Efficient Processing for Big Data Streams and their Context in Distributed Cyber Physical Systems
|
|
|
- Veronica Long
- 10 years ago
- Views:
Transcription
1 Efficient Processing for Big Data Streams and their Context in Distributed Cyber Physical Systems Department of Computer Science and Engineering Chalmers University of Technology & Gothenburg University Gothenburg Sweden 1
2 Prelude Assoc prof., Chalmers Un. of Technology & Gothenburg University, Sweden Center for Mathematics & Computer Science, Netherlands Max Planck Institute for Computer Science, Germany Chalmers: forskarassistent PhD (1996) University of Patras, Greece Computer Science and Engineering Distributed Computing 2
3 Roadmap Cyberphysical systems, big data, streams and distributed systems: how they belong together At our research team Concluding discussion 3
4 Examples Cyber Physical System (CPS) Adaptive Electricity Grids daily.com/images/
5 Cyberphysical systems as layered systems communication link Sensing+computing+ communicating device aka Internet of Things (IoT) Cyber system Physical system
6 CPS/IoT => big numbers of devices and/or big data rates => big volumes of events/data! Why this complexity? (smart) adaptive use of resources. possibilities of improvements: e.g. energy consumption, traffic bandwidth, early warnings, improving systems quality [the 4 th industrial (r)evolution, presentation S. Jeschke, 2013] 6
7 Info needed in near real time Is store&process (DB) a feasible option? high rate sensors, high speed networks, soc. media, financial records: up to Mmsg/sec; decisions must be taken really fast e.g., fractions of msec, even μsecs. as of today, of the available data from sensors only 0.1% is analyzed, mainly offline (i.e., afterwards, not in or close to real time) [Jonathan Ballon, Chief Strategy Officer, General Electric] Data Streaming: In memory, in network, distributed Locality, use of available resources Efficient one pass analysis & filter fig: V. Gulisano 7
8 Data streaming components [State of the art literature] parallelization in operators implementations: but single point bottlenecks can still persist Challenges: Throughput, Latency, Determinism, Load balancing, Fault Tolerance Distributed input sources generating streams of data (unbounded sequences of tuples, time series) fig: V. Gulisano Continuous Query ( ies) (graph of data streaming operators/tasks). Can be used to: filter / modify tuples aggregate tuples, join streams Input/output & processing can involve multiple parallel threads stateful operations computed over windows 8
9 Roadmap Cyberphysical systems, big data, streams and distributed systems: how they belong together At our research team Concluding discussion 9
10 Fine grain parallelism Parallel Data Streaming At CTH: enhanced parallelism by means of dedicated / semanticaware concurrent data objects and their efficient algorithmic finegrain synchronization implementations fig: V. Gulisano, R. Rodriguez
11 Examples of results with ScaleGate Latency, throughput scaling (while keeping fault tolerant and deterministic processing; aggregation, join operations) Baseline (Borealis,Streamcloud) FIFO queue Baseline Lock free FIFO ScaleGate based shifting the saturation point of the pipeline possible to process heavier streams with same computing capacity, many times faster, Mtuples/sec [CGNPT ACM SPAA2014, GNPT IEEE BigData2015] 11
12 Examples of use cases: Geospatial monitoring DETERMINISTIC REAL TIME ANALYTICS OF GEOSPATIAL DATA STREAMS THROUGH SCALEGATE OBJECTS BEST SOLUTION GRAND CHALLENGE AWARD: 9th ACM SIGMOD SIGSOFT International Conference on Distributed Event Based Systems 2015 Top k frequent routes, profitable cells (near real time window based streaming) > 110,000 tuples/sec throughput, < 46 msec latency [GNWPT ACM DEBS 2015] 12
13 Examples of use cases: Advanced Metering Infrastructure Efficient temporal spacial clustering for on line identification of critical events (even when the communication is unreliable) Sliding window time Grid based Single Linkage Clustering (G SLC) [FALP IEEE BigData2014] 13
14 Examples of use cases: Advanced Metering Infrastructure Efficient Data Validation on the fly: Noisy and lossy data: bad calibrated / faulty devices, lossy communication, Eg scaling to 25 Million meters/hourly readings on mainstream 6 core platform [GAP IEEE ISGT 2014] + differentially private aggregation [ongoing work] 14
15 Roadmap Cyberphysical systems, big data, streams and distributed systems: how they belong together At our research team Concluding discussion 15
16 Summarizing & Concluding DS^2: DataStreaming*DataStructures ie efficient multicore stream processing Efficient algorithmic (in memory) stream analysis Advancing SoA BigDataStreamAnalysis (context IoT/CPS; relate with Cloud/ Fog computing) important to design algorithms that communicate as little as possible efficient processing and data analysis need to be unified [J. Dongarra, D. Reed, CACM 2015] In our ongoing/near future research: Elastic parallel&distributed, in network streaming (allowing eg. embedded devices) More concurrent data structures & multicorealgos for efficient in memory stream processing Processing high rate sensory data (eg LIDAR) & other use cases in CPS&IoT 16
17 Thank you Contact; Co authors in work mentioned here (from left to right): M. Almgren, D. Cederman, Z. Fu, V. Gulisano, O. Landsiedel, Y. Nikolakopoulos, M.P., P. Tsigas EXCESS 17
18 At our research team (approx 30 pers): Cyberphysical systems research Systems Security Distribut ed systems, IoT Parallel &stream computing Demand response in energy Data Internet of Things Energy/efficient computation Cooperative vehicular systems Resource management, load shaping Microgrids demo/ testbeds Data processing: validation, monitoring, prediction Security, privacy streaming, parallel, multicore energy efficiency : estimated savings 30 70% Communication &coordination, data driven situationawareness (new postdoc SAFER) Virtual trafficlights/safer crossings Gulliver demo/testbed
Online and Scalable Data Validation in Advanced Metering Infrastructures
Online and Scalable Data Validation in Advanced Metering Infrastructures Chalmers University of technology Agenda 1. Problem statement 2. Preliminaries Data Streaming 3. Streaming-based Data Validation
Network Infrastructure Services CS848 Project
Quality of Service Guarantees for Cloud Services CS848 Project presentation by Alexey Karyakin David R. Cheriton School of Computer Science University of Waterloo March 2010 Outline 1. Performance of cloud
From Spark to Ignition:
From Spark to Ignition: Fueling Your Business on Real-Time Analytics Eric Frenkiel, MemSQL CEO June 29, 2015 San Francisco, CA What s in Store For This Presentation? 1. MemSQL: A real-time database for
Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect
Matteo Migliavacca (mm53@kent) School of Computing Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect Simple past - Traditional
Big data platform for IoT Cloud Analytics. Chen Admati, Advanced Analytics, Intel
Big data platform for IoT Cloud Analytics Chen Admati, Advanced Analytics, Intel Agenda IoT @ Intel End-to-End offering Analytics vision Big data platform for IoT Cloud Analytics Platform Capabilities
BSC vision on Big Data and extreme scale computing
BSC vision on Big Data and extreme scale computing Jesus Labarta, Eduard Ayguade,, Fabrizio Gagliardi, Rosa M. Badia, Toni Cortes, Jordi Torres, Adrian Cristal, Osman Unsal, David Carrera, Yolanda Becerra,
Enabling Cloud Architecture for Globally Distributed Applications
The increasingly on demand nature of enterprise and consumer services is driving more companies to execute business processes in real-time and give users information in a more realtime, self-service manner.
PROTOTYPE IMPLEMENTATION OF A DEMAND DRIVEN NETWORK MONITORING ARCHITECTURE
PROTOTYPE IMPLEMENTATION OF A DEMAND DRIVEN NETWORK MONITORING ARCHITECTURE Augusto Ciuffoletti, Yari Marchetti INFN-CNAF (Italy) Antonis Papadogiannakis, Michalis Polychronakis FORTH (Greece) Summary
A Comparative Study of cloud and mcloud Computing
A Comparative Study of cloud and mcloud Computing Ms.S.Gowri* Ms.S.Latha* Ms.A.Nirmala Devi* * Department of Computer Science, K.S.Rangasamy College of Arts and Science, Tiruchengode. [email protected]
Real-Time Enterprise Management with SAP Business Suite on the SAP HANA Platform
Real-Time Enterprise Management with SAP Business Suite on the SAP HANA Platform Jürgen Butsmann, Solution Owner, Member of Global Business Development Suite on SAP HANA, SAP October 9th, 2014 Public Agenda
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University
Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association
Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?
Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015
Pulsar Realtime Analytics At Scale Tony Ng April 14, 2015 Big Data Trends Bigger data volumes More data sources DBs, logs, behavioral & business event streams, sensors Faster analysis Next day to hours
Towards Lightweight Logging and Replay of Embedded, Distributed Systems
Towards Lightweight Logging and Replay of Embedded, Distributed Systems (Invited Paper) Salvatore Tomaselli and Olaf Landsiedel Computer Science and Engineering Chalmers University of Technology, Sweden
The 5G Infrastructure Public-Private Partnership
The 5G Infrastructure Public-Private Partnership NetFutures 2015 5G PPP Vision 25/03/2015 19/06/2015 1 5G new service capabilities User experience continuity in challenging situations such as high mobility
I/O virtualization. Jussi Hanhirova Aalto University, Helsinki, Finland [email protected]. 2015-12-10 Hanhirova CS/Aalto
I/O virtualization Jussi Hanhirova Aalto University, Helsinki, Finland [email protected] Outline Introduction IIoT Data streams on the fly processing Network packet processing in the virtualized
Towards Smart and Intelligent SDN Controller
Towards Smart and Intelligent SDN Controller - Through the Generic, Extensible, and Elastic Time Series Data Repository (TSDR) YuLing Chen, Dell Inc. Rajesh Narayanan, Dell Inc. Sharon Aicler, Cisco Systems
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics
Performance Modeling and Analysis of a Database Server with Write-Heavy Workload
Performance Modeling and Analysis of a Database Server with Write-Heavy Workload Manfred Dellkrantz, Maria Kihl 2, and Anders Robertsson Department of Automatic Control, Lund University 2 Department of
Big Data Analysis using Distributed Actors Framework
Big Data Analysis using Distributed Actors Framework Sanjeev Mohindra, Daniel Hook, Andrew Prout, Ai-Hoa Sanh, An Tran, and Charles Yee MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 01810 Abstract
Big Data Storage Architecture Design in Cloud Computing
Big Data Storage Architecture Design in Cloud Computing Xuebin Chen 1, Shi Wang 1( ), Yanyan Dong 1, and Xu Wang 2 1 College of Science, North China University of Science and Technology, Tangshan, Hebei,
From Big Data to Smart Data Thomas Hahn
Siemens Future Forum @ HANNOVER MESSE 2014 From Big to Smart Hannover Messe 2014 The Evolution of Big Digital data ~ 1960 warehousing ~1986 ~1993 Big data analytics Mining ~2015 Stream processing Digital
CS6204 Advanced Topics in Networking
CS6204 Advanced Topics in Networking Assoc Prof. Chan Mun Choon School of Computing National University of Singapore Aug 14, 2015 CS6204 Lecturer Chan Mun Choon Office: COM2, #04-17 Email: [email protected]
YOU VS THE SENSORS. Six Requirements for Visualizing the Internet of Things. Dan Potter Chief Marketing Officer, Datawatch Corporation
YOU VS THE SENSORS Six Requirements for Visualizing the Internet of Things Dan Potter Chief Marketing Officer, Datawatch Corporation About Datawatch NASDAQ: DWCH Pioneer in real-time visual data discovery
How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time
SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first
Tracking a Soccer Game with Big Data
Tracking a Soccer Game with Big Data QCon Sao Paulo - 2015 Asanka Abeysinghe Vice President, Solutions Architecture - WSO2,Inc 2 Story about soccer 3 and Big Data Outline Big Data and CEP Tracking a Soccer
Bigdata : Enabling the Semantic Web at Web Scale
Bigdata : Enabling the Semantic Web at Web Scale Presentation outline What is big data? Bigdata Architecture Bigdata RDF Database Performance Roadmap What is big data? Big data is a new way of thinking
Journal of Chemical and Pharmaceutical Research, 2015, 7(3):1388-1392. Research Article. E-commerce recommendation system on cloud computing
Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(3):1388-1392 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 E-commerce recommendation system on cloud computing
Cloud App Anatomy. Tanj Bennett Applications and Services Group Microsoft Corps. 5/15/2015 Cloud Apps
Cloud App Anatomy Tanj Bennett Applications and Services Group Microsoft Corps Cloud Apps Are Personal Personal applications have a display, means of input, and computational devices which execute them.
PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions. Outline. Performance oriented design
PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions Slide 1 Outline Principles for performance oriented design Performance testing Performance tuning General
Load Balancing and Maintaining the Qos on Cloud Partitioning For the Public Cloud
Load Balancing and Maintaining the Qos on Cloud Partitioning For the Public Cloud 1 S.Karthika, 2 T.Lavanya, 3 G.Gokila, 4 A.Arunraja 5 S.Sarumathi, 6 S.Saravanakumar, 7 A.Gokilavani 1,2,3,4 Student, Department
A SURVEY ON MAPREDUCE IN CLOUD COMPUTING
A SURVEY ON MAPREDUCE IN CLOUD COMPUTING Dr.M.Newlin Rajkumar 1, S.Balachandar 2, Dr.V.Venkatesakumar 3, T.Mahadevan 4 1 Asst. Prof, Dept. of CSE,Anna University Regional Centre, Coimbatore, [email protected]
Enterprise Applications
Enterprise Applications Chi Ho Yue Sorav Bansal Shivnath Babu Amin Firoozshahian EE392C Emerging Applications Study Spring 2003 Functionality Online Transaction Processing (OLTP) Users/apps interacting
Real Time Big Data Processing
Real Time Big Data Processing Cloud Expo 2014 Ian Meyers Amazon Web Services Global Infrastructure Deployment & Administration App Services Analytics Compute Storage Database Networking AWS Global Infrastructure
BigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic
BigData An Overview of Several Approaches David Mera Masaryk University Brno, Czech Republic 16/12/2013 Table of Contents 1 Introduction 2 Terminology 3 Approaches focused on batch data processing MapReduce-Hadoop
White Paper. How Streaming Data Analytics Enables Real-Time Decisions
White Paper How Streaming Data Analytics Enables Real-Time Decisions Contents Introduction... 1 What Is Streaming Analytics?... 1 How Does SAS Event Stream Processing Work?... 2 Overview...2 Event Stream
5G Requirements from M2M / Smart Grid
Technische Universität München Lehrstuhl für Kommunikationsnetze Prof. Dr.-Ing. W. Kellerer 5G Requirements from M2M / Smart Grid Mikhail Vilgelm [email protected] Wolfgang Kellerer [email protected]
Giving life to today s media distribution services
Giving life to today s media distribution services FIA - Future Internet Assembly Athens, 17 March 2014 Presenter: Nikolaos Efthymiopoulos Network architecture & Management Group Copyright University of
Digital Catapult. The impact of Big Data in a Connected Digital Economy Future of Healthcare. Mark Wall Big Data & Analytics Leader.
1 Digital Catapult The impact of Big Data in a Connected Digital Economy Future of Healthcare Mark Wall Big Data & Analytics Leader March 12 2014 Catapult is a Technology Strategy Board programme Agenda
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES SWATHI NANDURI * ZAHOOR-UL-HUQ * Master of Technology, Associate Professor, G. Pulla Reddy Engineering College, G. Pulla Reddy Engineering
QoS for (Web) Applications Velocity EU 2011
QoS for (Web) Applications Velocity EU 2011 Intelligent Activity Metering Self Regulated Software Signals & Control [email protected] Self Adaptive Software Self Adaptive Software evaluates its
JAVA IEEE 2015. 6 Privacy Policy Inference of User-Uploaded Images on Content Sharing Sites Data Mining
S.NO TITLES Domains 1 Anonymity-based Privacy-preserving Data Reporting for Participatory Sensing 2 Anonymizing Collections of Tree-Structured Data 3 Making Digital Artifacts on the Web Verifiable and
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON HIGH PERFORMANCE DATA STORAGE ARCHITECTURE OF BIGDATA USING HDFS MS.
Hillstone Intelligent Next Generation Firewall
Hillstone Intelligent Next Generation Firewall Kris Nawani Solution Manager (Thailand) 12 th March 2015 1 About Hillstone Networks Founded 2006 by Netscreen visionaries World class team with security,
Enabling Real-Time Sharing and Synchronization over the WAN
Solace message routers have been optimized to very efficiently distribute large amounts of data over wide area networks, enabling truly game-changing performance by eliminating many of the constraints
Big Data Pipeline and Analytics Platform
Big Data Pipeline and Analytics Platform Using NetflixOSS and Other Open Source Software Sudhir Tonse (@stonse) Danny Yuan (@g9yuayon) Netflix is a log generating company that also happens to stream movies
Communication and Embedded Systems: Towards a Smart Grid. Radu Stoleru, Alex Sprintson, Narasimha Reddy, and P. R. Kumar
Communication and Embedded Systems: Towards a Smart Grid Radu Stoleru, Alex Sprintson, Narasimha Reddy, and P. R. Kumar Alex Sprintson Smart grid communication Key enabling technology Collecting data Control
The Sierra Clustered Database Engine, the technology at the heart of
A New Approach: Clustrix Sierra Database Engine The Sierra Clustered Database Engine, the technology at the heart of the Clustrix solution, is a shared-nothing environment that includes the Sierra Parallel
Real-time distributed Complex Event Processing for Big Data scenarios
Institute of Parallel and Distributed Systems () Universitätsstraße 38 D-70569 Stuttgart Real-time distributed Complex Event Processing for Big Data scenarios Ruben Mayer Motivation: New Applications in
How To Provide Qos Based Routing In The Internet
CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this
Deploying Big Data to the Cloud: Roadmap for Success
Deploying Big Data to the Cloud: Roadmap for Success James Kobielus Chair, CSCC Big Data in the Cloud Working Group IBM Big Data Evangelist. IBM Data Magazine, Editor-in- Chief. IBM Senior Program Director,
Wireless Sensor Networks Database: Data Management and Implementation
Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Wireless Sensor Networks Database: Data Management and Implementation Ping Liu Computer and Information Engineering Institute,
Real Time Analytics for Big Data. NtiSh Nati Shalom @natishalom
Real Time Analytics for Big Data A Twitter Inspired Case Study NtiSh Nati Shalom @natishalom Big Data Predictions Overthe next few years we'll see the adoption of scalable frameworks and platforms for
DISTRIBUTED SYSTEMS AND CLOUD COMPUTING. A Comparative Study
DISTRIBUTED SYSTEMS AND CLOUD COMPUTING A Comparative Study Geographically distributed resources, such as storage devices, data sources, and computing power, are interconnected as a single, unified resource
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
Archiving and Sharing Big Data Digital Repositories, Libraries, Cloud Storage
Archiving and Sharing Big Data Digital Repositories, Libraries, Cloud Storage Cyrus Shahabi, Ph.D. Professor of Computer Science & Electrical Engineering Director, Integrated Media Systems Center (IMSC)
Big Data and Analytics: Getting Started with ArcGIS. Mike Park Erik Hoel
Big Data and Analytics: Getting Started with ArcGIS Mike Park Erik Hoel Agenda Overview of big data Distributed computation User experience Data management Big data What is it? Big Data is a loosely defined
Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges
Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges James Campbell Corporate Systems Engineer HP Vertica [email protected] Big
Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank
Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank Agenda» Overview» What is Big Data?» Accelerates advances in computer & technologies» Revolutionizes data measurement»
HPC data becomes Big Data. Peter Braam [email protected]
HPC data becomes Big Data Peter Braam [email protected] me 1983-2000 Academia Maths & Computer Science Entrepreneur with startups (5x) 4 startups sold Lustre emerged Held executive jobs with
Big Data. In Mobile Networks. Technical University of Tampere Industrial Big Data 2015-02-10. Martti Tuulos, Nokia Networks.
Big In Mobile s Technical University of Tampere Industrial Big 2015-02-10 Martti Tuulos, Nokia s 1 Growth Mobile traffic is growing fast Nokia Vision 1000 fold traffic growth during this decade Mobile
Big Data and Advanced Analytics Technologies for the Smart Grid
1 Big Data and Advanced Analytics Technologies for the Smart Grid Arnie de Castro, PhD SAS Institute IEEE PES 2014 General Meeting July 27-31, 2014 Panel Session: Using Smart Grid Data to Improve Planning,
Reimagining Business with SAP HANA Cloud Platform for the Internet of Things
SAP Brief SAP HANA SAP HANA Cloud Platform for the Internet of Things Objectives Reimagining Business with SAP HANA Cloud Platform for the Internet of Things Connect, transform, and reimagine Connect,
Virtualization of the MS Exchange Server Environment
MS Exchange Server Acceleration Maximizing Users in a Virtualized Environment with Flash-Powered Consolidation Allon Cohen, PhD OCZ Technology Group Introduction Microsoft (MS) Exchange Server is one of
Technology Implications of an Instrumented Planet presented at IFIP WG 10.4 Workshop on Challenges and Directions in Dependability
Technology Implications of an Instrumented Planet presented at IFIP WG 10.4 Workshop on Challenges and Directions in Dependability Nick Bowen Colin Harrison IBM June 2008 1 Background Global Technology
ORACLE COHERENCE 12CR2
ORACLE COHERENCE 12CR2 KEY FEATURES AND BENEFITS ORACLE COHERENCE IS THE #1 IN-MEMORY DATA GRID. KEY FEATURES Fault-tolerant in-memory distributed data caching and processing Persistence for fast recovery
Web Traffic Capture. 5401 Butler Street, Suite 200 Pittsburgh, PA 15201 +1 (412) 408 3167 www.metronomelabs.com
Web Traffic Capture Capture your web traffic, filtered and transformed, ready for your applications without web logs or page tags and keep all your data inside your firewall. 5401 Butler Street, Suite
Click to edit Master title style
Click to edit Master title style UNCLASSIFIED//FOR OFFICIAL USE ONLY Dr. Russell D. Richardson, G2/INSCOM Science Advisor UNCLASSIFIED//FOR OFFICIAL USE ONLY 1 UNCLASSIFIED Semantic Enrichment of the Data
The IBM Cognos Platform for Enterprise Business Intelligence
The IBM Cognos Platform for Enterprise Business Intelligence Highlights Optimize performance with in-memory processing and architecture enhancements Maximize the benefits of deploying business analytics
Big Data Mining Services and Knowledge Discovery Applications on Clouds
Big Data Mining Services and Knowledge Discovery Applications on Clouds Domenico Talia DIMES, Università della Calabria & DtoK Lab Italy [email protected] Data Availability or Data Deluge? Some decades
Prevention, Detection, Mitigation
Thesis for the Degree of DOCTOR OF PHILOSOPHY Multifaceted Defense Against Distributed Denial of Service Attacks: Prevention, Detection, Mitigation Zhang Fu Division of Networks and Systems Department
Introduction to LAN/WAN. Network Layer
Introduction to LAN/WAN Network Layer Topics Introduction (5-5.1) Routing (5.2) (The core) Internetworking (5.5) Congestion Control (5.3) Network Layer Design Isues Store-and-Forward Packet Switching Services
Big Data Analytics - Accelerated. stream-horizon.com
Big Data Analytics - Accelerated stream-horizon.com StreamHorizon & Big Data Integrates into your Data Processing Pipeline Seamlessly integrates at any point of your your data processing pipeline Implements
Internet of things (IOT) applications covering industrial domain. Dev Bhattacharya [email protected]
Internet of things (IOT) applications covering industrial domain Dev Bhattacharya [email protected] Outline Internet of things What is Internet of things (IOT) Simplified IOT System Architecture
Information Processing, Big Data, and the Cloud
Information Processing, Big Data, and the Cloud James Horey Computational Sciences & Engineering Oak Ridge National Laboratory Fall Creek Falls 2010 Information Processing Systems Model Parameters Data-intensive
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper CAST-2015 provides an opportunity for researchers, academicians, scientists and
Multilevel Communication Aware Approach for Load Balancing
Multilevel Communication Aware Approach for Load Balancing 1 Dipti Patel, 2 Ashil Patel Department of Information Technology, L.D. College of Engineering, Gujarat Technological University, Ahmedabad 1
Cloud Computing and Robotics for Disaster Management
2016 7th International Conference on Intelligent Systems, Modelling and Simulation Cloud Computing and Robotics for Disaster Management Nitesh Jangid Information Technology Department Green Research IT
Graph Analytics in Big Data. John Feo Pacific Northwest National Laboratory
Graph Analytics in Big Data John Feo Pacific Northwest National Laboratory 1 A changing World The breadth of problems requiring graph analytics is growing rapidly Large Network Systems Social Networks
How To Improve Performance On A Single Chip Computer
: Redundant Arrays of Inexpensive Disks this discussion is based on the paper:» A Case for Redundant Arrays of Inexpensive Disks (),» David A Patterson, Garth Gibson, and Randy H Katz,» In Proceedings
High Frequency Trading and NoSQL. Peter Lawrey CEO, Principal Consultant Higher Frequency Trading
High Frequency Trading and NoSQL Peter Lawrey CEO, Principal Consultant Higher Frequency Trading Agenda Who are we? Brief introduction to OpenHFT. What does a typical trading system look like What requirements
Internet Content Distribution
Internet Content Distribution Chapter 2: Server-Side Techniques (TUD Student Use Only) Chapter Outline Server-side techniques for content distribution Goals Mirrors Server farms Surrogates DNS load balancing
