ICL7660, ICL7660A. CMOS Voltage Converters. Features. itle L76, L76 A) bjec. ltag. nver s) utho ) eyw s tersi. Applications.

Size: px
Start display at page:

Download "ICL7660, ICL7660A. CMOS Voltage Converters. Features. itle L76, L76 A) bjec. ltag. nver s) utho ) eyw s tersi. Applications."

Transcription

1 TM ICL, ICLA Data Sheet April 999 File Number. itle L, L A) bjec MO ltag nver s) utho ) eyw s tersi rpor on, arge mp, ltage nvert ltage uble ltage erte X, X, C, CMOS Voltage Converters The Intersil ICL and ICLA are monolithic CMOS power supply circuits which offer unique performance advantages over previously available devices. The ICL performs supply voltage conversions from positive to negative for an input range of.v to.v resulting in complementary output voltages of.v to.v and the ICLA does the same conversions with an input range of.v to.v resulting in complementary output voltages of.v to.v. Only noncritical external capacitors are needed for the charge pump and charge reservoir functions. The ICL and ICLA can also be connected to function as voltage doublers and will generate output voltages up to.v with a V input. Contained on the chip are a series DC supply regulator, RC oscillator, voltage level translator, and four output power MOS switches. A unique logic element senses the most negative voltage in the device and ensures that the output N Channel switch sourcesubstrate junctions are not forward biased. This assures latchup free operation. The oscillator, when unloaded, oscillates at a nominal frequency of khz for an input supply voltage of.v. This frequency can be lowered by the addition of an external capacitor to the OSC terminal, or the oscillator may be overdriven by an external clock. The LV terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages (.V to.v for the ICL and.v to.v for the ICLA), the LV pin is left floating to prevent device latchup. Ordering Information PART NO. TEMP. RANGE ( o C) PACKAGE PKG. NO. ICLCBA to Ld SOIC (N) M. ICLCBAT to Ld SOIC (N) Tape and Reel M. ICLCPA to Ld PDIP E. ICLMTV to PinMetalCan T.C ICLACBA to Ld SOIC (N) M. ICLACBAT to Ld SOIC (N) Tape and Reel M. ICLACPA to Ld PDIP E. ICLAIBA to Ld SOIC (N) M. ICLAIBAT to Ld SOIC (N) Tape and Reel M. ICLAIPA to Ld PDIP E. Add /B to part number if B processing is required. Features Simple Conversion of V Logic Supply to ±V Supplies Simple Voltage Multiplication ( =()nv IN ) Typical Open Circuit Voltage Conversion Efficiency 99.9% Typical Power Efficiency 9% Wide Operating Voltage Range ICL...Vto.V ICLA......Vto.V ICLA % Tested at V Easy to Use Requires Only External NonCritical Passive Components No External Diode Over Full Temp. and Voltage Range Applications On Board Negative Supply for Dynamic RAMs Localized µprocessor ( Type) Negative Supplies Inexpensive Negative Supplies Data Acquisition Systems Pinouts ICL, ICLA (PDIP, SOIC) TOP VIEW NC CAP GND CAP ICL (METAL CAN) TOP VIEW NC GND V (AND CASE) CAP CAP V OSC LV OSC LV CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. INTERSIL or Intersil and Design is a trademark of Intersil Americas Inc. Copyright Intersil Americas Inc., All Rights Reserved

2 ICL, ICLA C Absolute Maximum Ratings Supply Voltage ICL...V ICLA...V LV and OSC Input Voltage V to (V.V) for V <.V (Note)... (V.V)to(V.V)forV>.V CurrentintoLV(Note)... µa forv>.v Output Short Duration (V SUPPLY.V)...Continuous Thermal Information Thermal Resistance (Typical, Note ) θ JA ( o C/W) θ JC ( o C/W) PDIPPackage... N/A SOICPackage... N/A Metal Can Package (ICL Only).. MaximumStorageTemperatureRange... o Cto o C MaximumLeadTemperature(Soldering,s)... o C (SOIC Lead Tips Only) Operating Conditions Temperature Range ICLM... o Cto o C ICLC,ICLAC... o Cto o C ICLAI... o Cto o C CAUTION: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE:. θ JA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications ICL and ICLA, V = V, T A = o C, C OSC =, Test Circuit Figure Unless Otherwise Specified ICL ICLA PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX MIN TYP MAX UNITS Supply Current I R L = µa Supply Voltage Range Lo V L MIN T A MAX, R L =kω, LV to GND.... V Supply Voltage Range Hi V H MIN T A MAX, R L =kω, LVtoOpen.. V Output Source Resistance R OUT I OUT =ma,t A = o C Ω I OUT =ma, o C T A o C Ω I OUT =ma, o C T A o C Ω I OUT =ma, o C T A o C Ω V =V,I OUT =ma,lvtognd Ω o C T A o C V=V,I OUT = ma, LV to GND, o C T A o C Ω Oscillator Frequency f OSC khz Power Efficiency P EF R L =kω % Voltage Conversion Efficiency EF R L = % Oscillator Impedance Z OSC V=V. MΩ V = V kω ICLA, V = V, T A = o C, OSC = Free running, Test Circuit Figure, Unless Otherwise Specified Supply Current (Note ) I V = V, R L =, o C µa o C<T A < o C µa o C<T A < o C µa Output Source Resistance R OUT V=V,I OUT = ma 9 Ω o C<T A < o C Ω o C<T A < o C Ω Oscillator Frequency (Note ) f OSC V = V (same as V conditions). khz o C<T A < o C. khz o C<T A < o C. khz

3 ICL, ICLA Electrical Specifications ICL and ICLA, V = V, T A = o C, C OSC =, Test Circuit Figure Unless Otherwise Specified (Continued) PARAMETER SYMBOL TEST CONDITIONS ICL ICLA MIN TYP MAX MIN TYP MAX Voltage Conversion Efficiency EFF V=V,R L = 99 % T MIN <T A <T MAX 99 % Power Efficiency P EFF V=V,R L =kω 9 % T MIN <T A <T MAX 9 % NOTES:. Connecting any input terminal to voltages greater than V or less than GND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to power up of the ICL, ICLA.. Derate linearly above o Cby.mW/ o C.. In the test circuit, there is no external capacitor applied to pin. However, when the device is plugged into a test socket, there is usually a very small but finite stray capacitance present, of the order of pf.. The Intersil ICLA can operate without an external diode over the full temperature and voltage range. This device will function in existing designs which incorporate an external diode with no degradation in overall circuit performance. UNITS Functional Block Diagram V RC OSCILLATOR VOLTAGE LEVEL TRANSLATOR CAP CAP OSC LV VOLTAGE REGULATOR LOGIC NETWORK Typical Performance Curves (Test Circuit of Figure ) K SUPPLY VOLTAGE (V) SUPPLY VOLTAGE RANGE (NO DIODE REQUIRED) OUTPUT SOURCE RESISTANCE (Ω) T A = o C TEMPERATURE ( o C) FIGURE. OPERATING VOLTAGE AS A FUNCTION OF TEMPERATURE SUPPLY VOLTAGE (V) FIGURE. OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE

4 ICL, ICLA Typical Performance Curves (Test Circuit of Figure ) (Continued) OUTPUT SOURCE RESISTANCE (Ω) I OUT =ma V=V V=V TEMPERATURE ( o C) POWER CONVERSION EFFICIENCY (%) T A = o C 9 9 I OUT =ma I OUT =ma V=V K K OSC. FREQUENCY f OSC (Hz) FIGURE. OUTPUT SOURCE RESISTANCE AS A FUNCTION OF TEMPERATURE FIGURE. POWER CONVERSION EFFICIENCY AS A FUNCTION OF OSC. FREQUENCY K OSCILLATOR FREQUENCY f OSC (Hz) K V = V T A = o C. K C OSC (pf) OSCILLATOR FREQUENCY f OSC (khz) V=V TEMPERATURE ( o C) FIGURE. FREQUENCY OF OSCILLATION AS A FUNCTION OF EXTERNAL OSC. CAPACITANCE FIGURE. UNLOADED OSCILLATOR FREQUENCY AS A FUNCTION OF TEMPERATURE OUTPUT VOLTAGE T A = o C V=V SLOPE Ω LOAD CURRENT I L (ma) FIGURE. OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT POWER CONVERSION EFFICIENCY (%) 9 P EFF I 9 T A = o C V =V LOAD CURRENT I L (ma) FIGURE. SUPPLY CURRENT AND POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT SUPPLY CURRENT I (ma)

5 ICL, ICLA Typical Performance Curves (Test Circuit of Figure ) (Continued) OUTPUT VOLTAGE T A = o C V=V SLOPE Ω LOAD CURRENT I L (ma) POWER CONVERSION EFFICIENCY (%) 9 I... P EFF T A = o C V=V LOAD CURRENT I L (ma) SUPPLY CURRENT (ma) (NOTE ) FIGURE 9. OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT FIGURE. SUPPLY CURRENT AND POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT NOTE:. These curves include in the supply current that current fed directly into the load R L from the V (See Figure ). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL/ICLA, to the negative side of the load. Ideally, V IN,I S I L,soV IN xi S xi L. I S V (V) C µf ICL ICLA I L R L C OSC (NOTE) C µf NOTE: For large values of C OSC (>pf) the values of C and C should be increased to µf. FIGURE. ICL, ICLA TEST CIRCUIT Detailed Description The ICL and ICLA contain all the necessary circuitry to complete a negative voltage converter, with the exception of external capacitors which may be inexpensive µf polarized electrolytic types. The mode of operation of the device may be best understood by considering Figure, which shows an idealized negative voltage converter. Capacitor C is charged to a voltage, V, for the half cycle when switches S and S are closed. (Note: Switches S and S are open during this half cycle.) During the second half cycle of operation, switches S and S are closed, with S and S open, thereby shifting capacitor C negatively by V volts. Charge is then transferred from C to C such that the voltage on C is exactly V, assuming ideal switches and no load on C. The ICL approaches this ideal situation more closely than existing nonmechanical circuits. In the ICL and ICLA, the switches of Figure are MOS power switches; S is a PChannel device and S, S and S are NChannel devices. The main difficulty with this approach is that in integrating the switches, the substrates of S and S must always remain reverse biased with respect to their sources, but not so much as to degrade their ON resistances. In addition, at circuit startup, and under output short circuit conditions ( = V), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup. This problem is eliminated in the ICL and ICLA by a logic network which senses the output voltage ( ) together with the level translators, and switches the substrates of S and S to the correct level to maintain necessary reverse bias.

6 ICL, ICLA The voltage regulator portion of the ICL and ICLA is an integral part of the antilatchup circuitry, however its inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the LV pin should be connected to GROUND, disabling the regulator. For supply voltages greater than.v the LV terminal must be left open to insure latchup proof operation, and prevent device damage. V IN S S C S S Theoretical Power Efficiency Considerations =V IN FIGURE. IDEALIZED NEGATIVE VOLTAGE CONVERTER In theory a voltage converter can approach % efficiency if certain conditions are met.. The driver circuitry consumes minimal power.. The output switches have extremely low ON resistance and virtually no offset.. The impedances of the pump and reservoir capacitors are negligible at the pump frequency. The ICL and ICLA approach these conditions for negative voltage conversion if large values of C and C are used. C ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by: E= / C (V V ) where V and V are the voltages on C during the pump and transfer cycles. If the impedances of C and C are relatively high at the pump frequency (refer to Figure ) compared to the value of R L, there will be a substantial difference in the voltages V and V. Therefore it is not only desirable to make C as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for C in order to achieve maximum efficiency of operation. Do s And Don ts. Do not exceed maximum supply voltages.. Do not connect LV terminal to GROUND for supply voltages greater than.v.. Do not short circuit the output to V supply for supply voltages above.v for extended periods, however, transient conditions including startup are okay.. When using polarized capacitors, the terminal of C must be connected to pin of the ICL and ICLA and the terminal of C must be connected to GROUND.. If the voltage supply driving the ICL and ICLA has a large source impedance (Ω Ω), then a.µf capacitor from pin to ground may be required to limit rate of rise of input voltage to less than V/µs.. User should insure that the output (pin ) does not go more positive than GND (pin ). Device latch up will occur under these conditions. A N9 or similar diode placed in parallel with C will prevent the device from latching up under these conditions. (Anode pin, Cathode pin ). V µf ICL ICLA V R O µf = V FIGURE A. CONFIGURATION FIGURE B. THEVENIN EQUIVALENT FIGURE. SIMPLE NEGATIVE CONVERTER

7 ICL, ICLA t t B V (V) A FIGURE. OUTPUT RIPPLE V C ICL ICLA C ICL ICLA n R L C FIGURE. PARALLELING DEVICES V µf ICL ICLA µf ICL ICLA n µf µf = nv FIGURE. CASCADING DEVICES FOR INCREASED OUTPUT VOLTAGE Typical Applications Simple Negative Voltage Converter The majority of applications will undoubtedly utilize the ICL and ICLA for generation of negative supply voltages. Figure shows typical connections to provide a negative supply negative (GND) for supply voltages below.v. The output characteristics of the circuit in Figure A can be approximated by an ideal voltage source in series with a resistance as shown in Figure B. The voltage source has a value of V. The output impedance (R O ) is a function of the ON resistance of the internal MOS switches (shown in Figure ), the switching frequency, the value of C and C, and the ESR (equivalent series resistance) of C and C. A good first order approximation for R O is: R O (R SW R SW ESR C ) (R SW R SW ESR C ) R O (R SW R SW ESR C ) (f PUMP )(C) ESR C f (f PUMP = OSC,R SWX = MOSFET switch resistance) Combining the four R SWX termsasr SW, we see that: R O (R SW ) RSW, the total switch resistance, is a function of supply voltage and temperature (See the Output Source Resistance graphs), typically Ω at o C and V. Careful selection of C and C will reduce the remaining terms, minimizing the output impedance. High value capacitors will reduce the /(f PUMP C ) component, and low ESR capacitors will lower the ESR term. Increasing the oscillator frequency will reduce the /(f PUMP C) term, but may have the side effect of a net increase in output impedance when C >µf and there is no longer enough time to fully charge the capacitors (f PUMP )(C) (ESR C ) ESR C

8 ICL, ICLA every cycle. In a typical application where f OSC = khz and C=C =C =µf: R O () R O (ESR C ) Since the ESRs of the capacitors are reflected in the output impedance multiplied by a factor of, a high value could potentially swamp out a low /(f PUMP C ) term, rendering an increase in switching frequency or filter capacitance ineffective. Typical electrolytic capacitors may have ESRs as high as Ω. R O () R O/ (ESR C ) Since the ESRs of the capacitors are reflected in the output impedance multiplied by a factor of, a high value could potentially swamp out a low /(f PUMP C ) term, rendering an increase in switching frequency or filter capacitance ineffective. Typical electrolytic capacitors may have ESRs as high as Ω. Output Ripple ( )( ) ( )( ) (ESR C )ESR C (ESR C )ESR C ESR also affects the ripple voltage seen at the output. The total ripple is determined by voltages, A and B, as shown in Figure. Segment A is the voltage drop across the ESR of C at the instant it goes from being charged by C (current flow into C ) to being discharged through the load (current flowing out of C ). The magnitude of this current change is I OUT, hence the total drop is I OUT esr C V. Segment B is the voltage change across C during time t, the half of thecyclewhenc supplies current to the load. The drop at B is l OUT t/c V. The peaktopeak ripple voltage is the sum of these voltage drops: V RIPPLE [ (f PUMP )(C) (ESR C ) ] I OUT Again, a low ESR capacitor will reset in a higher performance output. Paralleling Devices Any number of ICL and ICLA voltage converters may be paralleled to reduce output resistance. The reservoir capacitor, C, serves all devices while each device requires its own pump capacitor, C. The resultant output resistance would be approximately: R OUT = R OUT (of ICL/ICLA) n (number of devices) Cascading Devices The ICL and ICLA may be cascaded as shown to produced larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is devices for light loads. The output voltage is defined by: =n(v IN ), where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL and ICLA R OUT values. Changing the ICL/ICLA Oscillator Frequency It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure. In order to prevent possible device latchup, a kω resistor must be used in series with the clock output. In a situation where the designer has generated the external clock frequency using TTL logic, the addition of a kω pullup resistor to V supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be / of the clock frequency. Output transitions occur on the positivegoing edge of the clock. µf ICL ICLA It is also possible to increase the conversion efficiency of the ICL and ICLA at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is shown in Figure. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump (C ) and reservoir (C ) capacitors; this is overcome by increasing the values of C and C by the same factor that the frequency has been reduced. For example, the addition of a pf capacitor between pin (OSC) and V will lower the oscillator frequency to khz from its nominal frequency of khz (a multiple of ), and thereby necessitate a corresponding increase in the value of C and C (from µf to µf). V kω µf FIGURE. EXTERNAL CLOCKING V CMOS GATE

9 ICL, ICLA C ICL ICLA V C OSC C C ICL ICLA V D D = (nv IN V FDX ) C =(V) (V FD ) (V FD ) FIGURE. LOWERING OSCILLATOR FREQUENCY Positive Voltage Doubling The ICL and ICLA may be employed to achieve positive voltage doubling using the circuit shown in Figure 9. In this application, the pump inverter switches of the ICL and ICLA are used to charge C toavoltage level of V V F (where V is the supply voltage and V F is the forward voltage drop of diode D ). On the transfer cycle, the voltage on C plus the supply voltage (V) is applied through diode D to capacitor C. The voltage thus created on C becomes (V) (VF) or twice the supply voltage minus the combined forward voltage drops of diodes D and D. The source impedance of the output ( ) will depend on the output current, but for V = V and an output current of ma it will be approximately Ω. ICL ICLA Combined Negative Voltage Conversion and Positive Supply Doubling Figure combines the functions shown in Figures and Figure 9 to provide negative voltage conversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating 9V and V from an existing V supply. In this instance capacitors C and C perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors C and C are pump and reservoir respectively for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin of the device. V D D C C FIGURE 9. POSITIVE VOLT DOUBLER = (V) (V F ) C FIGURE. COMBINED NEGATIVE VOLTAGE CONVERTER AND POSITIVE DOUBLER Voltage Splitting The bidirectional characteristics can also be used to split a higher supply in half, as shown in Figure. The combined load will be evenly shared between the two sides. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure, V can be converted (via., and.) to a nominal V, although with rather high series output resistance (~Ω). R L µf = V V µf R L µf Regulated Negative Voltage Supply ICL ICLA C FIGURE. SPLITTING A SUPPLY IN HALF In some cases, the output impedance of the ICL and ICLA can be a problem, particularly if the load current varies substantially. The circuit of Figure can be used to overcome this by controlling the input voltage, via an ICL lowpower CMOS op amp, in such a way as to maintain a nearly constant output voltage. Direct feedback is inadvisable, since the ICLs and ICLAs output does not respond instantaneously to change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the ICL and ICLA, while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provides an output impedance of less than Ω to a load of ma. V V 9

10 ICL, ICLA Other Applications Further information on the operation and use of the ICL and ICLA may be found in AN Principals and Applications of the ICL and ICLA CMOS Voltage Converter. V K K K K ICL V Ω µf ICL9 µf ICL ICLA K K VOLTAGE ADJUST µf FIGURE. REGULATING THE OUTPUT VOLTAGE V LOGIC SUPPLY TTL DATA INPUT RS DATA OUTPUT V V µf ICL ICLA µf IH FIGURE. RS LEVELS FROM A SINGLE V SUPPLY All Intersil products are manufactured, assembled and tested utilizing ISO9 quality systems. Intersil Corporation s quality certifications can be viewed at website Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site

11 This datasheet has been download from: Datasheets for electronics components.

ICL7660, ICL7660A. CMOS Voltage Converters. Features. Applications. Pinouts FN3072.7. Data Sheet October 10, 2005

ICL7660, ICL7660A. CMOS Voltage Converters. Features. Applications. Pinouts FN3072.7. Data Sheet October 10, 2005 ICL, ICLA Data Sheet October, FN. CMOS Voltage Converters The Intersil ICL and ICLA are monolithic CMOS power supply circuits which offer unique performance advantages over previously available devices.

More information

ICL232. +5V Powered, Dual RS-232 Transmitter/Receiver. Description. Features. Ordering Information. Applications. Functional Diagram.

ICL232. +5V Powered, Dual RS-232 Transmitter/Receiver. Description. Features. Ordering Information. Applications. Functional Diagram. ICL August V Powered, Dual RS Transmitter/Receiver Features Meets All RSC and V. Specifications Requires Only Single V Power Supply Onboard Voltage Doubler/Inverter Low Power Consumption Drivers ±V Output

More information

CA723, CA723C. Voltage Regulators Adjustable from 2V to 37V at Output Currents Up to 150mA without External Pass Transistors. Features.

CA723, CA723C. Voltage Regulators Adjustable from 2V to 37V at Output Currents Up to 150mA without External Pass Transistors. Features. CA73, CA73C Data Sheet April 1999 File Number 788. Voltage Regulators Adjustable from V to 37V at Output Currents Up to 1mA without External Pass Transistors The CA73 and CA73C are silicon monolithic integrated

More information

CMOS Switched-Capacitor Voltage Converters ADM660/ADM8660

CMOS Switched-Capacitor Voltage Converters ADM660/ADM8660 CMOS Switched-Capacitor Voltage Converters ADM66/ADM866 FEATURES ADM66: Inverts or Doubles Input Supply Voltage ADM866: Inverts Input Supply Voltage ma Output Current Shutdown Function (ADM866) 2.2 F or

More information

HI-200, HI-201. Features. Dual/Quad SPST, CMOS Analog Switches. Applications. Ordering Information. Functional Diagram FN3121.9

HI-200, HI-201. Features. Dual/Quad SPST, CMOS Analog Switches. Applications. Ordering Information. Functional Diagram FN3121.9 Data Sheet FN3121.9 Dual/Quad SPST, CMOS Analog Switches HI-200/HI-201 (dual/quad) are monolithic devices comprising independently selectable SPST switches which feature fast switching speeds (HI-200 240ns,

More information

Features. Symbol JEDEC TO-220AB

Features. Symbol JEDEC TO-220AB Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching

More information

HT7660. CMOS Switched-Capacitor Voltage Converter. Features. Applications. General Description. Block Diagram

HT7660. CMOS Switched-Capacitor Voltage Converter. Features. Applications. General Description. Block Diagram CMOS Switched-Capacitor Voltage Converter Features Simple conversion of V DD to V DD Cascade connection (two devices are connected, V OUT = 2 V DD ) Boost pin for higher switching frequency Easy to use

More information

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Technical Brief December 3 TB47. Author: Doug Mattingly Assumptions This Technical Brief makes the following assumptions:.

More information

LM1084 5A Low Dropout Positive Regulators

LM1084 5A Low Dropout Positive Regulators 5A Low Dropout Positive Regulators General Description The LM1084 is a series of low dropout voltage positive regulators with a maximum dropout of 1.5 at 5A of load current. It has the same pin-out as

More information

AAT4280 Slew Rate Controlled Load Switch

AAT4280 Slew Rate Controlled Load Switch General Description Features SmartSwitch The AAT4280 SmartSwitch is a P-channel MOSFET power switch designed for high-side load switching applications. The P-channel MOSFET device has a typical R DS(ON)

More information

TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features

TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features DATASHEET ICS280 Description The ICS280 field programmable spread spectrum clock synthesizer generates up to four high-quality, high-frequency clock outputs including multiple reference clocks from a low-frequency

More information

1 TO 4 CLOCK BUFFER ICS551. Description. Features. Block Diagram DATASHEET

1 TO 4 CLOCK BUFFER ICS551. Description. Features. Block Diagram DATASHEET DATASHEET 1 TO 4 CLOCK BUFFER ICS551 Description The ICS551 is a low cost, high-speed single input to four output clock buffer. Part of IDT s ClockBlocks TM family, this is our lowest cost, small clock

More information

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches 19-2418; Rev ; 4/2 Quad, Rail-to-Rail, Fault-Protected, General Description The are quad, single-pole/single-throw (SPST), fault-protected analog switches. They are pin compatible with the industry-standard

More information

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout. HA5104/883 April 2002 Features This Circuit is Processed in Accordance to MILSTD 883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1. Low Input Noise Voltage Density at 1kHz. 6nV/ Hz (Max)

More information

ICS650-01 SYSTEM PERIPHERAL CLOCK SOURCE. Description. Features. Block Diagram DATASHEET

ICS650-01 SYSTEM PERIPHERAL CLOCK SOURCE. Description. Features. Block Diagram DATASHEET DATASHEET ICS650-01 Description The ICS650-01 is a low-cost, low-jitter, high-performance clock synthesizer for system peripheral applications. Using analog/digital Phase-Locked Loop (PLL) techniques,

More information

ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET

ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET DATASHEET ICS514 Description The ICS514 LOCO TM is the most cost effective way to generate a high-quality, high-frequency clock output from a 14.31818 MHz crystal or clock input. The name LOCO stands for

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram

ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram Quad PLL with VCXO Quick Turn Clock Description The ICS379 QTClock TM generates up to 9 high quality, high frequency clock outputs including a reference from a low frequency pullable crystal. It is designed

More information

www.jameco.com 1-800-831-4242

www.jameco.com 1-800-831-4242 Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description

More information

LM118/LM218/LM318 Operational Amplifiers

LM118/LM218/LM318 Operational Amplifiers LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They

More information

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff

Supply voltage Supervisor TL77xx Series. Author: Eilhard Haseloff Supply voltage Supervisor TL77xx Series Author: Eilhard Haseloff Literature Number: SLVAE04 March 1997 i IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to

More information

Precision, Unity-Gain Differential Amplifier AMP03

Precision, Unity-Gain Differential Amplifier AMP03 a FEATURES High CMRR: db Typ Low Nonlinearity:.% Max Low Distortion:.% Typ Wide Bandwidth: MHz Typ Fast Slew Rate: 9.5 V/ s Typ Fast Settling (.%): s Typ Low Cost APPLICATIONS Summing Amplifiers Instrumentation

More information

Features DISPLAY DECODING INPUT INTERFACING

Features DISPLAY DECODING INPUT INTERFACING Data Sheet FN3158.8 4-Digit, LCD Display Driver The device is a non-multiplexed four-digit seven-segment CMOS LCD display decoder-driver. This device is configured to drive conventional LCD displays by

More information

LM1036 Dual DC Operated Tone/Volume/Balance Circuit

LM1036 Dual DC Operated Tone/Volume/Balance Circuit LM1036 Dual DC Operated Tone/Volume/Balance Circuit General Description The LM1036 is a DC controlled tone (bass/treble), volume and balance circuit for stereo applications in car radio, TV and audio systems.

More information

MIC4451/4452. General Description. Features. Applications. Functional Diagram V S. 12A-Peak Low-Side MOSFET Driver. Bipolar/CMOS/DMOS Process

MIC4451/4452. General Description. Features. Applications. Functional Diagram V S. 12A-Peak Low-Side MOSFET Driver. Bipolar/CMOS/DMOS Process 12A-Peak Low-Side MOSFET Driver Bipolar/CMOS/DMOS Process General Description MIC4451 and MIC4452 CMOS MOSFET drivers are robust, efficient, and easy to use. The MIC4451 is an inverting driver, while the

More information

ICS650-44 SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET

ICS650-44 SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET DATASHEET ICS650-44 Description The ICS650-44 is a spread spectrum clock synthesizer intended for video projector and digital TV applications. It generates three copies of an EMI optimized 50 MHz clock

More information

High-Speed, 5 V, 0.1 F CMOS RS-232 Driver/Receivers ADM202/ADM203

High-Speed, 5 V, 0.1 F CMOS RS-232 Driver/Receivers ADM202/ADM203 a FEATURES kb Transmission Rate ADM: Small (. F) Charge Pump Capacitors ADM3: No External Capacitors Required Single V Power Supply Meets EIA-3-E and V. Specifications Two Drivers and Two Receivers On-Board

More information

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER 20W Hi-Fi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power

More information

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135) Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have

More information

400KHz 60V 4A Switching Current Boost / Buck-Boost / Inverting DC/DC Converter

400KHz 60V 4A Switching Current Boost / Buck-Boost / Inverting DC/DC Converter Features Wide 5V to 32V Input Voltage Range Positive or Negative Output Voltage Programming with a Single Feedback Pin Current Mode Control Provides Excellent Transient Response 1.25V reference adjustable

More information

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in

More information

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER 20W Hi-Fi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power

More information

MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS

MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS OUTPUT SWITCH CURRENT IN EXCESS OF 1.5A 2% REFERENCE ACCURACY LOW QUIESCENT CURRENT: 2.5mA (TYP.) OPERATING FROM 3V TO 40V FREQUENCY OPERATION TO 100KHz

More information

SPREAD SPECTRUM CLOCK GENERATOR. Features

SPREAD SPECTRUM CLOCK GENERATOR. Features DATASHEET ICS7152 Description The ICS7152-01, -02, -11, and -12 are clock generators for EMI (Electro Magnetic Interference) reduction (see below for frequency ranges and multiplier ratios). Spectral peaks

More information

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS. 1996 Jan 08

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS. 1996 Jan 08 INTEGRATED CIRCUITS DATA SHEET power amplifier with diagnostic facility Supersedes data of March 1994 File under Integrated Circuits, IC01 1996 Jan 08 FEATURES Requires very few external components High

More information

LM386 Low Voltage Audio Power Amplifier

LM386 Low Voltage Audio Power Amplifier Low Voltage Audio Power Amplifier General Description The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count

More information

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer General Description The MM74C150 and MM82C19 multiplex 16 digital lines to 1 output. A 4-bit address code determines

More information

INTEGRATED CIRCUITS. 74LVC08A Quad 2-input AND gate. Product specification IC24 Data Handbook. 1997 Jun 30

INTEGRATED CIRCUITS. 74LVC08A Quad 2-input AND gate. Product specification IC24 Data Handbook. 1997 Jun 30 INTEGRATED CIRCUITS IC24 Data Handbook 1997 Jun 30 FEATURES Wide supply voltage range of 1.2 V to 3.6 V In accordance with JEDEC standard no. 8-1A Inputs accept voltages up to 5.5 V CMOS low power consumption

More information

TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS

TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS Fold-Back Characteristic provides Overload Protection for External Diodes Burst Operation under Short-Circuit and no Load Conditions

More information

ISL6700. 80V/1.25A Peak, Medium Frequency, Low Cost, Half-Bridge Driver. Features. Ordering Information. Applications. Pinouts

ISL6700. 80V/1.25A Peak, Medium Frequency, Low Cost, Half-Bridge Driver. Features. Ordering Information. Applications. Pinouts ISL6700 Data Sheet FN9077.6 80V/1.25A Peak, Medium Frequency, Low Cost, Half-Bridge Driver The ISL6700 is an 80V/1.25A peak, medium frequency, low cost, half-bridge driver IC available in 8-lead SOIC and

More information

unit : mm With heat sink (see Pd Ta characteristics)

unit : mm With heat sink (see Pd Ta characteristics) Ordering number: EN1321E Monolithic Linear IC LA4261 3.5 W 2-Channel AF Power Amplifier for Home Stereos and Music Centers Features. Minimum number of external parts required (No input capacitor, bootstrap

More information

IR2117(S)/IR2118(S) & (PbF)

IR2117(S)/IR2118(S) & (PbF) Data Sheet No. PD14 Rev N IR2117(S)/IR211(S) & (PbF) Features Floating channel designed for bootstrap operation Fully operational to +V Tolerant to negative transient voltage dv/dt immune Gate drive supply

More information

Low Cost Digital Panel Meter Designs and Complete Instructions for LCD and LED Kits

Low Cost Digital Panel Meter Designs and Complete Instructions for LCD and LED Kits Low Cost Digital Panel Meter Designs and Complete Instructions for LCD and LED Kits Application Note AN02 Introduction The and ICL707 are the first ICs to contain all the active circuitry for a / 2 digit

More information

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2) Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:

More information

+5 V Powered RS-232/RS-422 Transceiver AD7306

+5 V Powered RS-232/RS-422 Transceiver AD7306 a FEATURES RS- and RS- on One Chip Single + V Supply. F Capacitors Short Circuit Protection Excellent Noise Immunity Low Power BiCMOS Technology High Speed, Low Skew RS- Operation C to + C Operations APPLICATIONS

More information

Push-Pull FET Driver with Integrated Oscillator and Clock Output

Push-Pull FET Driver with Integrated Oscillator and Clock Output 19-3662; Rev 1; 5/7 Push-Pull FET Driver with Integrated Oscillator General Description The is a +4.5V to +15V push-pull, current-fed topology driver subsystem with an integrated oscillator for use in

More information

High and Low Side Driver

High and Low Side Driver High and Low Side Driver Features Product Summary Floating channel designed for bootstrap operation Fully operational to 200V Tolerant to negative transient voltage, dv/dt immune Gate drive supply range

More information

SELF-OSCILLATING HALF-BRIDGE DRIVER

SELF-OSCILLATING HALF-BRIDGE DRIVER Data Sheet No. PD60029 revj I2155&(PbF) (NOTE: For new designs, we recommend I s new products I2153 and I21531) SELF-OSCILLATING HALF-BIDGE DIE Features Floating channel designed for bootstrap operation

More information

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators Low Power Low Offset Voltage Quad Comparators General Description The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mv max for

More information

CMOS Power Consumption and C pd Calculation

CMOS Power Consumption and C pd Calculation CMOS Power Consumption and C pd Calculation SCAA035B June 1997 1 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or

More information

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer General Description The MM74C150 and MM82C19 multiplex 16 digital lines to 1 output. A 4-bit address code determines

More information

Features INVERTING. 0.6mA NONINVERTING INVERTING. 0.6mA NONINVERTING

Features INVERTING. 0.6mA NONINVERTING INVERTING. 0.6mA NONINVERTING MIC442/442/4428 Dual 1.A-Peak Low-Side MOSFET Driver General Description The MIC442/442/4428 family are highly-reliable dual lowside MOSFET drivers fabricated on a BiCMOS/DMOS process for low power consumption

More information

TL074 TL074A - TL074B

TL074 TL074A - TL074B A B LOW NOISE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT LOW NOISE e n = 15nV/ Hz (typ) OUTPUT SHORTCIRCUIT PROTECTION

More information

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs

DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs DM9368 7-Segment Decoder/Driver/Latch with Constant Current Source Outputs General Description The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits

More information

.OPERATING SUPPLY VOLTAGE UP TO 46 V

.OPERATING SUPPLY VOLTAGE UP TO 46 V L298 DUAL FULL-BRIDGE DRIVER.OPERATING SUPPLY VOLTAGE UP TO 46 V TOTAL DC CURRENT UP TO 4 A. LOW SATURATION VOLTAGE OVERTEMPERATURE PROTECTION LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)

More information

LM2576R. 3.0A, 52kHz, Step-Down Switching Regulator FEATURES. Applications DESCRIPTION TO-220 PKG TO-220V PKG TO-263 PKG ORDERING INFORMATION

LM2576R. 3.0A, 52kHz, Step-Down Switching Regulator FEATURES. Applications DESCRIPTION TO-220 PKG TO-220V PKG TO-263 PKG ORDERING INFORMATION LM2576 FEATURES 3.3, 5.0, 12, 15, and Adjustable Output ersions Adjustable ersion Output oltage Range, 1.23 to 37 +/- 4% AG10Maximum Over Line and Load Conditions Guaranteed 3.0A Output Current Wide Input

More information

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 July 1994 GENERAL DESCRIPTION The is an integrated class-b output amplifier in a 13-lead single-in-line (SIL) plastic power package.

More information

L4940 series VERY LOW DROP 1.5 A REGULATORS

L4940 series VERY LOW DROP 1.5 A REGULATORS L4940 series VERY LOW DROP 1.5 A REGULATORS PRECISE 5 V, 8.5 V, 10 V, 12 V OUTPUTS LOW DROPOUT VOLTAGE (500 typ at 1.5A) VERY LOW QUIESCENT CURRENT THERMAL SHUTDOWN SHORT CIRCUIT PROTECTION REVERSE POLARITY

More information

MC14001B Series. B Suffix Series CMOS Gates MC14001B, MC14011B, MC14023B, MC14025B, MC14071B, MC14073B, MC14081B, MC14082B

MC14001B Series. B Suffix Series CMOS Gates MC14001B, MC14011B, MC14023B, MC14025B, MC14071B, MC14073B, MC14081B, MC14082B MC4B Series BSuffix Series CMOS Gates MC4B, MC4B, MC4B, MC4B, MC4B, MC4B, MC4B, MC4B The B Series logic gates are constructed with P and N channel enhancement mode devices in a single monolithic structure

More information

MP2259 1A, 16V, 1.4MHz Step-Down Converter

MP2259 1A, 16V, 1.4MHz Step-Down Converter MP59 1A, 1V, 1.MHz Step-Down Converter TM The Future of Analog IC Technology DESCRIPTION The MP59 is a monolithic integrated stepdown switch mode converter with an internal power MOSFET. It achieves 1A

More information

Understanding the Terms and Definitions of LDO Voltage Regulators

Understanding the Terms and Definitions of LDO Voltage Regulators Application Report SLVA79 - October 1999 Understanding the Terms and Definitions of ltage Regulators Bang S. Lee Mixed Signal Products ABSTRACT This report provides an understanding of the terms and definitions

More information

CAT661. High Frequency 100 ma CMOS Charge Pump, Inverter/Doubler

CAT661. High Frequency 100 ma CMOS Charge Pump, Inverter/Doubler CAT High Frequency ma CMOS Charge Pump, Inverter/Doubler Description The CAT is a charge pump voltage converter. It can invert a positive input voltage to a negative output. Only two external capacitors

More information

IR2109(4) (S) HALF-BRIDGE DRIVER. Features. Product Summary. Packages. Description. Typical Connection

IR2109(4) (S) HALF-BRIDGE DRIVER. Features. Product Summary. Packages. Description. Typical Connection Data Sheet No. PD66-T Features Floating channel designed for bootstrap operation Fully operational to +6V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from to V Undervoltage

More information

DS1307ZN. 64 x 8 Serial Real-Time Clock

DS1307ZN. 64 x 8 Serial Real-Time Clock DS137 64 x 8 Serial Real-Time Clock www.maxim-ic.com FEATURES Real-time clock (RTC) counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap-year compensation valid

More information

Description. Table 1. Device summary. Order codes. TO-220 (single gauge) TO-220 (double gauge) D²PAK (tape and reel) TO-220FP

Description. Table 1. Device summary. Order codes. TO-220 (single gauge) TO-220 (double gauge) D²PAK (tape and reel) TO-220FP 1.2 V to 37 V adjustable voltage regulators Description Datasheet - production data TO-220 TO-220FP The LM217, LM317 are monolithic integrated circuits in TO-220, TO-220FP and D²PAK packages intended for

More information

CMOS, the Ideal Logic Family

CMOS, the Ideal Logic Family CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have

More information

BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information

BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information Data Sheet June 1999 File Number 2253.2 [ /Title (BUZ1 1) /Subject (3A, 5V,.4 Ohm, N- Channel Power MOS- FET) /Autho r () /Keywords (Intersil Corporation, N- Channel Power MOS- FET, TO- 22AB ) /Creator

More information

PAM8403. Description. Pin Assignments. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

PAM8403. Description. Pin Assignments. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated FILTERLESS 3W CLASS-D STEREO AUDIO AMPLIFIER Description Pin Assignments The is a 3W, class-d audio amplifier. It offers low THD+N, allowing it to achieve high-quality sound reproduction. The new filterless

More information

TLI4946. Datasheet TLI4946K, TLI4946-2K, TLI4946-2L. Sense and Control. May 2009

TLI4946. Datasheet TLI4946K, TLI4946-2K, TLI4946-2L. Sense and Control. May 2009 May 2009 TLI4946 High Precision Hall Effect Latches for Industrial and Consumer Applications TLI4946K, TLI4946-2K, TLI4946-2L Datasheet Rev. 1.0 Sense and Control Edition 2009-05-04 Published by Infineon

More information

UNISONIC TECHNOLOGIES CO., LTD

UNISONIC TECHNOLOGIES CO., LTD UPS61 UNISONIC TECHNOLOGIES CO., LTD HIGH PERFORMANCE CURRENT MODE POWER SWITCH DESCRIPTION The UTC UPS61 is designed to provide several special enhancements to satisfy the needs, for example, Power-Saving

More information

LM2941/LM2941C 1A Low Dropout Adjustable Regulator

LM2941/LM2941C 1A Low Dropout Adjustable Regulator LM2941/LM2941C 1A Low Dropout Adjustable Regulator General Description The LM2941 positive voltage regulator features the ability to source 1A of output current with a typical dropout voltage of 0.5V and

More information

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description Three terminal adjustable current sources Features Operates from 1V to 40V 0.02%/V current regulation Programmable from 1µA to 10mA ±3% initial accuracy Description The LM134/LM234/LM334 are 3-terminal

More information

LD7550-B. Green-Mode PWM Controller. General Description. Features. Applications. Typical Application. REV: 01a 12/22/2006 LD7550-B

LD7550-B. Green-Mode PWM Controller. General Description. Features. Applications. Typical Application. REV: 01a 12/22/2006 LD7550-B 12/22/2006 REV: 01a Green-Mode PWM Controller General Description The LD7550-B is a low cost, low startup current, current mode PWM controller with green-mode power-saving operation. The integrated functions

More information

CURRENT LIMITING SINGLE CHANNEL DRIVER V OFFSET. Packages

CURRENT LIMITING SINGLE CHANNEL DRIVER V OFFSET. Packages Features Floating channel designed for bootstrap operation Fully operational to +5V Tolerant to negative transient voltage dv/dt immune Gate drive supply range from 12 to 18V Undervoltage lockout Current

More information

CD4043BC CD4044BC Quad 3-STATE NOR R/S Latches Quad 3-STATE NAND R/S Latches

CD4043BC CD4044BC Quad 3-STATE NOR R/S Latches Quad 3-STATE NAND R/S Latches CD4043BC CD4044BC Quad 3-STATE NOR R/S Latches Quad 3-STATE NAND R/S Latches General Description The CD4043BC are quad cross-couple 3-STATE CMOS NOR latches, and the CD4044BC are quad cross-couple 3- STATE

More information

MAX14760/MAX14762/MAX14764 Above- and Below-the-Rails Low-Leakage Analog Switches

MAX14760/MAX14762/MAX14764 Above- and Below-the-Rails Low-Leakage Analog Switches 19-652; Rev 1; 8/12 EVALUATION KIT AVAILABLE MAX1476// General Description The MAX1476// analog switches are capable of passing bipolar signals that are beyond their supply rails. These devices operate

More information

TL783C, TL783Y HIGH-VOLTAGE ADJUSTABLE REGULATOR

TL783C, TL783Y HIGH-VOLTAGE ADJUSTABLE REGULATOR HIGH-VOLTAGE USTABLE REGULATOR SLVS36C SEPTEMBER 1981 REVISED APRIL 1997 Output Adjustable From 1.25 V to 125 V When Used With an External Resistor Divider 7-mA Output Current Full Short-Circuit, Safe-Operating-Area,

More information

MM74HC14 Hex Inverting Schmitt Trigger

MM74HC14 Hex Inverting Schmitt Trigger MM74HC14 Hex Inverting Schmitt Trigger General Description The MM74HC14 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as

More information

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection a FEATURES High Common-Mode Rejection DC: 00 db typ 60 Hz: 00 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.00% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

More information

SPI-8001TW. Switching Regulators. Dual 1.5 A, DC/DC Step-Down Converter. SANKEN ELECTRIC CO., LTD. http://www.sanken-ele.co.jp/en/

SPI-8001TW. Switching Regulators. Dual 1.5 A, DC/DC Step-Down Converter. SANKEN ELECTRIC CO., LTD. http://www.sanken-ele.co.jp/en/ Data Sheet 27469.301.1 Designed to meet high-current requirements at high efficiency in industrial and consumer applications; embedded core, memory, or logic supplies; TVs, VCRs, and office equipment,

More information

DM74LS153 Dual 1-of-4 Line Data Selectors/Multiplexers

DM74LS153 Dual 1-of-4 Line Data Selectors/Multiplexers Dual 1-of-4 Line Data Selectors/Multiplexers General Description Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection

More information

Supertex inc. HV256. 32-Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit

Supertex inc. HV256. 32-Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit 32-Channel High Voltage Amplifier Array Features 32 independent high voltage amplifiers 3V operating voltage 295V output voltage 2.2V/µs typical output slew rate Adjustable output current source limit

More information

LTC1443/LTC1444/LTC1445 Ultralow Power Quad Comparators with Reference. Features. Description. Applications. Typical Application

LTC1443/LTC1444/LTC1445 Ultralow Power Quad Comparators with Reference. Features. Description. Applications. Typical Application LTC/LTC/LTC Ultralow Power Quad Comparators with Reference Features n Ultralow Quiescent Current:.µA Max n Reference Output Drives.µF Capacitor n Adjustable Hysteresis (LTC/LTC) n Wide Supply Range Single:

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BLF244 VHF power MOS transistor

DISCRETE SEMICONDUCTORS DATA SHEET. BLF244 VHF power MOS transistor DISCRETE SEMICONDUCTORS DATA SHEET September 1992 FEATURES High power gain Low noise figure Easy power control Good thermal stability Withstands full load mismatch Gold metallization ensures excellent

More information

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER LOW NOISE DUAL OPERATIONAL AMPLIFIER LOW VOLTAGE NOISE: 4.5nV/ Hz HIGH GAIN BANDWIDTH PRODUCT: 15MHz HIGH SLEW RATE: 7V/µs LOW DISTORTION:.2% EXCELLENT FREQUENCY STABILITY ESD PROTECTION 2kV DESCRIPTION

More information

AP1509. 150KHz, 2A PWM BUCK DC/DC CONVERTER. Description. Pin Assignments V IN. Applications. Features. (Top View) GND GND. Output AP1509 GND GND

AP1509. 150KHz, 2A PWM BUCK DC/DC CONVERTER. Description. Pin Assignments V IN. Applications. Features. (Top View) GND GND. Output AP1509 GND GND Description Pin Assignments The series are monolithic IC designed for a stepdown DC/DC converter, and own the ability of driving a 2A load without additional transistor. It saves board space. The external

More information

Silvertel. Ag5200. 1 Features. 2 Description. Power-over-Ethernet Plus Module. IEEE802.3at and IEEE802.3af compliant. Maximum 30W output power

Silvertel. Ag5200. 1 Features. 2 Description. Power-over-Ethernet Plus Module. IEEE802.3at and IEEE802.3af compliant. Maximum 30W output power Silvertel V1.1 November 2012 Datasheet Pb 1 Features IEEE802.3at and IEEE802.3af compliant Maximum 30W output power Dual In-Line (DIL) package size 50.6mm (L) x 30mm (W) Overload, short-circuit and thermal

More information

VN03. ISO high side smart power solid state relay PENTAWATT. Features. Description. www.tvsat.com.pl

VN03. ISO high side smart power solid state relay PENTAWATT. Features. Description. www.tvsat.com.pl ISO high side smart power solid state relay Features Type V DSS R DS(on) I n (1) Maximum continuous output current (a) : 4A @ Tc= 25 C 5V logic level compatible input Thermal shutdown Under voltage protection

More information

MP2365 3A, 28V, 1.4MHz Step-Down Converter

MP2365 3A, 28V, 1.4MHz Step-Down Converter The Future of Analog IC Technology MP365 3A, 8,.MHz Step-Down Converter DESCRIPTION The MP365 is a.mhz step-down regulator with a built-in Power MOSFET. It achieves 3A continuous output current over a

More information

CD74HC4046A, CD74HCT4046A

CD74HC4046A, CD74HCT4046A February 99 SEMICONDUCTOR CD7HC6A, CD7HCT6A High-Speed CMOS Logic Phase-Locked-Loop with VCO Features Operating Frequency Range - Up to MHz (Typ) at = 5V - Minimum Center Frequency of MHz at Choice of

More information

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator Description: The NTE923 and NTE923D are voltage regulators designed primarily for series regulator applications. By themselves, these devices

More information

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION QUIESCENT CURRENT SPECIF. UP TO 20V OPERATION OF LIQUID CRYSTALS WITH CMOS CIRCUITS PROVIDES ULTRA LOW POWER DISPLAY. EQUIVALENT AC OUTPUT DRIVE

More information

Spread-Spectrum Crystal Multiplier DS1080L. Features

Spread-Spectrum Crystal Multiplier DS1080L. Features Rev 1; 3/0 Spread-Spectrum Crystal Multiplier General Description The is a low-jitter, crystal-based clock generator with an integrated phase-locked loop (PLL) to generate spread-spectrum clock outputs

More information

1.5A Very L.D.O Voltage Regulator LM29150/29151/29152

1.5A Very L.D.O Voltage Regulator LM29150/29151/29152 FEATURES High Current Capability 1.5A Low Dropout Voltage 350mV Low Ground Current Accurate 1% Guaranteed Initial Tolerance Extremely Fast Transient Response Reverse-Battery and "Load Dump" Protection

More information

STLQ015. 150 ma, ultra low quiescent current linear voltage regulator. Description. Features. Application

STLQ015. 150 ma, ultra low quiescent current linear voltage regulator. Description. Features. Application 150 ma, ultra low quiescent current linear voltage regulator Description Datasheet - production data Features SOT23-5L Input voltage from 1.5 to 5.5 V Very low quiescent current: 1.0 µa (typ.) at no load

More information

LM2941 LM2941C 1A Low Dropout Adjustable Regulator

LM2941 LM2941C 1A Low Dropout Adjustable Regulator June 1994 LM2941 LM2941C 1A Low Dropout Adjustable Regulator General Description The LM2941 positive voltage regulator features the ability to source 1A of output current with a typical dropout voltage

More information

Altoran Chip & Systems ACS1004 ACS1004. Compact Direct AC Line LED Driver with high PF and low THD using Only Two External Components FEATURES

Altoran Chip & Systems ACS1004 ACS1004. Compact Direct AC Line LED Driver with high PF and low THD using Only Two External Components FEATURES ACS1004 Compact Direct AC Line LED Driver with high PF and low THD using Only Two External Components FEATURES AC Mains Direct LED Driver with Only Two External Components Wide AC Input Range : 90~280VAC

More information

CAT28C64B F R E E. 64K-Bit CMOS PARALLEL EEPROM L E A D FEATURES DESCRIPTION BLOCK DIAGRAM

CAT28C64B F R E E. 64K-Bit CMOS PARALLEL EEPROM L E A D FEATURES DESCRIPTION BLOCK DIAGRAM 64K-Bit CMOS PARALLEL EEPROM FEATURES Fast read access times: 90/120/150ns Low power CMOS dissipation: Active: 25 ma max. Standby: 100 µa max. Simple write operation: On-chip address and data latches Self-timed

More information

ICL7667. Dual Power MOSFET Driver. Features. Ordering Information. Applications. Pinout. Functional Diagram (Each Driver) FN2853.7

ICL7667. Dual Power MOSFET Driver. Features. Ordering Information. Applications. Pinout. Functional Diagram (Each Driver) FN2853.7 Data Sheet FN2853.7 Dual Power MOSFET Driver The is a dual monolithic high-speed driver designed to convert TTL level signals into high current outputs at voltages up to 5V. Its high speed and current

More information

LM138 LM338 5-Amp Adjustable Regulators

LM138 LM338 5-Amp Adjustable Regulators LM138 LM338 5-Amp Adjustable Regulators General Description The LM138 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 5A over a 1 2V to 32V output range

More information