Big learning: challenges and opportunities

Size: px
Start display at page:

Download "Big learning: challenges and opportunities"

Transcription

1 Big learning: challenges and opportunities Francis Bach SIERRA Project-team, INRIA - Ecole Normale Supérieure December 2013

2 Omnipresent digital media Scientific context Big data Multimedia, sensors, indicators, social networks All levels: personal, professional, scientific, industrial Too large and/or complex for manual processing Computational challenges Dealing with large databases Statistical challenges What can be predicted from such databases and how? Looking for hidden information Opportunities (and threats)

3 Omnipresent digital media Scientific context Big data Multimedia, sensors, indicators, social networks All levels: personal, professional, scientific, industrial Too large and/or complex for manual processing Computational challenges Dealing with large databases Statistical challenges What can be predicted from such databases and how? Looking for hidden information Opportunities (and threats)

4 Machine learning for big data Large-scale machine learning: large p, large n, large k p : dimension of each observation (input) n : number of observations k : number of tasks (dimension of outputs) Examples: computer vision, bioinformatics, etc.

5 Object recognition

6 Learning for bioinformatics - Proteins Crucial components of cell life Predicting multiple functions and interactions Massive data: up to 1 millions for humans! Complex data Amino-acid sequence Link with DNA Tri-dimensional molecule

7 Search engines - advertising

8 Advertising - recommendation

9 Machine learning for big data Large-scale machine learning: large p, large n, large k p : dimension of each observation (input) n : number of observations k : number of tasks (dimension of outputs) Examples: computer vision, bioinformatics, etc. Two main challenges: 1. Computational: ideal running-time complexity = O(pn + kn) 2. Statistical: meaningful results

10 Big learning: challenges and opportunities Outline Scientific context Big data: need for supervised and unsupervised learning Beyond stochastic gradient for supervised learning Few passes through the data Provable robustness and ease of use Matrix factorization for unsupervised learning Looking for hidden information through dictionary learning Feature learning

11 Supervised machine learning Data: n observations (x i,y i ) X Y, i = 1,...,n Prediction as a linear function θ Φ(x) of features Φ(x) R p (regularized) empirical risk minimization: find ˆθ solution of 1 min θ R p n n i=1 l ( y i,θ Φ(x i ) ) + µω(θ) convex data fitting term + regularizer

12 Supervised machine learning Data: n observations (x i,y i ) X Y, i = 1,...,n Prediction as a linear function θ Φ(x) of features Φ(x) R p (regularized) empirical risk minimization: find ˆθ solution of 1 min θ R p n n i=1 l ( y i,θ Φ(x i ) ) + µω(θ) convex data fitting term + regularizer Applications to any data-oriented field Computer vision, bioinformatics Natural language processing, etc.

13 Supervised machine learning Data: n observations (x i,y i ) X Y, i = 1,...,n Prediction as a linear function θ Φ(x) of features Φ(x) R p (regularized) empirical risk minimization: find ˆθ solution of 1 min θ R p n n i=1 l ( y i,θ Φ(x i ) ) + µω(θ) Main practical challenges convex data fitting term + regularizer Designing/learning good features Φ(x) Efficiently solving the optimization problem

14 Stochastic vs. deterministic methods Minimizing g(θ) = 1 n n f i (θ) with f i (θ) = l ( y i,θ Φ(x i ) ) +µω(θ) i=1 Batchgradientdescent:θ t = θ t 1 γ t g (θ t 1 ) = θ t 1 γ t n Linear (e.g., exponential) convergence rate in O(e αt ) Iteration complexity is linear in n (with line search) n f i(θ t 1 ) i=1

15 Stochastic vs. deterministic methods Minimizing g(θ) = 1 n n f i (θ) with f i (θ) = l ( y i,θ Φ(x i ) ) +µω(θ) i=1 Batchgradientdescent:θ t = θ t 1 γ t g (θ t 1 ) = θ t 1 γ t n n f i(θ t 1 ) i=1

16 Stochastic vs. deterministic methods Minimizing g(θ) = 1 n n f i (θ) with f i (θ) = l ( y i,θ Φ(x i ) ) +µω(θ) i=1 Batchgradientdescent:θ t = θ t 1 γ t g (θ t 1 ) = θ t 1 γ t n Linear (e.g., exponential) convergence rate in O(e αt ) Iteration complexity is linear in n (with line search) n f i(θ t 1 ) i=1 Stochastic gradient descent: θ t = θ t 1 γ t f i(t) (θ t 1) Sampling with replacement: i(t) random element of {1,...,n} Convergence rate in O(1/t) Iteration complexity is independent of n (step size selection?)

17 Stochastic vs. deterministic methods Minimizing g(θ) = 1 n n f i (θ) with f i (θ) = l ( y i,θ Φ(x i ) ) +µω(θ) i=1 Batchgradientdescent:θ t = θ t 1 γ t g (θ t 1 ) = θ t 1 γ t n n f i(θ t 1 ) i=1 Stochastic gradient descent: θ t = θ t 1 γ t f i(t) (θ t 1)

18 Stochastic vs. deterministic methods Goal = best of both worlds: Linear rate with O(1) iteration cost Robustness to step size log(excess cost) stochastic deterministic time

19 Stochastic vs. deterministic methods Goal = best of both worlds: Linear rate with O(1) iteration cost Robustness to step size log(excess cost) hybrid time stochastic deterministic

20 Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012) Stochastic average gradient (SAG) iteration Keep in memory the gradients of all functions f i, i = 1,...,n Random selection i(t) {1,...,n} with replacement { Iteration: θ t = θ t 1 γ n t f yi t with yi t n = i (θ t 1 ) if i = i(t) otherwise i=1 y t 1 i

21 Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012) Stochastic average gradient (SAG) iteration Keep in memory the gradients of all functions f i, i = 1,...,n Random selection i(t) {1,...,n} with replacement { Iteration: θ t = θ t 1 γ n t f yi t with yi t n = i (θ t 1 ) if i = i(t) otherwise i=1 y t 1 i Stochastic version of incremental average gradient(blatt et al., 2008) Simple implementation Extra memory requirement: same size as original data (or less) Simple/robust constant step-size

22 Stochastic average gradient Convergence analysis Assume each f i is L-smooth and g= 1 n n i=1 f i is µ-strongly convex Constant step size γ t = 1 16L. If µ 2L, C R such that n t 0, E [ g(θ t ) g(θ ) ] ( Cexp t ) 8n Linear convergence rate with iteration cost independent of n After each pass through the data, constant error reduction Breaking two lower bounds

23 spam dataset (n = , p = )

24 Simplicity Few lines of code Robustness Large-scale supervised learning Convex optimization Step-size Adaptivity to problem difficulty On-going work Single pass through the data (Bach and Moulines, 2013) Distributed algorithms - Convexity as a solution to all problems? - Need good features Φ(x) for linear predictions θ Φ(x)!

25 Simplicity Few lines of code Robustness Large-scale supervised learning Convex optimization Step-size Adaptivity to problem difficulty On-going work Single pass through the data (Bach and Moulines, 2013) Distributed algorithms Convexity as a solution to all problems? Need good features Φ(x) for linear predictions θ Φ(x)!

26 Unsupervised learning through matrix factorization Given data matrix X = (x 1,...,x n) R n p Principal component analysis: x i Dα i K-means: x i d k X = DA

27 Learning dictionaries for uncovering hidden structure Fact: many natural signals may be approximately represented as a superposition of few atoms from a dictionary D = (d 1,...,d k ) k Decomposition x = α i d i = Dα with α R k sparse i=1 Natural signals (sounds, images) (Olshausen and Field, 1997) - Decoding problem: given a dictionary D, finding α through regularized convex optimization min α R k x Dα 2 2+λ α 1

28 Learning dictionaries for uncovering hidden structure Fact: many natural signals may be approximately represented as a superposition of few atoms from a dictionary D = (d 1,...,d k ) k Decomposition x = α i d i = Dα with α R k sparse i=1 Natural signals (sounds, images) (Olshausen and Field, 1997) Decoding problem: given a dictionary D, finding α through regularized convex optimization min α R k x Dα 2 2+λ α 1 w 2 w 2 w1 w1

29 Learning dictionaries for uncovering hidden structure Fact: many natural signals may be approximately represented as a superposition of few atoms from a dictionary D = (d 1,...,d k ) k Decomposition x = α i d i = Dα with α R k sparse i=1 Natural signals (sounds, images) (Olshausen and Field, 1997) Decoding problem: given a dictionary D, finding α through regularized convex optimization min α R k x Dα 2 2+λ α 1 Dictionary learning problem: given n signals x 1,...,x n, Estimate both dictionary D and codes α 1,...,α n min D n j=1 min α j R p { xj Dα j 2 2 +λ α j 1 }

30 Challenges of dictionary learning min D n j=1 { xj } min Dα α j 2 j R p 2 +λ α j 1 Algorithmic challenges Large number of signals online learning (Mairal et al., 2009) Theoretical challenges Identifiabiliy/robustness (Jenatton et al., 2012) Domain-specific challenges Going beyond plain sparsity structured sparsity (Jenatton, Mairal, Obozinski, and Bach, 2011)

31 Applications - Digital Zooming

32 Digital Zooming (Couzinie-Devy et al., 2011)

33 Applications - Task-driven dictionaries inverse half-toning (Mairal et al., 2011)

34 Extensions - Task-driven dictionaries inverse half-toning (Mairal et al., 2011)

35 Big learning: challenges and opportunities Conclusion Scientific context Big data: need for supervised and unsupervised learning Beyond stochastic gradient for supervised learning Few passes through the data Provable robustness and ease of use Matrix factorization for unsupervised learning Looking for hidden information through dictionary learning Feature learning

36 References F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate o(1/n). Technical Report , HAL, D. Blatt, A.O. Hero, and H. Gauchman. A convergent incremental gradient method with a constant step size. 18(1):29 51, R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. Journal of Machine Learning Research, 12: , N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. Technical Report -, HAL, J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In International Conference on Machine Learning (ICML), B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37: , 1997.

Machine learning challenges for big data

Machine learning challenges for big data Machine learning challenges for big data Francis Bach SIERRA Project-team, INRIA - Ecole Normale Supérieure Joint work with R. Jenatton, J. Mairal, G. Obozinski, N. Le Roux, M. Schmidt - December 2012

More information

Beyond stochastic gradient descent for large-scale machine learning

Beyond stochastic gradient descent for large-scale machine learning Beyond stochastic gradient descent for large-scale machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - ECML-PKDD,

More information

Stochastic gradient methods for machine learning

Stochastic gradient methods for machine learning Stochastic gradient methods for machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - April 2013 Context Machine

More information

Machine learning and optimization for massive data

Machine learning and optimization for massive data Machine learning and optimization for massive data Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint work with Eric Moulines - IHES, May 2015 Big data revolution?

More information

Stochastic gradient methods for machine learning

Stochastic gradient methods for machine learning Stochastic gradient methods for machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - April 2013 Context Machine

More information

Large-scale machine learning and convex optimization

Large-scale machine learning and convex optimization Large-scale machine learning and convex optimization Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Eurandom - March 2014 Slides available at www.di.ens.fr/~fbach/gradsto_eurandom.pdf Context

More information

Parallel & Distributed Optimization. Based on Mark Schmidt s slides

Parallel & Distributed Optimization. Based on Mark Schmidt s slides Parallel & Distributed Optimization Based on Mark Schmidt s slides Motivation behind using parallel & Distributed optimization Performance Computational throughput have increased exponentially in linear

More information

Représentations parcimonieuses pour le traitement d image et la vision artificielle

Représentations parcimonieuses pour le traitement d image et la vision artificielle Représentations parcimonieuses pour le traitement d image et la vision artificielle Julien Mairal Department of Statistics, University of California, Berkeley INRIA - projet Willow, Paris Journées ORASIS,

More information

Summer School Machine Learning Trimester

Summer School Machine Learning Trimester Summer School Machine Learning Trimester Université Paul Sabatier, Toulouse September 1418, 2015 About the CIMI Machine Learning thematic trimester From September to December 2015, the International Centre

More information

Big Data - Lecture 1 Optimization reminders

Big Data - Lecture 1 Optimization reminders Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics

More information

Online Learning for Matrix Factorization and Sparse Coding

Online Learning for Matrix Factorization and Sparse Coding Journal of Machine Learning Research 11 (2010) 19-60 Submitted 7/09; Revised 11/09; Published 1/10 Online Learning for Matrix Factorization and Sparse Coding Julien Mairal Francis Bach INRIA - WILLOW Project-Team

More information

Simple and efficient online algorithms for real world applications

Simple and efficient online algorithms for real world applications Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,

More information

Introduction to Online Learning Theory

Introduction to Online Learning Theory Introduction to Online Learning Theory Wojciech Kot lowski Institute of Computing Science, Poznań University of Technology IDSS, 04.06.2013 1 / 53 Outline 1 Example: Online (Stochastic) Gradient Descent

More information

Large-Scale Similarity and Distance Metric Learning

Large-Scale Similarity and Distance Metric Learning Large-Scale Similarity and Distance Metric Learning Aurélien Bellet Télécom ParisTech Joint work with K. Liu, Y. Shi and F. Sha (USC), S. Clémençon and I. Colin (Télécom ParisTech) Séminaire Criteo March

More information

Group Sparse Coding. Fernando Pereira Google Mountain View, CA pereira@google.com. Dennis Strelow Google Mountain View, CA strelow@google.

Group Sparse Coding. Fernando Pereira Google Mountain View, CA pereira@google.com. Dennis Strelow Google Mountain View, CA strelow@google. Group Sparse Coding Samy Bengio Google Mountain View, CA bengio@google.com Fernando Pereira Google Mountain View, CA pereira@google.com Yoram Singer Google Mountain View, CA singer@google.com Dennis Strelow

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang, Qihang Lin, Rong Jin Tutorial@SIGKDD 2015 Sydney, Australia Department of Computer Science, The University of Iowa, IA, USA Department of

More information

large-scale machine learning revisited Léon Bottou Microsoft Research (NYC)

large-scale machine learning revisited Léon Bottou Microsoft Research (NYC) large-scale machine learning revisited Léon Bottou Microsoft Research (NYC) 1 three frequent ideas in machine learning. independent and identically distributed data This experimental paradigm has driven

More information

Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions

Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions Peter Richtárik School of Mathematics The University of Edinburgh Joint work with Martin Takáč (Edinburgh)

More information

Introduction to Machine Learning Using Python. Vikram Kamath

Introduction to Machine Learning Using Python. Vikram Kamath Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression

More information

A primal-dual algorithm for group sparse regularization with overlapping groups

A primal-dual algorithm for group sparse regularization with overlapping groups A primal-dual algorithm for group sparse regularization with overlapping groups Sofia Mosci DISI- Università di Genova mosci@disi.unige.it Alessandro Verri DISI- Università di Genova verri@disi.unige.it

More information

Mathematical Models of Supervised Learning and their Application to Medical Diagnosis

Mathematical Models of Supervised Learning and their Application to Medical Diagnosis Genomic, Proteomic and Transcriptomic Lab High Performance Computing and Networking Institute National Research Council, Italy Mathematical Models of Supervised Learning and their Application to Medical

More information

Federated Optimization: Distributed Optimization Beyond the Datacenter

Federated Optimization: Distributed Optimization Beyond the Datacenter Federated Optimization: Distributed Optimization Beyond the Datacenter Jakub Konečný School of Mathematics University of Edinburgh J.Konecny@sms.ed.ac.uk H. Brendan McMahan Google, Inc. Seattle, WA 98103

More information

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

More information

A Stochastic 3MG Algorithm with Application to 2D Filter Identification

A Stochastic 3MG Algorithm with Application to 2D Filter Identification A Stochastic 3MG Algorithm with Application to 2D Filter Identification Emilie Chouzenoux 1, Jean-Christophe Pesquet 1, and Anisia Florescu 2 1 Laboratoire d Informatique Gaspard Monge - CNRS Univ. Paris-Est,

More information

GI01/M055 Supervised Learning Proximal Methods

GI01/M055 Supervised Learning Proximal Methods GI01/M055 Supervised Learning Proximal Methods Massimiliano Pontil (based on notes by Luca Baldassarre) (UCL) Proximal Methods 1 / 20 Today s Plan Problem setting Convex analysis concepts Proximal operators

More information

Dictionary Learning and Interpreting Human Behavior

Dictionary Learning and Interpreting Human Behavior Learning the Combinatorial Structure of Demonstrated Behaviors with Inverse Feedback Control Olivier Mangin 1,2 and Pierre-Yves Oudeyer 1 1 Flowers Team, INRIA, France 2 Université Bordeaux1,France Abstract.

More information

Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics

Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Part I: Factorizations and Statistical Modeling/Inference Amnon Shashua School of Computer Science & Eng. The Hebrew University

More information

Machine learning for algo trading

Machine learning for algo trading Machine learning for algo trading An introduction for nonmathematicians Dr. Aly Kassam Overview High level introduction to machine learning A machine learning bestiary What has all this got to do with

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

Sanjeev Kumar. contribute

Sanjeev Kumar. contribute RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 sanjeevk@iasri.res.in 1. Introduction The field of data mining and knowledgee discovery is emerging as a

More information

(Quasi-)Newton methods

(Quasi-)Newton methods (Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting

More information

Unsupervised Data Mining (Clustering)

Unsupervised Data Mining (Clustering) Unsupervised Data Mining (Clustering) Javier Béjar KEMLG December 01 Javier Béjar (KEMLG) Unsupervised Data Mining (Clustering) December 01 1 / 51 Introduction Clustering in KDD One of the main tasks in

More information

Learning is a very general term denoting the way in which agents:

Learning is a very general term denoting the way in which agents: What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);

More information

Scalable Machine Learning - or what to do with all that Big Data infrastructure

Scalable Machine Learning - or what to do with all that Big Data infrastructure - or what to do with all that Big Data infrastructure TU Berlin blog.mikiobraun.de Strata+Hadoop World London, 2015 1 Complex Data Analysis at Scale Click-through prediction Personalized Spam Detection

More information

Network Security A Decision and Game-Theoretic Approach

Network Security A Decision and Game-Theoretic Approach Network Security A Decision and Game-Theoretic Approach Tansu Alpcan Deutsche Telekom Laboratories, Technical University of Berlin, Germany and Tamer Ba ar University of Illinois at Urbana-Champaign, USA

More information

Stochastic Optimization for Big Data Analytics: Algorithms and Libraries

Stochastic Optimization for Big Data Analytics: Algorithms and Libraries Stochastic Optimization for Big Data Analytics: Algorithms and Libraries Tianbao Yang SDM 2014, Philadelphia, Pennsylvania collaborators: Rong Jin, Shenghuo Zhu NEC Laboratories America, Michigan State

More information

Large-Scale Machine Learning with Stochastic Gradient Descent

Large-Scale Machine Learning with Stochastic Gradient Descent Large-Scale Machine Learning with Stochastic Gradient Descent Léon Bottou NEC Labs America, Princeton NJ 08542, USA leon@bottou.org Abstract. During the last decade, the data sizes have grown faster than

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Chapter 4: Artificial Neural Networks

Chapter 4: Artificial Neural Networks Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml-03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/

More information

Applied mathematics and mathematical statistics

Applied mathematics and mathematical statistics Applied mathematics and mathematical statistics The graduate school is organised within the Department of Mathematical Sciences.. Deputy head of department: Aila Särkkä Director of Graduate Studies: Marija

More information

Learning Mid-Level Features For Recognition

Learning Mid-Level Features For Recognition Learning Mid-Level Features For Recognition Y-Lan Boureau 1,3,4 Francis Bach 1,4 Yann LeCun 3 Jean Ponce 2,4 1 INRIA 2 Ecole Normale Supérieure 3 Courant Institute, New York University Abstract Many successful

More information

Section for Cognitive Systems DTU Informatics, Technical University of Denmark

Section for Cognitive Systems DTU Informatics, Technical University of Denmark Transformation Invariant Sparse Coding Morten Mørup & Mikkel N Schmidt Morten Mørup & Mikkel N. Schmidt Section for Cognitive Systems DTU Informatics, Technical University of Denmark Redundancy Reduction

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski trakovski@nyus.edu.mk Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems

More information

Collaborative Filtering Scalable Data Analysis Algorithms Claudia Lehmann, Andrina Mascher

Collaborative Filtering Scalable Data Analysis Algorithms Claudia Lehmann, Andrina Mascher Collaborative Filtering Scalable Data Analysis Algorithms Claudia Lehmann, Andrina Mascher Outline 2 1. Retrospection 2. Stratosphere Plans 3. Comparison with Hadoop 4. Evaluation 5. Outlook Retrospection

More information

Data, Measurements, Features

Data, Measurements, Features Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014 Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about

More information

Online Semi-Supervised Discriminative Dictionary Learning for Sparse Representation

Online Semi-Supervised Discriminative Dictionary Learning for Sparse Representation Online Semi-Supervised Discriminative Dictionary Learning for Sparse Representation Guangxiao Zhang, Zhuolin Jiang, Larry S. Davis University of Maryland, College Park, MD, 2742 {gxzhang,zhuolin,lsd}@umiacs.umd.edu

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Lecture 2: The SVM classifier

Lecture 2: The SVM classifier Lecture 2: The SVM classifier C19 Machine Learning Hilary 2015 A. Zisserman Review of linear classifiers Linear separability Perceptron Support Vector Machine (SVM) classifier Wide margin Cost function

More information

Lecture. Simulation and optimization

Lecture. Simulation and optimization Course Simulation Lecture Simulation and optimization 1 4/3/2015 Simulation and optimization Platform busses at Schiphol Optimization: Find a feasible assignment of bus trips to bus shifts (driver and

More information

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2013. ACCEPTED FOR PUBLICATION 1

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2013. ACCEPTED FOR PUBLICATION 1 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2013. ACCEPTED FOR PUBLICATION 1 Active-Set Newton Algorithm for Overcomplete Non-Negative Representations of Audio Tuomas Virtanen, Member,

More information

BIG DATA PROBLEMS AND LARGE-SCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION

BIG DATA PROBLEMS AND LARGE-SCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION BIG DATA PROBLEMS AND LARGE-SCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION Ş. İlker Birbil Sabancı University Ali Taylan Cemgil 1, Hazal Koptagel 1, Figen Öztoprak 2, Umut Şimşekli

More information

TIETS34 Seminar: Data Mining on Biometric identification

TIETS34 Seminar: Data Mining on Biometric identification TIETS34 Seminar: Data Mining on Biometric identification Youming Zhang Computer Science, School of Information Sciences, 33014 University of Tampere, Finland Youming.Zhang@uta.fi Course Description Content

More information

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Natalia Vassilieva, PhD Senior Research Manager GTC 2016 Deep learning proof points as of today Vision Speech Text Other Search & information

More information

MACHINE LEARNING IN HIGH ENERGY PHYSICS

MACHINE LEARNING IN HIGH ENERGY PHYSICS MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!

More information

Part II Redundant Dictionaries and Pursuit Algorithms

Part II Redundant Dictionaries and Pursuit Algorithms Aisenstadt Chair Course CRM September 2009 Part II Redundant Dictionaries and Pursuit Algorithms Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique Sparsity in Redundant Dictionaries

More information

STORM: Stochastic Optimization Using Random Models Katya Scheinberg Lehigh University. (Joint work with R. Chen and M. Menickelly)

STORM: Stochastic Optimization Using Random Models Katya Scheinberg Lehigh University. (Joint work with R. Chen and M. Menickelly) STORM: Stochastic Optimization Using Random Models Katya Scheinberg Lehigh University (Joint work with R. Chen and M. Menickelly) Outline Stochastic optimization problem black box gradient based Existing

More information

Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part I) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

Bag of Pursuits and Neural Gas for Improved Sparse Coding

Bag of Pursuits and Neural Gas for Improved Sparse Coding Bag of Pursuits and Neural Gas for Improved Sparse Coding Kai Labusch, Erhardt Barth, and Thomas Martinetz University of Lübec Institute for Neuro- and Bioinformatics Ratzeburger Allee 6 23562 Lübec, Germany

More information

Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering

Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering Department of Industrial Engineering and Management Sciences Northwestern University September 15th, 2014

More information

Parallel Data Mining. Team 2 Flash Coders Team Research Investigation Presentation 2. Foundations of Parallel Computing Oct 2014

Parallel Data Mining. Team 2 Flash Coders Team Research Investigation Presentation 2. Foundations of Parallel Computing Oct 2014 Parallel Data Mining Team 2 Flash Coders Team Research Investigation Presentation 2 Foundations of Parallel Computing Oct 2014 Agenda Overview of topic Analysis of research papers Software design Overview

More information

How To Teach A Dictionary To Learn For Big Data Via Atom Update

How To Teach A Dictionary To Learn For Big Data Via Atom Update IEEE COMPUTING IN SCIENCE AND ENGINEERING, VOL. XX, NO. XX, XXX 2014 1 IK-SVD: Dictionary Learning for Spatial Big Data via Incremental Atom Update Lizhe Wang 1,KeLu 2, Peng Liu 1, Rajiv Ranjan 3, Lajiao

More information

CS229T/STAT231: Statistical Learning Theory (Winter 2015)

CS229T/STAT231: Statistical Learning Theory (Winter 2015) CS229T/STAT231: Statistical Learning Theory (Winter 2015) Percy Liang Last updated Wed Oct 14 2015 20:32 These lecture notes will be updated periodically as the course goes on. Please let us know if you

More information

Scalable Object Detection by Filter Compression with Regularized Sparse Coding

Scalable Object Detection by Filter Compression with Regularized Sparse Coding Scalable Object Detection by Filter Compression with Regularized Sparse Coding Ting-Hsuan Chao, Yen-Liang Lin, Yin-Hsi Kuo, and Winston H Hsu National Taiwan University, Taipei, Taiwan Abstract For practical

More information

THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS

THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC- TERISTICS O.U. Sezerman 1, R. Islamaj 2, E. Alpaydin 2 1 Laborotory of Computational Biology, Sabancı University, Istanbul, Turkey. 2 Computer Engineering

More information

EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set

EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set Amhmed A. Bhih School of Electrical and Electronic Engineering Princy Johnson School of Electrical and Electronic Engineering Martin

More information

Challenges for Data Driven Systems

Challenges for Data Driven Systems Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2

More information

Parallel Selective Algorithms for Nonconvex Big Data Optimization

Parallel Selective Algorithms for Nonconvex Big Data Optimization 1874 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 7, APRIL 1, 2015 Parallel Selective Algorithms for Nonconvex Big Data Optimization Francisco Facchinei, Gesualdo Scutari, Senior Member, IEEE,

More information

Protein Protein Interaction Networks

Protein Protein Interaction Networks Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics

More information

Karthik Sridharan. 424 Gates Hall Ithaca, E-mail: sridharan@cs.cornell.edu http://www.cs.cornell.edu/ sridharan/ Contact Information

Karthik Sridharan. 424 Gates Hall Ithaca, E-mail: sridharan@cs.cornell.edu http://www.cs.cornell.edu/ sridharan/ Contact Information Karthik Sridharan Contact Information 424 Gates Hall Ithaca, NY 14853-7501 USA E-mail: sridharan@cs.cornell.edu http://www.cs.cornell.edu/ sridharan/ Research Interests Machine Learning, Statistical Learning

More information

Big Data Systems CS 5965/6965 FALL 2015

Big Data Systems CS 5965/6965 FALL 2015 Big Data Systems CS 5965/6965 FALL 2015 Today General course overview Expectations from this course Q&A Introduction to Big Data Assignment #1 General Course Information Course Web Page http://www.cs.utah.edu/~hari/teaching/fall2015.html

More information

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University caizhua@gmail.com 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian

More information

The University of Winnipeg Medical Algorithms propose New Network Utility Maximize Problem

The University of Winnipeg Medical Algorithms propose New Network Utility Maximize Problem The University of Winnipeg Applied Computer Science Candidate Presentation Amir-Hamed Mohsenian-Rad, University of Toronto Friday, March 12, 2010 9:30 a.m. - 10:30 a.m. - Room 3D03 Abstract Medium access

More information

Interactive Machine Learning. Maria-Florina Balcan

Interactive Machine Learning. Maria-Florina Balcan Interactive Machine Learning Maria-Florina Balcan Machine Learning Image Classification Document Categorization Speech Recognition Protein Classification Branch Prediction Fraud Detection Spam Detection

More information

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar

More information

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc])

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) 244 REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) (See also General Regulations) Any publication based on work approved for a higher degree should contain a reference

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc])

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) 305 REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) (See also General Regulations) Any publication based on work approved for a higher degree should contain a reference

More information

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc])

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) 299 REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) (See also General Regulations) Any publication based on work approved for a higher degree should contain a reference

More information

Machine Learning using MapReduce

Machine Learning using MapReduce Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous

More information

Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016

Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 Clustering Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 1 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate data attributes with

More information

Factoring nonnegative matrices with linear programs

Factoring nonnegative matrices with linear programs Factoring nonnegative matrices with linear programs Victor Bittorf bittorf@cs.wisc.edu Benjamin Recht brecht@cs.wisc.edu Computer Sciences University of Wisconsin Christopher Ré chrisre@cs.wisc.edu Joel

More information

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning. Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

More information

Sibyl: a system for large scale machine learning

Sibyl: a system for large scale machine learning Sibyl: a system for large scale machine learning Tushar Chandra, Eugene Ie, Kenneth Goldman, Tomas Lloret Llinares, Jim McFadden, Fernando Pereira, Joshua Redstone, Tal Shaked, Yoram Singer Machine Learning

More information

TD(0) Leads to Better Policies than Approximate Value Iteration

TD(0) Leads to Better Policies than Approximate Value Iteration TD(0) Leads to Better Policies than Approximate Value Iteration Benjamin Van Roy Management Science and Engineering and Electrical Engineering Stanford University Stanford, CA 94305 bvr@stanford.edu Abstract

More information

Logistic Regression for Spam Filtering

Logistic Regression for Spam Filtering Logistic Regression for Spam Filtering Nikhila Arkalgud February 14, 28 Abstract The goal of the spam filtering problem is to identify an email as a spam or not spam. One of the classic techniques used

More information

Online Convex Optimization

Online Convex Optimization E0 370 Statistical Learning heory Lecture 19 Oct 22, 2013 Online Convex Optimization Lecturer: Shivani Agarwal Scribe: Aadirupa 1 Introduction In this lecture we shall look at a fairly general setting

More information

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc])

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) 315 REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) (See also General Regulations) Any publication based on work approved for a higher degree should contain a reference

More information

Environmental Remote Sensing GEOG 2021

Environmental Remote Sensing GEOG 2021 Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class

More information

203.4770: Introduction to Machine Learning Dr. Rita Osadchy

203.4770: Introduction to Machine Learning Dr. Rita Osadchy 203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:

More information

MapReduce/Bigtable for Distributed Optimization

MapReduce/Bigtable for Distributed Optimization MapReduce/Bigtable for Distributed Optimization Keith B. Hall Google Inc. kbhall@google.com Scott Gilpin Google Inc. sgilpin@google.com Gideon Mann Google Inc. gmann@google.com Abstract With large data

More information

Introduction to Logistic Regression

Introduction to Logistic Regression OpenStax-CNX module: m42090 1 Introduction to Logistic Regression Dan Calderon This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Gives introduction

More information

Accelerated Parallel Optimization Methods for Large Scale Machine Learning

Accelerated Parallel Optimization Methods for Large Scale Machine Learning Accelerated Parallel Optimization Methods for Large Scale Machine Learning Haipeng Luo Princeton University haipengl@cs.princeton.edu Patrick Haffner and Jean-François Paiement AT&T Labs - Research {haffner,jpaiement}@research.att.com

More information

Efficient online learning of a non-negative sparse autoencoder

Efficient online learning of a non-negative sparse autoencoder and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-93030-10-2. Efficient online learning of a non-negative sparse autoencoder Andre Lemme, R. Felix Reinhart and Jochen J. Steil

More information

HT2015: SC4 Statistical Data Mining and Machine Learning

HT2015: SC4 Statistical Data Mining and Machine Learning HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric

More information

Sparsity & Co.: An Overview of Analysis vs Synthesis in Low-Dimensional Signal Models. Rémi Gribonval, INRIA Rennes - Bretagne Atlantique

Sparsity & Co.: An Overview of Analysis vs Synthesis in Low-Dimensional Signal Models. Rémi Gribonval, INRIA Rennes - Bretagne Atlantique Sparsity & Co.: An Overview of Analysis vs Synthesis in Low-Dimensional Signal Models Rémi Gribonval, INRIA Rennes - Bretagne Atlantique remi.gribonval@inria.fr http://www.irisa.fr/metiss/members/remi/talks

More information

Class-specific Sparse Coding for Learning of Object Representations

Class-specific Sparse Coding for Learning of Object Representations Class-specific Sparse Coding for Learning of Object Representations Stephan Hasler, Heiko Wersing, and Edgar Körner Honda Research Institute Europe GmbH Carl-Legien-Str. 30, 63073 Offenbach am Main, Germany

More information