF SEROLOGICAL TESTS Serological tests depend on the detection and/or quantification of antibodies against infectious agents. However, most serological tests have the following limitations: Birds remain negative for at least 4 days after infection. This period may vary according to the test used and may be very much longer when latent infection occurs. Most tests only evaluate circulating antibodies, and take no account of mucosal antibody or cellmediated immunity. Without repeated sampling, it is impossible to say whether the antibody level is rising, stable, or falling. No distinction of antibodies from field strains or vaccinal strains in most of the cases, unless a DIVA method is possible for the vaccine used. Antibodies to antigenically related agents may cause confusion due to cross reactions. We can add to this list, the risk of false positive and false negative reactions, which is inherent to any test system actually. Nevertheless, careful and repeated applications of the simple techniques including validation and verification are capable of overcoming most, if not all, of the above limitations. However we cannot expect that serology will give us the right answers if we ask our labs the wrong questions and wrong tests. SOLVING PROBLEMS A routine monitoring program will sooner or later show flocks with very poor response in terms of antibody after vaccination. In considering what to do about these flocks, it should be remembered that the response of the birds to vaccination depends on three main factors: Factors related to the application of the vaccine, such as the skills of the vaccinators, number of vaccines applied on one occasion, the route of application and sometimes interfering factors such as poor water quality. Factors related to the vaccine, such as antigen concentration, virulence of vaccine strain, nature and quality of adjuvants. Factors relating to the physiology and the immune status of birds, immunsuppression by IBDV, MDV, CIAV, Adenovirus, mycotoxins, stress and other diseases. CONCLUSION: Avian serology consists of a combination of classical tests methods, such as the agar-gel precipitin (AGP) test, the plate agglutination test, the virus-neutralization (VN) test, the hemagglutination-inhibition (HI) and the Enzyme-Linked ImmunoSorbent Assay (ELISA). Most of the tests are relatively easy to perform, but quality control is essential. Nonetheless, even though serology is a wonderful tool both for diagnostic and epidemiologic purposes, we shouldn t forget it has to be used as part of a whole diagnostic process. Serological results have to be considered with other datas, among which, the isolation of the agent still has an importance in the investigative process. Isolates can especially be important in assessing virulence and pathogenesis of strains involved. hence the growing implementation of molecular methods (PCR, sequencing, etc.) for identifying and classifying the pathogens isolated in samples.

6 APPENDIX BECK JR, SWAYNE DE, DAVISON S and coll.. 2003. Validation of egg yolk antibody testing as a method to determine influenza status in white Leghorn hens. Avian Diseases, 47:1196 1199. BROWN J, RESURRECCION RS, DICKSON TG and HORNE A. 1989. The Relationship of Egg Yolk and Serum Antibody. I. Infectious Bursal Disease Virus. Avian Diseases, 33: 654-656. KEMPF I and GESBERT F. 1998. Comparison of serological tests for detection of Mycoplasma gallisepticumantibodies in eggs and chicks hatched from experimentally infected hens. Veterinary Microbiology, 60 (2-4): 207-213. KRAMER TT and CHO HC. 1970. Transfer of immunoglubulins and antibodies in the hen s egg. Immunology, 19: 157 216. MOHAMMED HO, YAMAMOTO R, CARPENTER TE and ORTMAYER HB. 1986. A statistical model to optimize enzyme-linked immunosorbent assay parameters for detection of Mycoplasma gallisepticum and M. synoviae antibodies in egg yolk. Avian Diseases, 30: 389-397. MOHAMMED HO, YAMAMOTO R, CARPENTER TE and ORTMAYER HB. 1986. Comparison of egg yolk and serum for the detection of Mycoplasma gallisepticum and M. synoviae antibodies by enzymelinked immunosorbent assay. Avian Diseases, 30: 398-408. NICHOLAS RA and ANDREWS SJ. 1991. Detection of antibody to Salmonella enteritidis and S typhimurium in the yolk of hens' eggs. Veterinary Record, 128: 98-100. PIELA TH, GULKA CM, YATES VJ and CHANG PW. 1984. Use of egg yolk in serological tests (ELISA and HI) to detect antibody to Newcastle disease, Infectious Bronchitis, and Mycoplasma gallisepticum. Avian Diseases, 28 (4): 877. PIELA TH, YATES VJ and CHANG PW. 1985. Use of egg yolk to determine antibody levels in chickens inoculated with a hemagglutinating duck adenovirus (adenovirus 127-like). Avian Diseases, 29: 457-464. SILIM A and VENNE D. 1989. Comparison of egg-yolk and serum antibody titers to four avian viruses by Enzyme-Linked Immunosorbent Assay using paired field samples. Avian Diseases; 33: 643-648.