Diagnostics. Electric probes. Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal

Size: px
Start display at page:

Download "Diagnostics. Electric probes. Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl."

Transcription

1 C. Silva Lisboa, Jan IST Diagnostics Electric probes Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal

2 Langmuir probes Simplest diagnostic (1920) conductor immerse into the plasma Data interpretation complicated as probes perturb the plasma Limited to the plasma region were the probes can survive or do not perturb plasma Allows the determination of a large variety of plasma parameters (some of them only possible with probes) The importance of edge effects resulted in the continued use of probes The most widely used diagnostic techniques for low temperature plasmas, T e < 100 ev 2

3 Plasma Parameters (JET) Core T < 20 kev n ~ 1x10 20 m -3 Edge plasma T < 100 ev n < 1x10 19 m -3 Industrial / Space plasmas T < 10 ev n < 1x10 15 m -3 3

4 Debye shielding Physics of probes equivalent to that of plasmawall interaction Electrostatic potentials are shielded within a short distance. Sheath keeps the plasma neutral Sheath dimension 10 λ D ~ 0.1 mm, thin layer (λ D ~ 10-5 m for T e = 20 ev, n = m -3 ). Thin: λ D << d (probe dimension, ~mm) Collisionless: l (mean free path, cm - m) >> λ D Not to scale 4

5 Sheath As electrons are more mobile a electric field arises in the sheath so that Γ i = Γ e. Probe rapidly charges up negatively, floating potential. Probe floats below the plasma potential Sheath has a positive charge 5

6 Sheath analysis Space divided quasi-neutral plasma and the sheath (n i n e ) Sheath analyses: Simplest possible case (B = 0, Z = 1, T i = 0, collisionless, plane probe, 1D), all particles absorbed by the probe Aim: estimate parameters at sheath edge (se) Relation density and potential follows Boltzmann factor (Maxwellian) 6

7 Sheath analysis Energy conservation in the sheath Combining particle and energy conservation n i > n e sheath: Solve the 1D Poisson s equation 7

8 Bohm criterion y(x) is non-oscillatory if a > 0 V se kt e /2e v se 2 kt e /m i or v se c s with c s = (kt e /m i ) 1/2 This is called the Bohm sheath criterion (1949): Ions must stream into the sheath with c s for a sheath to form (depends on T e ). How can the ions get such a large velocity? 8

9 Pre-sheath There must be a small electric field in the plasma that accelerates ions to an energy ~ ½kT e toward the sheath edge. This region is called the presheath (E sheath kt e /λ D 10 5 E pre-sheath ). The pre-sheath field is weak enough that quasi-neutrality does not have to be violated. The point where (n i n e )/n i becomes significant, corresponding to the plasma sheath interface. The density at the sheath edge cannot be the same as the plasma density in the main plasma. Sheath edge: v se = c s, V se = - ½kT e, therefore n se = n 0 e - ½ 0.6n 0 Total pressure constant 9

10 Summary A plasma can coexist with a material boundary only if a thin sheath forms, isolating the plasma from the boundary. In the sheath there is a potential drop (few times kt e ) which repels electrons from and accelerates ions toward the wall. The sheath drop adjusts itself so that the fluxes of ions and electrons leaving the plasma are almost exactly equal, so that quasi-neutrality is maintained. 10

11 More general cases T i 0, weak dependence Probe geometry: Results generally applied provided the sheath is thin, probe considered locally planar used with probes of any shape Exact numerical solution with B = 0, T i 0 (Loframboise,1966): approximate analysis adequate, ~10%. Orbit-limited collection: λ D > d 11

12 Probe parameters Ion flux to a surface se = w, no dependence on the sheath potential drop Potential drop between plasma and a floating surface ( se e = sei ) ev f /kt e 3 for T e T i, D plasma V p = V f + 3Te 12

13 Single probe What if the surface is not floating, but electrically biased? 13

14 Single probe, I V characteristic B=0, Z=1, T i =0, Maxwellian distribution, no secondary emission, collisionless, no particle sources, d > λ D Sheath: V se = c s, n se =0.5 n 0 14

15 Single probe, I - V characteristic T e, V f and I sat derived from the characteristic and then n from I sat 15

16 Effect of the magnetic field Particles collected over larger distances Collisionless assumption may not be valid as, l L Typical case: ρ e < d and ρ i d ~ mm (magnetized / strong magnetized) Determination of the effective probe area can be complex Despite theoretical difficulties, Bohm formula is valid and information may be extracted assuming for the area A, limiting the analysis to V ap ~< V f 16

17 Double and triple probes Valid only if no significant gradients exist Double probe Triple probe 17

18 References Principles of Plasma Diagnostics, Hutchinson, Cambridge The Plasma Boundary of Magnetic Fusion Devices, Stangeby, IoP 18

19 Typical circuit 19

20 Typical I, V signals 20

21 I - V characteristic 21

22 Typical applications 22

23 Fixed probes Graphite probes fixed in the plasma facing components (same material as PFCs) do not perturb plasma Study plasma-wall interaction Materials: Graphite, Tungsten Γ wall = I sat /ea p [m -2 s -1 ] q wall =γt e Γ wall [W/m 2 ] 23

24 JET divertor probes Essential for the characterization of the divertor particle and heat fluxes Array of embedded probes made of the target material (CFC / W). The probes have heat conduction capabilities that are similar to that of the target plates, and they will erode at a similar rate 24

25 Divertor probes for ITER Successful operation of the divertor relies on achieving a detached divertor regime. Probes give the most direct indication of detachment I sat drops Main problem: For heavily loaded PFCs (10 MWm 3 ), the design of the Langmuir probe becomes as difficult as that of the target Heat conduction capabilities and a erosion rate that are similar to that of the target plates (replaced in parallel with the exchange of the divertor ). 25

26 Reciprocating probes Reduce the probe heat loads (few 100 ms) Pneumatic systems Typical velocity 1 m/s 26

27 JET reciprocating probe head 9 pin probe head (C, BN) Allows determination of a large variety of parameters (some only possible with probes) ( I sat, V f, T e, M //, E θ, E r, Γ ExB ) Local measurements (only limited pin size) High temporal resolution (limited by the data acquisition system) Ideal for turbulence studies 27

28 Reciprocation at JET 28

29 Reciprocation at JET 29

30 ISTTOK probe arrays Poloidal array Radial array 30

31 Gundestrup probe Determination of the poloidal e toroidal plasma rotation M // = 0.4 ln(i satu /I satd ) 31

32 Retarding field energy analyzer Simple Langmuir probes can tell us nothing about T i. (This require measuring the ion current at positive voltages at which the current to the Langmuir probe is dominated by highly mobile electrons.) RFA operation: The slit plate is biased negatively to repel electrons. The transmitted ions are retarded in the electric field created by a swept positive voltage applied to grid 1. The collector measures the ion current. 32

33 Space plasmas One of two Langmuir probes on board ESA's space vehicle Rosetta (intended to study the comet 67P/Churyumov-Gerasimenko). The probe is the spherical part, 50 mm in diameter and made from titanium with a surface coating of titanium nitride. This specific Langmuir probe is on a mission to study the space plasma around the comet. Probes also used in the Cassini mission to measure the inner magnetosphere of Saturn 33

34 Typical results 34

35 Examples of application Heat loads (IR, thermocouples), particle flux, detachment monitor, High temporal resolution, local measurement 35

36 ELM studies Filaments during ELMs ELMs have a complex internal structure (filaments) clearly seen in the far SOL density (also seen in other diagnostics as the fast visible camera) 36

37 SOL profiles at JET 37

38 Edge plasma studies with probes Determination of plasma parameters in different regimes Heat and particle loads Detailed ELM structure and propagation Characterization and control of turbulence 38

39 Turbulence in tokamaks Turbulence is responsible for and increase in the radial transport (anomalous transport) limiting the tokamaks performance SOL transport occurs via intermittent convective bursts (composed of long filaments along B) 39

40 Turbulent particle flux If local density and E fluctuations are in phase then a net time-averaged radial transport exists ~ E v ~ r ~ E B E B ne ~ ~ B 40

41 Fluctuations measurements Temperature fluctuations are often ignored and therefore density and plasma potential fluctuations derived respectively from the ion saturation current and floating potential fluctuations. I sat nt 1/2, V p = V f + 3T Results from emissive and ball pen probes as well as numerical codes indicate that the fluctuation level in V f is larger than in V p and therefore standard Langmuir probes overestimate the turbulent transport 41

42 Typical fluctuations analysis Fluctuations poloidal structure Poloidal correlation C xy x( t ) x y( t) y x( t) x 2 y( t) y 2 42

Diagnostics. Electric probes. Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.

Diagnostics. Electric probes. Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl. Diagnostics Electric probes Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://www.ipfn.ist.utl.pt Langmuir probes Simplest diagnostic (1920) conductor immerse into

More information

First Measurements with U-probe on the COMPASS Tokamak

First Measurements with U-probe on the COMPASS Tokamak WDS'13 Proceedings of Contributed Papers, Part II, 109 114, 2013. ISBN 978-80-7378-251-1 MATFYZPRESS First Measurements with U-probe on the COMPASS Tokamak K. Kovařík, 1,2 I. Ďuran, 1 J. Stöckel, 1 J.Seidl,

More information

Plasma science and technology Basic concepts

Plasma science and technology Basic concepts Plasma science and technology Basic concepts ATHENS 2015 Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Vasco Guerra Since the dawn of Mankind men has tried to understand plasma physics...

More information

Modelling of plasma response to resonant magnetic perturbations and its influence on divertor strike points

Modelling of plasma response to resonant magnetic perturbations and its influence on divertor strike points 1 TH/P4-27 Modelling of plasma response to resonant magnetic perturbations and its influence on divertor strike points P. Cahyna 1, Y.Q. Liu 2, E. Nardon 3, A. Kirk 2, M. Peterka 1, J.R. Harrison 2, A.

More information

PARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE

PARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE PARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE K. ASANO, S. NUNOMURA, T. MISAWA, N. OHNO and S. TAKAMURA Department of Energy Engineering and Science, Graduate School

More information

First-principles theory-based scaling of the SOL width in limited tokamak plasmas, experimental validation, and implications for the ITER start-up

First-principles theory-based scaling of the SOL width in limited tokamak plasmas, experimental validation, and implications for the ITER start-up 1 TH/3-2 First-principles theory-based scaling of the SOL width in limited tokamak plasmas, experimental validation, and implications for the ITER start-up P. Ricci 1, F.D. Halpern 1, J. Loizu 1, S. Jolliet

More information

Trace Layer Import for Printed Circuit Boards Under Icepak

Trace Layer Import for Printed Circuit Boards Under Icepak Tutorial 13. Trace Layer Import for Printed Circuit Boards Under Icepak Introduction: A printed circuit board (PCB) is generally a multi-layered board made of dielectric material and several layers of

More information

Local Electron Thermal Transport in the MST Reversed-Field Pinch

Local Electron Thermal Transport in the MST Reversed-Field Pinch Local Electron Thermal Transport in the MST Reversed-Field Pinch T.M. Biewer,, J.K., B.E. Chapman, N.E. Lanier,, S.R. Castillo, D.J. Den Hartog,, and C.B. Forest University of Wisconsin-Madison Recent

More information

Numerical study of the ITER divertor plasma with the B2-EIRENE code package

Numerical study of the ITER divertor plasma with the B2-EIRENE code package Numerical study of the ITER divertor plasma with the B-EIRENE code package Vladislav Kotov Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, 545, Jülich, Germany e-mail: v.kotov@fz-juelich.de,

More information

ION ENERGY DISTRIBUTION FUNCTION MEASURED BY RETARDING FIELD ENERGY ANALYZERS

ION ENERGY DISTRIBUTION FUNCTION MEASURED BY RETARDING FIELD ENERGY ANALYZERS ION ENERGY DISTRIBUTION FUNCTION MEASURED BY RETARDING FIELD ENERGY ANALYZERS Laboratoire de Physique des Plasmas Ane Aanesland CNRS Ecole Polytechnique France Overview 1. Principle and requirements for

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

Natural Convection. Buoyancy force

Natural Convection. Buoyancy force Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

More information

Advanced spatial discretizations in the B2.5 plasma fluid code

Advanced spatial discretizations in the B2.5 plasma fluid code Advanced spatial discretizations in the B2.5 plasma fluid code Klingshirn, H.-J. a,, Coster, D.P. a, Bonnin, X. b, a Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany b LSPM-CNRS,

More information

Thesis Supervisor: Pascal CHABERT, Ecole Polytechnique (LPP) ONERA Supervisor: Julien JARRIGE, DMPH/FPA

Thesis Supervisor: Pascal CHABERT, Ecole Polytechnique (LPP) ONERA Supervisor: Julien JARRIGE, DMPH/FPA Theoretical and Experimental characterization of an electron cyclotron resonance plasma thruster Félix CANNAT felix.cannat@onera.fr PhD Student 3 nd year ONERA Palaiseau, DMPH/FPA Thesis Supervisor: Pascal

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

16th International Toki Conference on Advanced Imaging and Plasma Diagnostics

16th International Toki Conference on Advanced Imaging and Plasma Diagnostics 16th International Toki Conference on Advanced Imaging and Plasma Diagnostics Temperature Diagnostics for Field-Reversed Configuration Plasmas on the Pulsed High Density (PHD) Experiment Hiroshi Gota,

More information

Poisson Equation Solver Parallelisation for Particle-in-Cell Model

Poisson Equation Solver Parallelisation for Particle-in-Cell Model WDS'14 Proceedings of Contributed Papers Physics, 233 237, 214. ISBN 978-8-7378-276-4 MATFYZPRESS Poisson Equation Solver Parallelisation for Particle-in-Cell Model A. Podolník, 1,2 M. Komm, 1 R. Dejarnac,

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Fundamentals of Plasma Physics Waves in plasmas

Fundamentals of Plasma Physics Waves in plasmas Fundamentals of Plasma Physics Waves in plasmas APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Vasco Guerra 1 Waves in plasmas What can we study with the complete description

More information

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations Lorenzo Matteini University of Florence, Italy In collaboration with Petr Hellinger, Simone Landi, and Marco Velli

More information

IMPROVED CCD DETECTORS FOR HIGH SPEED, CHARGE EXCHANGE SPECTROSCOPY STUDIES ON THE DIII D TOKAMAK

IMPROVED CCD DETECTORS FOR HIGH SPEED, CHARGE EXCHANGE SPECTROSCOPY STUDIES ON THE DIII D TOKAMAK IMPROVED CCD DETECTORS FOR HIGH SPEED, CHARGE EXCHANGE SPECTROSCOPY STUDIES ON THE TOKAMAK by K.H. Burrell P. Gohil, R.J. Groebner, D.H. Kaplan, D.G. Nilson,* J.I. Robinson, and D.M. Thomas General Atomics,

More information

TRANSPORT CODE NATIONAL (NTCC) COLLABORATION H. Kritz, G. Bateman, M. Erba, J. Kinsey Arnold University Physics Department Lehigh 16 Memorial Drive East, Bethlehem, PA 18015 St. John H. Atomics, San Diego,

More information

Developing Predictive Capability for High Performance Steady State Plasmas

Developing Predictive Capability for High Performance Steady State Plasmas Developing Predictive Capability for High Performance Steady State Plasmas P. Snyder, A. Kritz, R. Budny, C.S. Chang, M. Greenwald, T. Carter, J. Wright, G.R. Tynan Primary Goal Reduce Time to and Cost

More information

ITER - business in fusion

ITER - business in fusion ITER - business in fusion Madrid, Journée Nucléaire Franco Espagnole 25 th June 2013 Benjamin Perier 1 What is fusion? 2 What is fusion? Fusion is the source of energy of the sun and stars Nuclei of light

More information

Optimization of electronic devices placement on printed circuit board

Optimization of electronic devices placement on printed circuit board Optimization of electronic devices placement on printed circuit board Abstract by M. Felczak, T.Wajman and B. Więcek Technical University of Łódź, Wólczańska 211/215, 90-924 Łódź, Poland Power densities

More information

COMPARISON OF COMMERCIAL PLASMA PROBE SYSTEMS

COMPARISON OF COMMERCIAL PLASMA PROBE SYSTEMS COMPARISON OF COMMERCIAL PLASMA PROBE SYSTEMS V. A. Godyak B. M. Alexandrovich RF Plasma Consulting egodyak@comcast.net Plasma Sensors ben@plasmasensors.com AVS 61 th International Symposium & Exhibition

More information

Major Conclusions of the MFE Study

Major Conclusions of the MFE Study Major Conclusions of the MFE Study 1. Why a burning plasma Navratil 2. Burning plasma options Baker 3. Assessment of contributions of the options Van Dam 4. Assessment of the feasibility of the options

More information

Langmuir Probe Diagnostics

Langmuir Probe Diagnostics Lecture Notes on Langmuir Probe Diagnostics Francis F. Chen Electrical Engineering Department University of California, Los Angeles Mini-Course on Plasma Diagnostics, IEEE-ICOPS meeting, Jeju, Korea, June

More information

Methods of plasma generation and plasma sources

Methods of plasma generation and plasma sources Methods of plasma generation and plasma sources PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development

More information

Impact of the plasma response in threedimensional edge plasma transport modeling for RMP ELM control at ITER

Impact of the plasma response in threedimensional edge plasma transport modeling for RMP ELM control at ITER Impact of the plasma response in threedimensional edge plasma transport modeling for RMP ELM control at ITER O. Schmitz 1, H. Frerichs 1, M. Becoulet 2, P. Cahyna 3, T.E. Evans 4, Y. Feng 5, N. Ferraro

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

How To Calculate Thermal Resistance On A Pb (Plastipo)

How To Calculate Thermal Resistance On A Pb (Plastipo) VISHAY BEYSCHLAG Resistive Products 1. INTRODUCTION Thermal management is becoming more important as the density of electronic components in modern printed circuit boards (PCBs), as well as the applied

More information

Battery Thermal Management System Design Modeling

Battery Thermal Management System Design Modeling Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D (ahmad_pesaran@nrel.gov) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,

More information

View of ΣIGMA TM (Ref. 1)

View of ΣIGMA TM (Ref. 1) Overview of the FESEM system 1. Electron optical column 2. Specimen chamber 3. EDS detector [Electron Dispersive Spectroscopy] 4. Monitors 5. BSD (Back scatter detector) 6. Personal Computer 7. ON/STANDBY/OFF

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions Ram Tripathi NASA Langley Research Center NIAC 2012 Spring Symposium,

More information

INFRARED MONITORING OF 110 GHz GYROTRON WINDOWS AT DIII D

INFRARED MONITORING OF 110 GHz GYROTRON WINDOWS AT DIII D GA A23981 INFRARED MONITORING OF 110 GHz GYROTRON WINDOWS AT DIII D by Y. GORELOV, J. LOHR, R.W. CALLIS, and D. PONCE MAY 2002 DISCLAIMER This report was prepared as an account of work sponsored by an

More information

Optiffuser. High-performance, high bandwidth lightweight 1D diffuser.

Optiffuser. High-performance, high bandwidth lightweight 1D diffuser. Optiffuser High-performance, high bandwidth lightweight 1D diffuser. General product information The Optiffuser comes in packs of four panels. Two positives and two negatives (see page 5) per package.

More information

Overview of the Canadian Electric Field Instrument (CEFI) for Swarm

Overview of the Canadian Electric Field Instrument (CEFI) for Swarm Overview of the Canadian Electric Field Instrument (CEFI) for Swarm Brian Moffat (a), John Hackett (a), David Knudsen (b), Jan-Erik Wahlund (c), Lennart Åhlén (c), Nico Stricker (d) (a) COM DEV Ltd., Cambridge

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

NUCLEAR ENERGY RESEARCH INITIATIVE

NUCLEAR ENERGY RESEARCH INITIATIVE NUCLEAR ENERGY RESEARCH INITIATIVE Experimental and CFD Analysis of Advanced Convective Cooling Systems PI: Victor M. Ugaz and Yassin A. Hassan, Texas Engineering Experiment Station Collaborators: None

More information

Non-Inductive Startup and Flux Compression in the Pegasus Toroidal Experiment

Non-Inductive Startup and Flux Compression in the Pegasus Toroidal Experiment Non-Inductive Startup and Flux Compression in the Pegasus Toroidal Experiment John B. O Bryan University of Wisconsin Madison NIMROD Team Meeting July 31, 2009 Outline 1 Introduction and Motivation 2 Modeling

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

Automatic 3D Mapping for Infrared Image Analysis

Automatic 3D Mapping for Infrared Image Analysis Automatic 3D Mapping for Infrared Image Analysis i r f m c a d a r a c h e V. Martin, V. Gervaise, V. Moncada, M.H. Aumeunier, M. irdaouss, J.M. Travere (CEA) S. Devaux (IPP), G. Arnoux (CCE) and JET-EDA

More information

Universal extreme statistical properties (of plasma edge transport)

Universal extreme statistical properties (of plasma edge transport) Universal extreme statistical properties (of plasma edge transport) Ingmar Sandberg 1,2 1 2 National Observatory of Athens D. del-castillo Castillo-Negrete,, S. Fututani, S. Benkadda, X. Garbet,, G. Ropokis

More information

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Grounding Demystified

Grounding Demystified Grounding Demystified 3-1 Importance Of Grounding Techniques 45 40 35 30 25 20 15 10 5 0 Grounding 42% Case 22% Cable 18% Percent Used Filter 12% PCB 6% Grounding 42% Case Shield 22% Cable Shielding 18%

More information

Resistivity. V A = R = L ρ (1)

Resistivity. V A = R = L ρ (1) Resistivity Electric resistance R of a conductor depends on its size and shape as well as on the conducting material. The size- and shape-dependence was discovered by Georg Simon Ohm and is often treated

More information

Evaluation of fuelling requirements and transient density behaviour in ITER reference operational scenarios

Evaluation of fuelling requirements and transient density behaviour in ITER reference operational scenarios IDM UID AG36ER VERSION CREATED ON / VERSION / STATUS 06 Jul 2012 / 1.2/ Approved EXTERNAL REFERENCE Report Evaluation of fuelling requirements and transient density behaviour in ITER reference operational

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

More information

A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS

A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS W. M. Torres, P. E. Umbehaun, D. A. Andrade and J. A. B. Souza Centro de Engenharia Nuclear Instituto de Pesquisas Energéticas e Nucleares

More information

Curriculum Vitae. Max-Planck-Institut für Plasmaphysik, Garching, Munich (Germany)

Curriculum Vitae. Max-Planck-Institut für Plasmaphysik, Garching, Munich (Germany) Curriculum Vitae Personal information Surname / First name Spagnolo Silvia Place / date of birth Vicenza (Italy), 22nd May 1982 Nationality Italian Address Via Lago di Fimon 4B, 36057 Arcugnano, Vicenza

More information

A wave lab inside a coaxial cable

A wave lab inside a coaxial cable INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera

More information

CHAPTER 6 THERMAL DESIGN CONSIDERATIONS. page. Introduction 6-2. Thermal resistance 6-2. Junction temperature 6-2. Factors affecting R th(j-a) 6-2

CHAPTER 6 THERMAL DESIGN CONSIDERATIONS. page. Introduction 6-2. Thermal resistance 6-2. Junction temperature 6-2. Factors affecting R th(j-a) 6-2 CHAPTER 6 THERMAL DESIGN CONSIDERATIONS page Introduction 6-2 Thermal resistance 6-2 Junction temperature 6-2 Factors affecting 6-2 Thermal resistance test methods 6-3 Test procedure 6-3 Forced air factors

More information

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer

Solar System science with the IRAM interferometer. Recent Solar System science with the IRAM Plateau de Bure interferometer Recent Solar System science with the IRAM Plateau de Bure interferometer J. Boissier (Institut de radioastronomie millimétrique) Contact: boissier@iram.fr Outline Planet moons Io Titan Planets Mars Comets

More information

A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators

A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators Dr Peter Hockley and Professor Mike Thwaites, Plasma Quest Limited

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential 23-1 Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative potential energy can be defined. Change in electric potential energy is

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

Steady Heat Conduction

Steady Heat Conduction Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Ampacity simulation of a high voltage cable to connecting off shore wind farms

Ampacity simulation of a high voltage cable to connecting off shore wind farms Ampacity simulation of a high voltage cable to connecting off shore wind farms Eva Pelster 1, Dr. David Wenger 1 1 Wenger Engineering GmbH, Einsteinstr. 55, 89077 Ulm, mail@wenger-engineering.com Abstract:

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

Steady Flow: Laminar and Turbulent in an S-Bend

Steady Flow: Laminar and Turbulent in an S-Bend STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and

More information

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

More information

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8 References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

More information

Neutral Beam Injection Experiments in the MST Reversed Field Pinch

Neutral Beam Injection Experiments in the MST Reversed Field Pinch Neutral Beam Injection Experiments in the MST Reversed Field Pinch D. Liu 1, A. F. Almagri 1, J.K. Anderson 1, V. V. Belykh 2, B.E. Chapman 1, V.I. Davydenko 2, P. Deichuli 2, D.J. Den Hartog 1, S. Eilerman

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

Investigation of Tungsten Coatings on Graphite and CFC

Investigation of Tungsten Coatings on Graphite and CFC Investigation of Tungsten Coatings on Graphite and CFC R.Neu 1, H.Maier 1, E. Gauthier 2, H. Greuner 1,T. Hirai 3, Ch. Hopf 1, J. Likonen 4, G. Maddaluno 5, G.F. Matthews 6, R. Mitteau 2, V. Philipps 3,

More information

TOF FUNDAMENTALS TUTORIAL

TOF FUNDAMENTALS TUTORIAL TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] info@rmjordan.com [e-mail] This

More information

Introduction to acoustic imaging

Introduction to acoustic imaging Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

More information

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (no PiN and pinned Diodes) Peter Fischer P. Fischer, ziti, Uni Heidelberg, Seite 1 Overview Reminder: Classical Photomultiplier

More information

HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS

HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS P.R.Hatwar 1, Bhojraj N. Kale 2 1, 2 Department of Mechanical Engineering Dr. Babasaheb Ambedkar College of Engineering & Research,

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

GA A25827 EFFECTS OF ELECTRON CYCLOTRON CURRENT DRIVE, COUNTER-NBI, AND ROTATIONAL ENTRAINMENT ON NEOCLASSICAL TEARING MODE CONTROL IN DIII-D

GA A25827 EFFECTS OF ELECTRON CYCLOTRON CURRENT DRIVE, COUNTER-NBI, AND ROTATIONAL ENTRAINMENT ON NEOCLASSICAL TEARING MODE CONTROL IN DIII-D GA A25827 EFFECTS OF ELECTRON CYCLOTRON CURRENT DRIVE, COUNTER-NBI, AND ROTATIONAL ENTRAINMENT ON NEOCLASSICAL TEARING MODE CONTROL IN DIII-D by R. PRATER, R.J. LA HAYE, C.C. PETTY, E.J. STRAIT, J.R. FERRON,

More information

HEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS - IM0237 2014_1

HEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS - IM0237 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE HEAT TRANSFER IM05 LECTURE HOURS PER WEEK 8 HOURS CLASSROOM ON 6 WEEKS, HOURS LABORATORY, HOURS OF INDEPENDENT WORK THERMODYNAMICS

More information

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

More information

The Basics of Scanning Electron Microscopy

The Basics of Scanning Electron Microscopy The Basics of Scanning Electron Microscopy The small scanning electron microscope is easy to use because almost every variable is pre-set: the acceleration voltage is always 15kV, it has only a single

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Quiz: Work and Energy

Quiz: Work and Energy Quiz: Work and Energy A charged particle enters a uniform magnetic field. What happens to the kinetic energy of the particle? (1) it increases (2) it decreases (3) it stays the same (4) it changes with

More information

Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment

Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment K. Litfin, A. Batta, A. G. Class,T. Wetzel, R. Stieglitz Karlsruhe Institute of Technology Institute for Nuclear and Energy

More information

Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering

Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:

More information

Diffusion and Fluid Flow

Diffusion and Fluid Flow Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

More information

Determination of Thermal Conductivity of Coarse and Fine Sand Soils

Determination of Thermal Conductivity of Coarse and Fine Sand Soils Proceedings World Geothermal Congress Bali, Indonesia, - April Determination of Thermal Conductivity of Coarse and Fine Sand Soils Indra Noer Hamdhan 1 and Barry G. Clarke 2 1 Bandung National of Institute

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

12.307. 1 Convection in water (an almost-incompressible fluid)

12.307. 1 Convection in water (an almost-incompressible fluid) 12.307 Convection in water (an almost-incompressible fluid) John Marshall, Lodovica Illari and Alan Plumb March, 2004 1 Convection in water (an almost-incompressible fluid) 1.1 Buoyancy Objects that are

More information

LECTURE 6: Fluid Sheets

LECTURE 6: Fluid Sheets LECTURE 6: Fluid Sheets The dynamics of high-speed fluid sheets was first considered by Savart after his early work on electromagnetism with Biot, and was subsequently examined in a series of papers by

More information

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

More information

Carbon Cable. Sergio Rubio Carles Paul Albert Monte

Carbon Cable. Sergio Rubio Carles Paul Albert Monte Carbon Cable Sergio Rubio Carles Paul Albert Monte Carbon, Copper and Manganine PhYsical PropERTieS CARBON PROPERTIES Carbon physical Properties Temperature Coefficient α -0,0005 ºC-1 Density D 2260 kg/m3

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2010

Candidate Number. General Certificate of Education Advanced Level Examination June 2010 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18

More information

IV. Molecular Clouds. 1. Molecular Cloud Spectra

IV. Molecular Clouds. 1. Molecular Cloud Spectra IV. Molecular Clouds Dark structures in the ISM emit molecular lines. Dense gas cools, Metals combine to form molecules, Molecular clouds form. 1. Molecular Cloud Spectra 1 Molecular Lines emerge in absorption:

More information