Dynamic request management algorithms for Web-based services in Cloud computing
|
|
|
- Eustace McKenzie
- 10 years ago
- Views:
Transcription
1 Dynamic request management algorithms for Web-based services in Cloud computing Riccardo Lancellotti Mauro Andreolini Claudia Canali Michele Colajanni University of Modena and Reggio Emilia COMPSAC
2 Request management for Cloud Computing Cloud: large architecture based on virtualization On-demand scalability OK for slowly changing workloads Problems for highly variable workloads Flash crowds Slashdot effect issues in request management Dispatching: Coarse grained decisions Redirection: Last defense line against overload Operates at the server level, with fine grained decisions COMPSAC
3 Redirection algorithms Redirection two decisions to take: 1. Should request r be processed locally or redirected? 2. If r is redirected, which is the best alternative server sb exploit existing algorithms (e.g., K-least loaded) Existing solutions: Threshold-based algorithms lack of adaptivity, oversimplified model Analytical models (M/M/1, M/G/1) oversimplified performance model (mean time), high computational cost (off-line) Our proposal: performance gain prediction algorithm that forecasts the expected performance in case of redirection COMPSAC
4 VM request redirection model Time shared Virtual CPU with monitoring facility and a local dispatcher (for redirection) Storage space shared among multiple VM (e.g., NAS) Redirection can occur between VMs sharing storage (and hosting the same apps) Redirection: Migration of user sessions Trade-off: load sharing vs. migration overhead Can exploit load information about local and neighbor servers COMPSAC
5 Performance Gain Prediction algorithm Redirection decisions take into account: Delay d for redirection (migration overhead) Characteristics of request r (computational cost Or) Load on server sa at time t Load on server sb at time t Predict response time T(r, sa, t) and T(r, sb, t) Redirect iif T(r, sa, t)>t(r, sb, t) where T(r, sb, t) includes delay for redirection Must predict expected response time T(r, s, t) COMPSAC
6 Prediction of response time Exploit time shared model of CPU Time shared processor with Q processes each process receives 1/Q of processor resources Based on URL we can infer computational cost of request r estimation of service time Or Prediction of response time T(r, sa, t)=or (Qsa(t)+1) T(r, sb, t)=or (Qsb(t)+1) + d Redirection condition becomes Redirect iif Or (Qsa(t)-Qsb(t)) > d COMPSAC
7 Coping with data variability High variability in the raw samples of Q Assumption: Q not changing (too much) during request service Use of smoothing techniques Double Exponential Smoothing (DES) Qs'(t)=γQs(t)+(1-γ)(Qs(t-t)+bQ(t-Δt)) where: bq(t)=α(qs(t)-qs(t-δt))+(1-α)bq(t-δt) COMPSAC
8 Alternative algorithms Threshold-based Evaluation of CPU utilization Redirects iif ρsa > Thr Thr=0.7 (commonly used value) High variability in the samples Use of smoothing techniques Fair comparison with Performance Gain Prediction algorithm Baseline comparison Local processing (No redirection) COMPSAC
9 Experimental setup Discrete simulator based on Omnet++ framework Virtualized infrastructure: 50 server supporting the same Web-based application Workload characteristics: Overload on 50% of the servers Different migration delays: From 0.1 to 2 seconds COMPSAC
10 Performance evaluation For both scenarios predictive algorithm outperforms the alternatives. Performance gain: Nearly 20% w.r.t. Threshold-based algorithm Up to 60% w.r.t. No redirection (Local) Response time Queue length COMPSAC
11 Amount of redirection Threshold-based algorithm Large amount of redirection Redirection decisions non adaptive to migration delay Performance Gain Prediction algorithm Redirects only when needed Takes into account migration delay Redirection overhead Performance gain prediction Threshold-based d=0.1s 12% 67% d=2 s 21% 67% COMPSAC
12 Performance evaluation Performance gain prediction algorithm redirects mainly the resources with high computational costs Redirection only when we identify a significant performance gain Performance gain prediction Threshold-based COMPSAC
13 Conclusions Proposal of redirection algorithms to face request surges in large data centers Exploits information on process queue length Use of predictive techniques to quantify the performance gain from redirection Comparison with threshold-based existing algorithms Response time reduction close to 20% (90- percentile) Number of redirected requests reduction up to 5 times Performance Gain Prediction algorithm redirects only the right resources COMPSAC
14 Dynamic request management algorithms for Web-based services in Cloud computing Riccardo Lancellotti Mauro Andreolini Claudia Canali Michele Colajanni University of Modena and Reggio Emilia COMPSAC
Cost Effective Automated Scaling of Web Applications for Multi Cloud Services
Cost Effective Automated Scaling of Web Applications for Multi Cloud Services SANTHOSH.A 1, D.VINOTHA 2, BOOPATHY.P 3 1,2,3 Computer Science and Engineering PRIST University India Abstract - Resource allocation
Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems
Flexible Distributed Capacity Allocation and Load Redirect Algorithms for Cloud Systems Danilo Ardagna 1, Sara Casolari 2, Barbara Panicucci 1 1 Politecnico di Milano,, Italy 2 Universita` di Modena e
Today: Data Centers & Cloud Computing" Data Centers"
Today: Data Centers & Cloud Computing" Data Centers Cloud Computing Lecture 25, page 1 Data Centers" Large server and storage farms Used by enterprises to run server applications Used by Internet companies
An Autonomic Auto-scaling Controller for Cloud Based Applications
An Autonomic Auto-scaling Controller for Cloud Based Applications Jorge M. Londoño-Peláez Escuela de Ingenierías Universidad Pontificia Bolivariana Medellín, Colombia Carlos A. Florez-Samur Netsac S.A.
1. Implementation of a testbed for testing Energy Efficiency by server consolidation using Vmware
1. Implementation of a testbed for testing Energy Efficiency by server consolidation using Vmware Cloud Data centers used by service providers for offering Cloud Computing services are one of the major
1. Simulation of load balancing in a cloud computing environment using OMNET
Cloud Computing Cloud computing is a rapidly growing technology that allows users to share computer resources according to their need. It is expected that cloud computing will generate close to 13.8 million
Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age.
Volume 3, Issue 10, October 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Load Measurement
Automated clustering of VMs for scalable cloud monitoring and management
Automated clustering of VMs for scalable cloud monitoring and management Claudia Canali, Riccardo Lancellotti Department of Information Engineering University of Modena and Reggio Emilia {claudia.canali,
CS423 Spring 2015 MP4: Dynamic Load Balancer Due April 27 th at 9:00 am 2015
CS423 Spring 2015 MP4: Dynamic Load Balancer Due April 27 th at 9:00 am 2015 1. Goals and Overview 1. In this MP you will design a Dynamic Load Balancer architecture for a Distributed System 2. You will
A CP Scheduler for High-Performance Computers
A CP Scheduler for High-Performance Computers Thomas Bridi, Michele Lombardi, Andrea Bartolini, Luca Benini, and Michela Milano {thomas.bridi,michele.lombardi2,a.bartolini,luca.benini,michela.milano}@
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms
CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,
Performance Management for Cloudbased STC 2012
Performance Management for Cloudbased Applications STC 2012 1 Agenda Context Problem Statement Cloud Architecture Need for Performance in Cloud Performance Challenges in Cloud Generic IaaS / PaaS / SaaS
Performance Testing of a Cloud Service
Performance Testing of a Cloud Service Trilesh Bhurtun, Junior Consultant, Capacitas Ltd Capacitas 2012 1 Introduction Objectives Environment Tests and Results Issues Summary Agenda Capacitas 2012 2 1
Technical Paper. Moving SAS Applications from a Physical to a Virtual VMware Environment
Technical Paper Moving SAS Applications from a Physical to a Virtual VMware Environment Release Information Content Version: April 2015. Trademarks and Patents SAS Institute Inc., SAS Campus Drive, Cary,
Scaling Database Performance in Azure
Scaling Database Performance in Azure Results of Microsoft-funded Testing Q1 2015 2015 2014 ScaleArc. All Rights Reserved. 1 Test Goals and Background Info Test Goals and Setup Test goals Microsoft commissioned
Dynamic Resource allocation in Cloud
Dynamic Resource allocation in Cloud ABSTRACT: Cloud computing allows business customers to scale up and down their resource usage based on needs. Many of the touted gains in the cloud model come from
Agent-based Federated Hybrid Cloud
Agent-based Federated Hybrid Cloud Prof. Yue-Shan Chang Distributed & Mobile Computing Lab. Dept. of Computer Science & Information Engineering National Taipei University Material Presented at Agent-based
Dynamic load management of virtual machines in a cloud architectures
Dynamic load management of virtual machines in a cloud architectures Mauro Andreolini, Sara Casolari, Michele Colajanni, and Michele Messori Department of Information Engineering University of Modena and
Technology Insight Series
Evaluating Storage Technologies for Virtual Server Environments Russ Fellows June, 2010 Technology Insight Series Evaluator Group Copyright 2010 Evaluator Group, Inc. All rights reserved Executive Summary
Virtualization. Dr. Yingwu Zhu
Virtualization Dr. Yingwu Zhu What is virtualization? Virtualization allows one computer to do the job of multiple computers. Virtual environments let one computer host multiple operating systems at the
Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜
Green Cloud Computing 班 級 : 資 管 碩 一 組 員 :710029011 黃 宗 緯 710029021 朱 雅 甜 Outline Introduction Proposed Schemes VM configuration VM Live Migration Comparison 2 Introduction (1/2) In 2006, the power consumption
Group Based Load Balancing Algorithm in Cloud Computing Virtualization
Group Based Load Balancing Algorithm in Cloud Computing Virtualization Rishi Bhardwaj, 2 Sangeeta Mittal, Student, 2 Assistant Professor, Department of Computer Science, Jaypee Institute of Information
Run-time Resource Management in SOA Virtualized Environments. Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang
Run-time Resource Management in SOA Virtualized Environments Danilo Ardagna, Raffaela Mirandola, Marco Trubian, Li Zhang Amsterdam, August 25 2009 SOI Run-time Management 2 SOI=SOA + virtualization Goal:
An Approach to Load Balancing In Cloud Computing
An Approach to Load Balancing In Cloud Computing Radha Ramani Malladi Visiting Faculty, Martins Academy, Bangalore, India ABSTRACT: Cloud computing is a structured model that defines computing services,
Sla Aware Load Balancing Algorithm Using Join-Idle Queue for Virtual Machines in Cloud Computing
Sla Aware Load Balancing Using Join-Idle Queue for Virtual Machines in Cloud Computing Mehak Choudhary M.Tech Student [CSE], Dept. of CSE, SKIET, Kurukshetra University, Haryana, India ABSTRACT: Cloud
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
Evaluation Methodology of Converged Cloud Environments
Krzysztof Zieliński Marcin Jarząb Sławomir Zieliński Karol Grzegorczyk Maciej Malawski Mariusz Zyśk Evaluation Methodology of Converged Cloud Environments Cloud Computing Cloud Computing enables convenient,
IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT
IMPROVEMENT OF RESPONSE TIME OF LOAD BALANCING ALGORITHM IN CLOUD ENVIROMENT Muhammad Muhammad Bala 1, Miss Preety Kaushik 2, Mr Vivec Demri 3 1, 2, 3 Department of Engineering and Computer Science, Sharda
Cloud Management: Knowing is Half The Battle
Cloud Management: Knowing is Half The Battle Raouf BOUTABA David R. Cheriton School of Computer Science University of Waterloo Joint work with Qi Zhang, Faten Zhani (University of Waterloo) and Joseph
The Shortcut Guide to Balancing Storage Costs and Performance with Hybrid Storage
The Shortcut Guide to Balancing Storage Costs and Performance with Hybrid Storage sponsored by Dan Sullivan Chapter 1: Advantages of Hybrid Storage... 1 Overview of Flash Deployment in Hybrid Storage Systems...
A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems
A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya Present by Leping Wang 1/25/2012 Outline Background
Load Balancing to Save Energy in Cloud Computing
presented at the Energy Efficient Systems Workshop at ICT4S, Stockholm, Aug. 2014 Load Balancing to Save Energy in Cloud Computing Theodore Pertsas University of Manchester United Kingdom [email protected]
Elastic VM for Rapid and Optimum Virtualized
Elastic VM for Rapid and Optimum Virtualized Resources Allocation Wesam Dawoud PhD. Student Hasso Plattner Institute Potsdam, Germany 5th International DMTF Academic Alliance Workshop on Systems and Virtualization
SIP Server Overload Control: Design and Evaluation
SIP Server Overload Control: Design and Evaluation Charles Shen and Henning Schulzrinne Columbia University Erich Nahum IBM T.J. Watson Research Center Session Initiation Protocol (SIP) Application layer
QoS-Aware Storage Virtualization for Cloud File Systems. Christoph Kleineweber (Speaker) Alexander Reinefeld Thorsten Schütt. Zuse Institute Berlin
QoS-Aware Storage Virtualization for Cloud File Systems Christoph Kleineweber (Speaker) Alexander Reinefeld Thorsten Schütt Zuse Institute Berlin 1 Outline Introduction Performance Models Reservation Scheduling
Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida
Power Management in Cloud Computing using Green Algorithm -Kushal Mehta COP 6087 University of Central Florida Motivation Global warming is the greatest environmental challenge today which is caused by
BLACKBOARD LEARN TM AND VIRTUALIZATION Anand Gopinath, Software Performance Engineer, Blackboard Inc. Nakisa Shafiee, Senior Software Performance
BLACKBOARD LEARN TM AND VIRTUALIZATION Anand Gopinath, Software Performance Engineer, Blackboard Inc. Nakisa Shafiee, Senior Software Performance Engineer, Blackboard Inc.. Introduction Anand Gopinath
Curriculum Vitæ. Claudia Canali
Curriculum Vitæ Claudia Canali Personal Information Name: Claudia Canali Date of birth: June 16, 1977 Place of birth: Carpi (Modena), Italy Citizenship: Italian Email address: [email protected]
Capacity Planning for Hyper-V. Using Sumerian Capacity Planner
Capacity Planning for Hyper-V Using Sumerian Capacity Planner Sumerian Capacity Planner and Hyper-V Sumerian, market leader in predictive capacity planning, offers the only SaaS product on the market today
Infrastructure as a Service (IaaS)
Infrastructure as a Service (IaaS) (ENCS 691K Chapter 4) Roch Glitho, PhD Associate Professor and Canada Research Chair My URL - http://users.encs.concordia.ca/~glitho/ References 1. R. Moreno et al.,
Flexible Performance Prediction of Data Center Networks using Automatically Generated Simulation Models
Flexible Performance Prediction of Data Center Networks using Automatically Generated Simulation Models Piotr Rygielski, Samuel Kounev, Phuoc Tran-Gia Chair of Software Engineering University of Würzburg
Parametric Analysis of Mobile Cloud Computing using Simulation Modeling
Parametric Analysis of Mobile Cloud Computing using Simulation Modeling Arani Bhattacharya Pradipta De Mobile System and Solutions Lab (MoSyS) The State University of New York, Korea (SUNY Korea) StonyBrook
An Energy-aware Multi-start Local Search Metaheuristic for Scheduling VMs within the OpenNebula Cloud Distribution
An Energy-aware Multi-start Local Search Metaheuristic for Scheduling VMs within the OpenNebula Cloud Distribution Y. Kessaci, N. Melab et E-G. Talbi Dolphin Project Team, Université Lille 1, LIFL-CNRS,
A Survey on Load Balancing Technique for Resource Scheduling In Cloud
A Survey on Load Balancing Technique for Resource Scheduling In Cloud Heena Kalariya, Jignesh Vania Dept of Computer Science & Engineering, L.J. Institute of Engineering & Technology, Ahmedabad, India
Microsoft Dynamics NAV 2013 R2 Sizing Guidelines for Multitenant Deployments
Microsoft Dynamics NAV 2013 R2 Sizing Guidelines for Multitenant Deployments February 2014 Contents Microsoft Dynamics NAV 2013 R2 3 Test deployment configurations 3 Test results 5 Microsoft Dynamics NAV
A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing
A Dynamic Resource Management with Energy Saving Mechanism for Supporting Cloud Computing Liang-Teh Lee, Kang-Yuan Liu, Hui-Yang Huang and Chia-Ying Tseng Department of Computer Science and Engineering,
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.
Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers
Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers Íñigo Goiri, J. Oriol Fitó, Ferran Julià, Ramón Nou, Josep Ll. Berral, Jordi Guitart and Jordi Torres
Real- Time Mul,- Core Virtual Machine Scheduling in Xen
Real- Time Mul,- Core Virtual Machine Scheduling in Xen Sisu Xi 1, Meng Xu 2, Chenyang Lu 1, Linh Phan 2, Chris Gill 1, Oleg Sokolsky 2, Insup Lee 2 1 Washington University in St. Louis 2 University of
Variations in Performance and Scalability when Migrating n-tier Applications to Different Clouds
Variations in Performance and Scalability when Migrating n-tier Applications to Different Clouds Deepal Jayasinghe, Simon Malkowski, Qingyang Wang, Jack Li, Pengcheng Xiong, Calton Pu Outline Motivation
Performance Tuning and Optimizing SQL Databases 2016
Performance Tuning and Optimizing SQL Databases 2016 http://www.homnick.com [email protected] +1.561.988.0567 Boca Raton, Fl USA About this course This four-day instructor-led course provides students
STeP-IN SUMMIT 2013. June 18 21, 2013 at Bangalore, INDIA. Performance Testing of an IAAS Cloud Software (A CloudStack Use Case)
10 th International Conference on Software Testing June 18 21, 2013 at Bangalore, INDIA by Sowmya Krishnan, Senior Software QA Engineer, Citrix Copyright: STeP-IN Forum and Quality Solutions for Information
Cloud Computing Architectures and Design Issues
Cloud Computing Architectures and Design Issues Ozalp Babaoglu, Stefano Ferretti, Moreno Marzolla, Fabio Panzieri {babaoglu, sferrett, marzolla, panzieri}@cs.unibo.it Outline What is Cloud Computing? A
Why Relative Share Does Not Work
Why Relative Share Does Not Work Introduction Velocity Software, Inc March 2010 Rob van der Heij rvdheij @ velocitysoftware.com Installations that run their production and development Linux servers on
Efficient and Enhanced Load Balancing Algorithms in Cloud Computing
, pp.9-14 http://dx.doi.org/10.14257/ijgdc.2015.8.2.02 Efficient and Enhanced Load Balancing Algorithms in Cloud Computing Prabhjot Kaur and Dr. Pankaj Deep Kaur M. Tech, CSE P.H.D [email protected],
Load Balancing in cloud computing
Load Balancing in cloud computing 1 Foram F Kherani, 2 Prof.Jignesh Vania Department of computer engineering, Lok Jagruti Kendra Institute of Technology, India 1 [email protected], 2 [email protected]
Scheduler in Cloud Computing using Open Source Technologies
Scheduler in Cloud Computing using Open Source Technologies Darshan Upadhyay Prof. Chirag Patel Student of M.E.I.T Asst. Prof. Computer Department S. S. Engineering College, Bhavnagar L. D. College of
CALL CENTER PERFORMANCE EVALUATION USING QUEUEING NETWORK AND SIMULATION
CALL CENTER PERFORMANCE EVALUATION USING QUEUEING NETWORK AND SIMULATION MA 597 Assignment K.Anjaneyulu, Roll no: 06212303 1. Introduction A call center may be defined as a service unit where a group of
Optimizing Shared Resource Contention in HPC Clusters
Optimizing Shared Resource Contention in HPC Clusters Sergey Blagodurov Simon Fraser University Alexandra Fedorova Simon Fraser University Abstract Contention for shared resources in HPC clusters occurs
A Cyber Laboratory for Device Dependent Hardware Experiments in a Hybrid Cloud
A Cyber Laboratory for Device Dependent Hardware Experiments in a Hybrid Cloud Nobuhiko Koike Faculty of Information and Computer Sciences, Hosei University, 3-7-2 Kajino-cho, Koganei-shi, 184-8584 Tokyo,
Introduction to Cloud Computing - 02
Introduction to Cloud Computing - 02 Iván Carrera Institute of Informatics - UFRGS September 2013 Outline Platform as a Service Characteristics PaaS Architecture - Problem* PaaS NIST Recommendations PaaS
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 36 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 36 An Efficient Approach for Load Balancing in Cloud Environment Balasundaram Ananthakrishnan Abstract Cloud computing
Performance Comparison of Assignment Policies on Cluster-based E-Commerce Servers
Performance Comparison of Assignment Policies on Cluster-based E-Commerce Servers Victoria Ungureanu Department of MSIS Rutgers University, 180 University Ave. Newark, NJ 07102 USA Benjamin Melamed Department
Energy Constrained Resource Scheduling for Cloud Environment
Energy Constrained Resource Scheduling for Cloud Environment 1 R.Selvi, 2 S.Russia, 3 V.K.Anitha 1 2 nd Year M.E.(Software Engineering), 2 Assistant Professor Department of IT KSR Institute for Engineering
Storage I/O Control: Proportional Allocation of Shared Storage Resources
Storage I/O Control: Proportional Allocation of Shared Storage Resources Chethan Kumar Sr. Member of Technical Staff, R&D VMware, Inc. Outline The Problem Storage IO Control (SIOC) overview Technical Details
Windows Server 2008 R2 Hyper-V Live Migration
Windows Server 2008 R2 Hyper-V Live Migration White Paper Published: August 09 This is a preliminary document and may be changed substantially prior to final commercial release of the software described
A Comparative Performance Analysis of Load Balancing Algorithms in Distributed System using Qualitative Parameters
A Comparative Performance Analysis of Load Balancing Algorithms in Distributed System using Qualitative Parameters Abhijit A. Rajguru, S.S. Apte Abstract - A distributed system can be viewed as a collection
SLA-driven Dynamic Resource Provisioning for Service Provider in Cloud Computing
IEEE Globecom 2013 Workshop on Cloud Computing Systems, Networks, and Applications SLA-driven Dynamic Resource Provisioning for Service Provider in Cloud Computing Yongyi Ran *, Jian Yang, Shuben Zhang,
Profit-driven Cloud Service Request Scheduling Under SLA Constraints
Journal of Information & Computational Science 9: 14 (2012) 4065 4073 Available at http://www.joics.com Profit-driven Cloud Service Request Scheduling Under SLA Constraints Zhipiao Liu, Qibo Sun, Shangguang
Cloud Building Blocks: Paving the Road
Cloud Building Blocks: Paving the Road By understanding what provides a strong foundation for the cloud, CIOs can help make their deployments smooth and cost-effective. Companies are turning to cloud computing
Multilevel Communication Aware Approach for Load Balancing
Multilevel Communication Aware Approach for Load Balancing 1 Dipti Patel, 2 Ashil Patel Department of Information Technology, L.D. College of Engineering, Gujarat Technological University, Ahmedabad 1
Big Data - Infrastructure Considerations
April 2014, HAPPIEST MINDS TECHNOLOGIES Big Data - Infrastructure Considerations Author Anand Veeramani / Deepak Shivamurthy SHARING. MINDFUL. INTEGRITY. LEARNING. EXCELLENCE. SOCIAL RESPONSIBILITY. Copyright
Performance Management for Cloud-based Applications STC 2012
Performance Management for Cloud-based Applications STC 2012 1 Agenda Context Problem Statement Cloud Architecture Key Performance Challenges in Cloud Challenges & Recommendations 2 Context Cloud Computing
BizTalk Server 2013 Licensing Datasheet and FAQ Published: March, 2013
BizTalk Server 2013 Licensing Datasheet and FAQ Published: March, 2013 Product Overview BizTalk Server (BTS) is Microsoft s integration and connectivity server solution. A mature product on its eighth
Environments, Services and Network Management for Green Clouds
Environments, Services and Network Management for Green Clouds Carlos Becker Westphall Networks and Management Laboratory Federal University of Santa Catarina MARCH 3RD, REUNION ISLAND IARIA GLOBENET 2012
Top 5 Reasons to choose Microsoft Windows Server 2008 R2 SP1 Hyper-V over VMware vsphere 5
Top 5 Reasons to choose Microsoft Windows Server 2008 R2 SP1 Hyper-V over VMware Published: April 2012 2012 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information and
CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT
81 CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT 5.1 INTRODUCTION Distributed Web servers on the Internet require high scalability and availability to provide efficient services to
Black-box Performance Models for Virtualized Web. Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang [email protected]
Black-box Performance Models for Virtualized Web Service Applications Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang [email protected] Reference scenario 2 Virtualization, proposed in early
The State of Cloud Storage
205 Industry Report A Benchmark Comparison of Speed, Availability and Scalability Executive Summary Both 203 and 204 were record-setting years for adoption of cloud services in the enterprise. More than
