Large-Scale IP Traceback in High-Speed Internet
|
|
|
- Stephany Atkinson
- 10 years ago
- Views:
Transcription
1 2004 IEEE Symposium on Security and Privacy Large-Scale IP Traceback in High-Speed Internet Jun (Jim) Xu Networking & Telecommunications Group College of Computing Georgia Institute of Technology (Joint work with Jun Li, Minho Sung, Li Li)
2 Introduction Internet DDoS attack is an ongoing threat - on websites: Yahoo, CNN, Amazon, ebay, etc (Feb. 2000) - on Internet infrastructure: 13 root DNS servers (Oct, 2002) It is hard to identify attackers due to IP spoofing IP Traceback: trace the attack sources despite spoofing Two main types of proposed traceback techniques Probabilistic Packet Marking schemes: routers put stamps into packets, and victim reconstructs attack paths from these stamps [Savage et. Al. 00] [Goodrich 02] Hash-based traceback: routers store bloom filter digests of packets, and victim query these digests recursively to find the attack path [Snoeren et. al. 01]
3 Scalability Problems of Two Approaches Traceback needs to be scalable When there are a large number of attackers, and When the link speeds are high PPM is good for high-link speed, but cannot scale to large number of attackers [Goodrich 01] Hash-based scheme can scale to large number of attackers, but hard to scale to very high-link speed Our objective: design a traceback scheme that is scalable in both aspects above.
4 Design Overview Our idea: same as hash-based, but store bloom filter digests of sampled packets only Use small sampling rate p (such as 3.3%) Small storage and computational cost Scale to 10 Gbps or 40 Gbps link speeds Operate within the DRAM speed the challenge of the sampling Need many more packets for traceback Independent random sampling will not work: need to improve the correlation factor attacker correlation correlation packet digest Victim
5 Overview of our hash-based traceback scheme Each router stores the bloom filter digests of sampled packets Neighboring routers compare with each other the digests of the packets they store for the traceback to proceed Say P is an attack packet, then if you see P and I also see P, then P comes from me to you When correlation is small, the probability that both see something in common is small
6 One-bit Random Marking and Sampling(ORMS) ORMS make correlation factor be larger than 50% ORMS uses only one-bit for coordinating the sampling among the neighboring routers p Sample and mark Sample and not mark 1 0 p/2 p/2 Sample all marked packets Sample unmarked packet with probability p/(2-p) correlation : p + p p = p p 2 p total sampling probability : p 1 p + p = p p correlation factor (sampled by both) : ( > 50% because 0<p<1 ) p 1 / p = 2 p 2 p
7 Traceback Processing 1. Collect a set of attack packets L v 2. Check router S, a neighbor of the victim, with L v 3. Check each router R ( neighbor of S ) with L s attacker packet digest R packet digest Have you seen any of these packets? yes S L s You are convicted! Use these evidences to make your L s packet digest L v Victim
8 Traceback Processing 4. Pass L v to R to be used to make new L s 5. Repeat these processes attacker R packet digest Have you seen any of these packets? yes S packet digest L s packet digest You are convicted! Use these evidences to make your L s L v Victim
9 A fundamental optimization question Recall that in the original traceback scheme, the router records a bloom filter of 3 bits for each and every packets There are many different ways of spending this 3 bits per packet budget, representing different tradeoff points between size of digest and sampling frequency e.g., use a 15-bit bloom filter but only record 20% of digests (15*20% =3) e.g., use a 12-bit bloom filter but only record 25% of digests (12*25% =3) Which one is better or where is the optimal tradeoff point? Answer lies in the information theory
10 Intuitions from the information theory View the traceback system as a communication channel Increasing the size of digest reduces the false positive ratio of the bloom filter, and therefore improving the signal noise ratio (S/N) Decreasing sampling rate reduces the bandwidth (W) of the channel We want to maximize C = W log2 (1+S/N) C is the mutual information maximize the mutual information between what is observed and what needs to be predicted or minimize the conditional entropy Bonus from information theory: we derive a lower bound on the number of packets needed to achieve a certain level of traceback accuracy through Fano s inequality
11 The optimization problem k* = argmin H( Z X t1 +X f1, Y t +Y f ) k subject to the resource constraint ( s = k p ) s: average number of bits devoted for each packet p: sampling probability k: size the bloom filter digest
12 Applications of Information Theory Resource constraint: s = k p = 0.4
13 Verification of Theoretical Analysis Parameter tuning Parameters: 1000 attackers, s = k p = 0.4
14 Lower bound through Fano s inequality H(p e ) H( Z X t1 +X f1,y t +Y f ) Parameters: s=0.4, k=12, p=3.3% (12 3.3% = 0.4)
15 Simulation results False Negative & False Positive on Skitter I topology Parameters: s=0.4, k=12, p=3.3% (12 3.3% = 0.4)
16 Verification of Theoretical Analysis Error levels by different k values Parameters: 2000 attackers, N p =200,000
17 Future work and open issues 1. Is correlation factor 1/(2-p) optimal for coordination using one bit? 2. What if we use more that one bit for coordinating sampling? 3. How to optimally combine PPM and hash-based scheme a Network Information Theory question. 4. How to know with 100% certainty that some packets are attack packets? How about we only know with a certainty of p?
18 Conclusions Design a sampled hash-based IP traceback scheme that can scale to a large number of attackers and high link speeds Addressed two challenges in this design: Tamper-resistant coordinated sampling to increase the correlation factor to beyond 50% between two neighboring routers An information theory approach to answer the fundamental parameter tuning question, and to answer some lower bound questions Lead to many new questions and challenges
Denial of Service. Tom Chen SMU [email protected]
Denial of Service Tom Chen SMU [email protected] Outline Introduction Basics of DoS Distributed DoS (DDoS) Defenses Tracing Attacks TC/BUPT/8704 SMU Engineering p. 2 Introduction What is DoS? 4 types
Dr. Arjan Durresi Louisiana State University, Baton Rouge, LA 70803 [email protected]. DDoS and IP Traceback. Overview
DDoS and IP Traceback Dr. Arjan Durresi Louisiana State University, Baton Rouge, LA 70803 [email protected] Louisiana State University DDoS and IP Traceback - 1 Overview Distributed Denial of Service
A Hybrid Approach for Detecting, Preventing, and Traceback DDoS Attacks
A Hybrid Approach for Detecting, Preventing, and Traceback DDoS Attacks ALI E. EL-DESOKY 1, MARWA F. AREAD 2, MAGDY M. FADEL 3 Department of Computer Engineering University of El-Mansoura El-Gomhoria St.,
Efficient Detection of Ddos Attacks by Entropy Variation
IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727 Volume 7, Issue 1 (Nov-Dec. 2012), PP 13-18 Efficient Detection of Ddos Attacks by Entropy Variation 1 V.Sus hma R eddy,
Packet-Marking Scheme for DDoS Attack Prevention
Abstract Packet-Marking Scheme for DDoS Attack Prevention K. Stefanidis and D. N. Serpanos {stefanid, serpanos}@ee.upatras.gr Electrical and Computer Engineering Department University of Patras Patras,
Entropy-Based Collaborative Detection of DDoS Attacks on Community Networks
Entropy-Based Collaborative Detection of DDoS Attacks on Community Networks Krishnamoorthy.D 1, Dr.S.Thirunirai Senthil, Ph.D 2 1 PG student of M.Tech Computer Science and Engineering, PRIST University,
Proving Distributed Denial of Service Attacks in the Internet
Proving Distributed Denial of Service Attacks in the Internet Prashanth Radhakrishnan, Manu Awasthi, Chitra Aravamudhan {shanth, manua, caravamu}@cs.utah.edu Abstract In this course report, we present
A Survey of IP Traceback Mechanisms to overcome Denial-of-Service Attacks
A Survey of IP Traceback Mechanisms to overcome Denial-of-Service Attacks SHWETA VINCENT, J. IMMANUEL JOHN RAJA Department of Computer Science and Engineering, School of Computer Science and Technology
EFFICIENT DETECTION IN DDOS ATTACK FOR TOPOLOGY GRAPH DEPENDENT PERFORMANCE IN PPM LARGE SCALE IPTRACEBACK
EFFICIENT DETECTION IN DDOS ATTACK FOR TOPOLOGY GRAPH DEPENDENT PERFORMANCE IN PPM LARGE SCALE IPTRACEBACK S.Abarna 1, R.Padmapriya 2 1 Mphil Scholar, 2 Assistant Professor, Department of Computer Science,
How To Protect Your Network From A Ddos Attack On A Network With Pip (Ipo) And Pipi (Ipnet) From A Network Attack On An Ip Address Or Ip Address (Ipa) On A Router Or Ipa
Defenses against Distributed Denial of Service Attacks Adrian Perrig, Dawn Song, Avi Yaar CMU Internet Threat: DDoS Attacks Denial of Service (DoS) attack: consumption (exhaustion) of resources to deny
A Novel Packet Marketing Method in DDoS Attack Detection
SCI-PUBLICATIONS Author Manuscript American Journal of Applied Sciences 4 (10): 741-745, 2007 ISSN 1546-9239 2007 Science Publications A Novel Packet Marketing Method in DDoS Attack Detection 1 Changhyun
International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net
International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational
Internet Protocol trace back System for Tracing Sources of DDoS Attacks and DDoS Detection in Neural Network Packet Marking
Internet Protocol trace back System for Tracing Sources of DDoS Attacks and DDoS Detection in Neural Network Packet Marking 1 T. Ravi Kumar, 2 T Padmaja, 3 P. Samba Siva Raju 1,3 Sri Venkateswara Institute
Flexible Deterministic Packet Marking: An IP Traceback Scheme Against DDOS Attacks
Flexible Deterministic Packet Marking: An IP Traceback Scheme Against DDOS Attacks Prashil S. Waghmare PG student, Sinhgad College of Engineering, Vadgaon, Pune University, Maharashtra, India. [email protected]
NEW TECHNIQUES FOR THE DETECTION AND TRACKING OF THE DDOS ATTACKS
NEW TECHNIQUES FOR THE DETECTION AND TRACKING OF THE DDOS ATTACKS Iustin PRIESCU, PhD Titu Maiorescu University, Bucharest Sebastian NICOLAESCU, PhD Verizon Business, New York, USA Rodica NEAGU, MBA Outpost24,
IP Traceback-based Intelligent Packet Filtering: A Novel Technique for Defending Against Internet DDoS Attacks
IP Traceback-based Intelligent Packet Filtering: A Novel Technique for Defending Against Internet DDoS Attacks Minho Sung and Jun Xu College of Computing Georgia Institute of Technology Atlanta, GA 30332-0280
Tracers Placement for IP Traceback against DDoS Attacks
Tracers Placement for IP Traceback against DDoS Attacks Chun-Hsin Wang, Chang-Wu Yu, Chiu-Kuo Liang, Kun-Min Yu, Wen Ouyang, Ching-Hsien Hsu, and Yu-Guang Chen Department of Computer Science and Information
DDoS Attack Detection Using Flow Entropy and Packet Sampling on Huge Networks
DDoS Attack Detection Using Flow Entropy and Packet Sampling on Huge Networks Jae-Hyun Jun School of Computer Science and Engineering Kyungpook National University [email protected] Cheol-Woong Ahn
Denial of Service and Anomaly Detection
Denial of Service and Anomaly Detection Vasilios A. Siris Institute of Computer Science (ICS) FORTH, Crete, Greece [email protected] SCAMPI BoF, Zagreb, May 21 2002 Overview! What the problem is and
Dual Mechanism to Detect DDOS Attack Priyanka Dembla, Chander Diwaker 2 1 Research Scholar, 2 Assistant Professor
International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Engineering, Business and Enterprise
An Efficient Filter for Denial-of-Service Bandwidth Attacks
An Efficient Filter for Denial-of-Service Bandwidth Attacks Samuel Abdelsayed, David Glimsholt, Christopher Leckie, Simon Ryan and Samer Shami Department of Electrical and Electronic Engineering ARC Special
Provider-Based Deterministic Packet Marking against Distributed DoS Attacks
Provider-Based Deterministic Packet Marking against Distributed DoS Attacks Vasilios A. Siris and Ilias Stavrakis Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH)
How To Mark A Packet With A Probability Of 1/D
TTL based Packet Marking for IP Traceback Vamsi Paruchuri, Aran Durresi and Sriram Chellappan* Abstract Distributed Denial of Service Attacks continue to pose maor threats to the Internet. In order to
Classification and State of Art of IP Traceback Techniques for DDoS Defense
Classification and State of Art of IP Traceback Techniques for DDoS Defense Karanpreet Singh a, Krishan Kumar b, Abhinav Bhandari c,* a Computer Science & Engg.,Punjab Institute of Technology,Kapurthala,
Forensics Tracking for IP Spoofers Using Path Backscatter Messages
Forensics Tracking for IP Spoofers Using Path Backscatter Messages Mithun Dev P D 1, Anju Augustine 2 1, 2 Department of Computer Science and Engineering, KMP College of Engineering, Asamannoor P.O Poomala,
Defending against Flooding-Based Distributed Denial-of-Service Attacks: A Tutorial
Defending against Flooding-Based Distributed Denial-of-Service Attacks: A Tutorial Rocky K. C. Chang The Hong Kong Polytechnic University Presented by Scott McLaren 1 Overview DDoS overview Types of attacks
ATTACKS ON CLOUD COMPUTING. Nadra Waheed
ATTACKS ON CLOUD COMPUTING 1 Nadra Waheed CONTENT 1. Introduction 2. Cloud computing attacks 3. Cloud TraceBack 4. Evaluation 5. Conclusion 2 INTRODUCTION Today, cloud computing systems are providing a
Attack Diagnosis: Throttling Distributed Denialof-Service Attacks Close to the Attack Sources
Attack Diagnosis: Throttling Distributed Denialof-Service Attacks Close to the Attack Sources Ruiliang Chen and Jung-Min Park Bradley Department of Electrical and Computer Engineering Virginia Polytechnic
Tracing Cyber Attacks from the Practical Perspective
TOPICS IN INTERNET TECHNOLOGY Tracing Cyber Attacks from the Practical Perspective Zhiqiang Gao and Nirwan Ansari ABSTRACT The integrity of the Internet is severely impaired by rampant denial of service
How To Protect A Dns Authority Server From A Flood Attack
the Availability Digest @availabilitydig Surviving DNS DDoS Attacks November 2013 DDoS attacks are on the rise. A DDoS attack launches a massive amount of traffic to a website to overwhelm it to the point
Distributed Denial of Service Attack Tools
Distributed Denial of Service Attack Tools Introduction: Distributed Denial of Service Attack Tools Internet Security Systems (ISS) has identified a number of distributed denial of service tools readily
Pi: A Path Identification Mechanism to Defend against DDoS Attacks
Pi: A Path Identification Mechanism to Defend against DDoS Attacks Abraham Yaar Adrian Perrig Dawn Song Carnegie Mellon University {ayaar, perrig, dawnsong}@cmu.edu Abstract Distributed Denial of Service
DDoS-blocker: Detection and Blocking of Distributed Denial of Service Attack
DDoS-blocker: Detection and Blocking of Distributed Denial of Service Attack Sugih Jamin EECS Department University of Michigan [email protected] Internet Design Goals Key design goals of Internet protocols:
Protection against Denial of Service Attacks: Attack Detection
International Journal of Modern Engineering Research (IJMER) www.ijmer.com Pp-101-105 ISSN: 2249-6645 Protection against Denial of Service Attacks: Attack Detection 1 P.Babu Prakash Kumar, 2 Ashish Umesh
An Improved IPv6 Trace-Back technique to uncover Denial of Service (DoS) attacks
An Improved IPv6 Trace-Back technique to uncover Denial of Service (DoS) attacks Thesis submitted in partial fulfillment of the requirements for the award of degree of Master of Engineering in Computer
Yahoo Attack. Is DDoS a Real Problem?
Is DDoS a Real Problem? Yes, attacks happen every day One study reported ~4,000 per week 1 On a wide variety of targets Tend to be highly successful There are few good existing mechanisms to stop them
ForNet: A Distributed Forensic Network
ForNet: A Distributed Forensic Network Kulesh Shanmugasundaram Polytechnic University 1 Problem and Motivation Security fails. Thousands of reported security breaches, worms, and viruses attest to this
THE Internet is an open architecture susceptible to various
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 10, OCTOBER 2005 1 You Can Run, But You Can t Hide: An Effective Statistical Methodology to Trace Back DDoS Attackers Terence K.T. Law,
WIRELESS PACKET ANALYZER TOOL WITH IP TRACEROUTE
WIRELESS PACKET ANALYZER TOOL WITH IP TRACEROUTE H. Abdul Rauf, Dean (CSE/IT), V.L.B. Janakiammal College of Engineering & Technology, Coimbatore A. Ebenezer Jeyakumar Principal, Government College of
Port Hopping for Resilient Networks
Port Hopping for Resilient Networks Henry C.J. Lee, Vrizlynn L.L. Thing Institute for Infocomm Research Singapore Email: {hlee, vriz}@i2r.a-star.edu.sg Abstract With the pervasiveness of the Internet,
Evaluating Cooperative Web Caching Protocols for Emerging Network Technologies 1
Evaluating Cooperative Web Caching Protocols for Emerging Network Technologies 1 Christoph Lindemann and Oliver P. Waldhorst University of Dortmund Department of Computer Science August-Schmidt-Str. 12
An Anomaly-Based Method for DDoS Attacks Detection using RBF Neural Networks
2011 International Conference on Network and Electronics Engineering IPCSIT vol.11 (2011) (2011) IACSIT Press, Singapore An Anomaly-Based Method for DDoS Attacks Detection using RBF Neural Networks Reyhaneh
Network Attacks Detection Based on Multi Clustering and Trace back Methods
Network Attacks Detection Based on Multi Clustering and Trace back Methods C.Navamani MCA.,M.Phil.,ME., S.Naveen Assistant professor, Final MCA Dept of computer applications, Nandha engineering college,
Digital vs. Analog Volume Controls
Digital vs. Analog Volume Controls October 2011 AMM ESS 10/11 Summary of this Presentation In a Digital Audio System what is the trade-off between using a digital or an analog volume control? To answer
Quality of Service Routing Network and Performance Evaluation*
Quality of Service Routing Network and Performance Evaluation* Shen Lin, Cui Yong, Xu Ming-wei, and Xu Ke Department of Computer Science, Tsinghua University, Beijing, P.R.China, 100084 {shenlin, cy, xmw,
Filtering Based Techniques for DDOS Mitigation
Filtering Based Techniques for DDOS Mitigation Comp290: Network Intrusion Detection Manoj Ampalam DDOS Attacks: Target CPU / Bandwidth Attacker signals slaves to launch an attack on a specific target address
ATTACK PATTERNS FOR DETECTING AND PREVENTING DDOS AND REPLAY ATTACKS
ATTACK PATTERNS FOR DETECTING AND PREVENTING DDOS AND REPLAY ATTACKS A.MADHURI Department of Computer Science Engineering, PVP Siddhartha Institute of Technology, Vijayawada, Andhra Pradesh, India. A.RAMANA
Tracing the Origins of Distributed Denial of Service Attacks
Tracing the Origins of Distributed Denial of Service Attacks A.Peart Senior Lecturer [email protected] University of Portsmouth, UK R.Raynsford. Student [email protected] University of
Active Internet Traffic Filtering to Denial of Service Attacks from Flash Crowds
Active Internet Traffic Filtering to Denial of Service Attacks from Flash Crowds S.Saranya Devi 1, K.Kanimozhi 2 1 Assistant professor, Department of Computer Science and Engineering, Vivekanandha Institute
Detecting Constant Low-Frequency Appilication Layer Ddos Attacks Using Collaborative Algorithms B. Aravind, (M.Tech) CSE Dept, CMRTC, Hyderabad
Detecting Constant Low-Frequency Appilication Layer Ddos Attacks Using Collaborative Algorithms B. Aravind, (M.Tech) CSE Dept, CMRTC, Hyderabad M. Lakshmi Narayana, M.Tech CSE Dept, CMRTC, Hyderabad Abstract:
How To Stop A Ddos Attack On A Network From Tracing To Source From A Network To A Source Address
Inter-provider Coordination for Real-Time Tracebacks Kathleen M. Moriarty 2 June 2003 This work was sponsored by the Air Force Contract number F19628-00-C-002. Opinions, interpretations, conclusions, and
Announcements. No question session this week
Announcements No question session this week Stretch break DoS attacks In Feb. 2000, Yahoo s router kept crashing - Engineers had problems with it before, but this was worse - Turned out they were being
The Internet provides a wealth of information,
IP Traceback: A New Denial-of-Service Deterrent? The increasing frequency of malicious computer attacks on government agencies and Internet businesses has caused severe economic waste and unique social
Signal Processing Methods for Denial of Service Attack Detection
0 Signal Processing Methods for Denial of Service Attack Detection Urbashi Mitra Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering University of Southern California Los Angeles,
Firewalls and Intrusion Detection
Firewalls and Intrusion Detection What is a Firewall? A computer system between the internal network and the rest of the Internet A single computer or a set of computers that cooperate to perform the firewall
On Evaluating IP Traceback Schemes: A Practical Perspective
2013 IEEE Security and Privacy Workshops On Evaluating IP Traceback Schemes: A Practical Perspective Vahid Aghaei-Foroushani Faculty of Computer Science Dalhousie University Halifax, NS, Canada [email protected]
CYBER SCIENCE 2015 AN ANALYSIS OF NETWORK TRAFFIC CLASSIFICATION FOR BOTNET DETECTION
CYBER SCIENCE 2015 AN ANALYSIS OF NETWORK TRAFFIC CLASSIFICATION FOR BOTNET DETECTION MATIJA STEVANOVIC PhD Student JENS MYRUP PEDERSEN Associate Professor Department of Electronic Systems Aalborg University,
DDoS Overview and Incident Response Guide. July 2014
DDoS Overview and Incident Response Guide July 2014 Contents 1. Target Audience... 2 2. Introduction... 2 3. The Growing DDoS Problem... 2 4. DDoS Attack Categories... 4 5. DDoS Mitigation... 5 1 1. Target
PACKET SIMULATION OF DISTRIBUTED DENIAL OF SERVICE (DDOS) ATTACK AND RECOVERY
PACKET SIMULATION OF DISTRIBUTED DENIAL OF SERVICE (DDOS) ATTACK AND RECOVERY Author: Sandarva Khanal, Ciara Lynton Advisor: Dr. Richard A. Dean Department of Electrical and Computer Engineering Morgan
Federal Computer Incident Response Center (FedCIRC) Defense Tactics for Distributed Denial of Service Attacks
Threat Paper Federal Computer Incident Response Center (FedCIRC) Defense Tactics for Distributed Denial of Service Attacks Federal Computer Incident Response Center 7 th and D Streets S.W. Room 5060 Washington,
Evaluation of Flow and Average Entropy Based Detection Mechanism for DDoS Attacks using NS-2
pp.139-146 http://dx.doi.org/10.14257/ijsia.2016.10.5.13 Evaluation of Flow and Average Entropy Based Detection Mechanism for DDoS Attacks using NS-2 Raghav Vadehra 1, Manjit Singh 2, Butta Singh 3, Nitika
Distributed Denial of Service (DDoS)
Distributed Denial of Service (DDoS) Defending against Flooding-Based DDoS Attacks: A Tutorial Rocky K. C. Chang Presented by Adwait Belsare ([email protected]) Suvesh Pratapa ([email protected]) Modified by
Adaptive Distributed Traffic Control Service for DDoS Attack Mitigation
Adaptive Distributed Traffic Control Service for DDoS Attack Mitigation Bernhard Plattner, ETH ZürichZ Joint work with Matthias Bossardt and Thomas Dübendorfer TIK ETH Zürich UK ProgNet Workshop, 1st December
How To Stop A Malicious Dns Attack On A Domain Name Server (Dns) From Being Spoofed (Dnt) On A Network (Networking) On An Ip Address (Ip Address) On Your Ip Address On A Pc Or Ip Address
DNS Amplification Are YOU Part of the Problem? (RIPE66 Dublin, Ireland - May 13, 2013) Merike Kaeo Security Evangelist, Internet Identity [email protected] INTRO Statistics on DNS Amplification
DNS amplification attacks
amplification attacks Matsuzaki Yoshinobu 2006/04/25 Copyright (C) 2006 Internet Initiative Japan Inc. 1 amplification attacks Attacks using IP spoofed dns query generating a traffic overload
Wharf T&T Limited DDoS Mitigation Service Customer Portal User Guide
Table of Content I. Note... 1 II. Login... 1 III. Real-time, Daily and Monthly Report... 3 Part A: Real-time Report... 3 Part 1: Traffic Details... 4 Part 2: Protocol Details... 5 Part B: Daily Report...
Defending Against Distributed Denial of Service Attacks
Defending Against Distributed Denial of Service Attacks By Tao Peng A thesis submitted to the University of Melbourne in total fullfillment for the degree of Doctor of Philosophy Department of Electrical
Domain Name Abuse Detection. Liming Wang
Domain Name Abuse Detection Liming Wang Outline 1 Domain Name Abuse Work Overview 2 Anti-phishing Research Work 3 Chinese Domain Similarity Detection 4 Other Abuse detection ti 5 System Information 2 Why?
Analysis of Automated Model against DDoS Attacks
Analysis of Automated Model against DDoS Attacks Udaya Kiran Tupakula Vijay Varadharajan Information and Networked Systems Security Research Division of Information and Communication Sciences Macquarie
Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 1. Network Security. Canada France Meeting on Security, Dec 06-08
Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 1 Network Security Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 2 Collaboration with Frank Akujobi
A Source Identification Scheme against DDoS Attacks in Cluster Interconnects
A Source Identification Scheme against DDoS Attacks in Cluster Interconnects Manhee Lee* Eun Jung Kim* Cheol Won Lee *Department of Computer Science Texas A&M University College Station, TX-77840 [email protected],
Towards Autonomic DDoS Mitigation using Software Defined Networking
Towards Autonomic DDoS Mitigation using Software Defined Networking Authors: Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, Hervé Debar NDSS Workshop on Security of Emerging Networking Technologies (SENT
Eudemon8000 High-End Security Gateway HUAWEI TECHNOLOGIES CO., LTD.
Eudemon8000 High-End Security Gateway HUAWEI TECHNOLOGIES CO., LTD. Product Overview Faced with increasingly serious network threats and dramatically increased network traffic, carriers' backbone networks,
Basheer Al-Duwairi Jordan University of Science & Technology
Basheer Al-Duwairi Jordan University of Science & Technology Outline Examples of using network measurements /monitoring Example 1: fast flux detection Example 2: DDoS mitigation as a service Future trends
DDoS Attack and Defense: Review of Some Traditional and Current Techniques
1 DDoS Attack and Defense: Review of Some Traditional and Current Techniques Muhammad Aamir and Mustafa Ali Zaidi SZABIST, Karachi, Pakistan Abstract Distributed Denial of Service (DDoS) attacks exhaust
