INTRODUCTION TO RATING MODELS

Size: px
Start display at page:

Download "INTRODUCTION TO RATING MODELS"

Transcription

1

2 INTRODUCTION TO RATING MODELS Dr. Daniel Straumann Credit Suisse Credit Portfolio Analytics Zurich, May 26, 2005 May 26, 2005 / Daniel Straumann Slide 2

3 Motivation Due to the Basle II Accord every bank has to assess the default probability (DP) of each obligor (firm, private client, consumer) in its credit portfolio (IRB Approach). This calls for internal rating systems. A rating system is a rational and replicable procedure, which assigns to each obligor a rating (one year DP) based on the following information: market information (equity prices, interest rates, credit spreads, derivatives prices, credit agencies ratings, macroeconomic variables,... ), balance sheet information resp. income data and assets (for individuals), qualitative data (marital status, domicile, industry sector,... ), qualitative assessment (by credit analysts), client s individual financial behavior,... May 26, 2005 / Daniel Straumann Slide 3

4 Examples of Ratings Standard & Poor s Moody s Rating DP Rating DP AAA % Aaa % AA % Aa % AA 0.01 % Aa % AA % Aa % A % A % A 0.05 % A % A % A % BBB % Baa % BBB 0.25 % Baa % BBB % Baa % BB % Ba % BB 1.28 % Ba % BB % Ba % B % B % B 6.45% B % B % B % CCC % Caa & < % Table 1: Masterscales May 26, 2005 / Daniel Straumann Slide 4

5 Brief History of Rating Systems Starts with scorecard models, which are used for evaluating creditworthiness of customers or firms. First proposals during Second World War. Example: Consumer loans. Residential Status Age Loan Purpose Owner New car 41 Tenant Second hand car 33 Living with parents Home improvement 36 Other specified Holiday 19 No response Other 25 Table 2: Simple scorecard for consumer credit. This means: a 20 year old person, living with its parents, wishing to borrow money for a second hand car, has a score of = 69. May 26, 2005 / Daniel Straumann Slide 5

6 Example: Altman s Z score (1968) Z = X X X X X 5, (1) where X 1 = Working capital/total assets, X 2 = Retained earnings/total assets, X 3 = Earnings before interest and taxes/total assets, X 4 = Market value of equity/book value of total debt, X 5 = Sales/Total assets. Classification rule: Z 1.81 bankruptcy, 1.81 < Z 2.99 zone of ignorance, Z > 2.99 non bankruptcy. May 26, 2005 / Daniel Straumann Slide 6

7 Remarks: Coefficients are optimized for a particular data sample. Nevertheless Altman s Z score is still used (can e.g. be downloaded from Bloomberg). Scorecard models are often applications of statistical classification methods. Beginning of the 90 s: Focus on default probabilities. Rating systems in practice RiskCalc (Moody s): Scorecard model CreditEdge (KMV): Structural default model... May 26, 2005 / Daniel Straumann Slide 7

8 The Classification Problem Group of non defaulters (Y = 0) and defaulters (Y = 1). Each obligor has certain (observed) random attributes X R m. We assume: non defaulters have density f 0 (x) = f(x Y = 0), defaulters have density f 1 (x) = f(x Y = 1). Let p = P(Y = 1) = 1 P(Y = 0) be the default probability in the combined sample. Assume classification rule of the following kind for a subset A R m : Ŷ (x) = 1 x A. Classification errors: α = P(Ŷ = 0 Y = 1) = β = P(Ŷ = 1 Y = 0) = R m \A A f 1 (x)dx f 0 (x)dx (1-(hit rate)), (false alarm rate). May 26, 2005 / Daniel Straumann Slide 8

9 Total Misclassification Error TME = P(classification error) = pα + (1 p)β = pf 1 (x)dx + (1 p)f 0 (x)dx. R m \A Aim: Minimize TME. Since R m f 1 (x)dx = 1, we have that pf 1 (x)dx = p R m \A A A pf 1 (x)dx, and can therefore write TME = p + A ((1 p)f 0 (x) pf 1 (x)) dx. Hence TME is minimized for x A (1 p)f 0 (x) pf 1 (x) < 0 S(x) = f 0(x) f 1 (x) < p 1 p. (2) May 26, 2005 / Daniel Straumann Slide 9

10 Remarks We can regard S(x) as a score. Costs of misclassification can easily be incorporated. Minimal TME Rule (2) is equivalent to x A P(Y = 0 x) < P(Y = 1 x). Examples Assume that X N (µ i, Σ i ), i = 0, 1. Then Σ 0 = Σ 1 : x A log S(x) = (µ 0 µ 1 ) T Σ 1 0 (x 0.5(µ 0 + µ 1 )) < log The score log S(x) is a linear function. ( ) p. 1 p May 26, 2005 / Daniel Straumann Slide 10

11 Σ 0 Σ 1 : x A log S(x) = 1 ( ) 2 log det(σ0 ) det(σ 1 ) 1 2 µt 0 Σ 1 0 µ µt 1 Σ 1 1 µt xt (Σ 1 0 Σ 1 1 )x 2xT (Σ 1 0 µ 0 Σ 1 1 µ 1) < log The score log S(x) is a quadratic function. Alternative classification methods Classification trees Nearest neighbor methods Neural networks Expert systems ( p 1 p ). May 26, 2005 / Daniel Straumann Slide 11

12 Logistic Regression For the derivation, assume that X N (µ i, Σ), i = 0, 1. Then ( ) P(Y = 1 X = x) log( posterior odds ) = log = log P(Y = 0 X = x) Definition = const. + α T x, α R m. ( f1 (x)p ) f 0 (x)(1 p) Let Y i be 0 1 response variables and x i R m vectors of explanatory variables. Then we say that Y i obeys a logistic regression if: 1. The Y i s given x i are conditionally independent. 2. There are α R m and c R with where F (u) = 1/(1 + exp( u)). P(Y i = 1 x i ) = F (c + α T x i ), (3) May 26, 2005 / Daniel Straumann Slide 12

13 Remarks The above model is a so called generalized linear model with link function F 1. The choice F (u) = Φ(u) = (2π) 1/2 u exp( s2 /2)ds would correspond to a probit model. The logistic regression is the workhorse for the development of new rating models. Other areas of application: medical and natural sciences. Practical Issues of Calibration Estimation by MLE. Data cleaning, construction of meaningful financial ratios. Variable selection methods (Stepwise forward, stepwise backward). Goodness of fit checks. May 26, 2005 / Daniel Straumann Slide 13

14 Validation of Rating Models Suppose we have constructed a score S = S(X), where X is an observed random vector. We want to predict Y in the following way: Ŷ (x) = 1 S(x) s. (4) The number s R is called cut off point. Strong Discrimination Weak Discrimination Density f1 f0 Density f1 f Score Score We need to measure the distance between f 0 and f 1 in a meaningful way. May 26, 2005 / Daniel Straumann Slide 14

15 The misclassification errors for (4) are given by α(s) = P(S > s Y = 1) (1-hit rate), β(s) = P(S s Y = 0) (false alarm rate). The curve (β(s), 1 α(s)) is called receiver operating characteristics (ROC Curve). ROC Curve Hit Rate False Alarm Rate May 26, 2005 / Daniel Straumann Slide 15

16 AUROC The area under the ROC Curve (AUROC) serves as a measure for the discriminatory power of the score S. Properties of AUROC 0 AUROC 1. Perfect discrimination: AUROC = 1 There is c R such that: Y = 1 S c, AUROC = 0 There is c R such that: Y = 0 S c. If Y and S are independent, then AUROC = 1/2. AUROC is invariant under strictly increasing transforms of S. May 26, 2005 / Daniel Straumann Slide 16

17 AUROC=1 AUROC=0.5 AUROC=0 Default Default Default Score Score Score Figure 1: Representation of joint distributions for AUROC= 1, 0.5, 0. May 26, 2005 / Daniel Straumann Slide 17

18 Practical Applications of AUROC AUROC values of 0.8 and more are often considered as good. Similar to linear correlation, AUROC values are per se not very meaningful and rather difficult to interpret. Danger of misuse: AUROC is not a measure of goodness of fit: add a constant to the logistic regression score, and the AUROC will not change. By the Neyman Pearson lemma, AUROC is bounded from above by a functional depending on the densities f 0 (x) and f 1 (x). May 26, 2005 / Daniel Straumann Slide 18

ASSESSING CORPORATE RISK: A PD MODEL BASED ON CREDIT RATINGS

ASSESSING CORPORATE RISK: A PD MODEL BASED ON CREDIT RATINGS ACRN Journal of Finance and Risk Perspectives Vol. 2, Issue 1, Nov. 2013, p. 51-58 ISSN 2305-7394 ASSESSING CORPORATE RISK: A PD MODEL BASED ON CREDIT RATINGS Vicente S. Cardoso 1, André L. S. Guimarães

More information

Lecture 2 Bond pricing. Hedging the interest rate risk

Lecture 2 Bond pricing. Hedging the interest rate risk Lecture 2 Bond pricing. Hedging the interest rate risk IMQF, Spring Semester 2011/2012 Module: Derivatives and Fixed Income Securities Course: Fixed Income Securities Lecturer: Miloš Bo ović Lecture outline

More information

SEMINAR ON CREDIT RISK MANAGEMENT AND SME BUSINESS RENATO MAINO. Turin, June 12, 2003. Agenda

SEMINAR ON CREDIT RISK MANAGEMENT AND SME BUSINESS RENATO MAINO. Turin, June 12, 2003. Agenda SEMINAR ON CREDIT RISK MANAGEMENT AND SME BUSINESS RENATO MAINO Head of Risk assessment and management Turin, June 12, 2003 2 Agenda Italian market: the peculiarity of Italian SMEs in rating models estimation

More information

Financial-Institutions Management

Financial-Institutions Management Solutions 3 Chapter 11: Credit Risk Loan Pricing and Terms 9. County Bank offers one-year loans with a stated rate of 9 percent but requires a compensating balance of 10 percent. What is the true cost

More information

Credit Risk Models. August 24 26, 2010

Credit Risk Models. August 24 26, 2010 Credit Risk Models August 24 26, 2010 AGENDA 1 st Case Study : Credit Rating Model Borrowers and Factoring (Accounts Receivable Financing) pages 3 10 2 nd Case Study : Credit Scoring Model Automobile Leasing

More information

Probability Models of Credit Risk

Probability Models of Credit Risk Probability Models of Credit Risk In discussing financial risk, it is useful to distinguish between market risk and credit risk. Market risk refers to the possibility of losses due to changes in the prices

More information

RISK MANAGEMENT OF CREDIT ASSETS: THE NEXT GREAT FINANCIAL CHALLENGE IN THE NEW MILLENIUM

RISK MANAGEMENT OF CREDIT ASSETS: THE NEXT GREAT FINANCIAL CHALLENGE IN THE NEW MILLENIUM RISK MANAGEMENT OF CREDIT ASSETS: THE NEXT GREAT FINANCIAL CHALLENGE IN THE NEW MILLENIUM Dr. Edward I. Altman Max L. Heine Professor of Finance NYU Stern School of Business Managing Credit Risk: The Challenge

More information

Statistics in Retail Finance. Chapter 2: Statistical models of default

Statistics in Retail Finance. Chapter 2: Statistical models of default Statistics in Retail Finance 1 Overview > We consider how to build statistical models of default, or delinquency, and how such models are traditionally used for credit application scoring and decision

More information

Dr. Edward I. Altman Stern School of Business New York University

Dr. Edward I. Altman Stern School of Business New York University Dr. Edward I. Altman Stern School of Business New York University Problems With Traditional Financial Ratio Analysis 1 Univariate Technique 1-at-a-time 2 No Bottom Line 3 Subjective Weightings 4 Ambiguous

More information

Counterparty Credit Risk for Insurance and Reinsurance Firms. Perry D. Mehta Enterprise Risk Management Symposium Chicago, March 2011

Counterparty Credit Risk for Insurance and Reinsurance Firms. Perry D. Mehta Enterprise Risk Management Symposium Chicago, March 2011 Counterparty Credit Risk for Insurance and Reinsurance Firms Perry D. Mehta Enterprise Risk Management Symposium Chicago, March 2011 Outline What is counterparty credit risk Relevance of counterparty credit

More information

SAMPLE SELECTION BIAS IN CREDIT SCORING MODELS

SAMPLE SELECTION BIAS IN CREDIT SCORING MODELS SAMPLE SELECTION BIAS IN CREDIT SCORING MODELS John Banasik, Jonathan Crook Credit Research Centre, University of Edinburgh Lyn Thomas University of Southampton ssm0 The Problem We wish to estimate an

More information

MORTGAGE LENDER PROTECTION UNDER INSURANCE ARRANGEMENTS Irina Genriha Latvian University, Tel. +371 26387099, e-mail: irina.genriha@inbox.

MORTGAGE LENDER PROTECTION UNDER INSURANCE ARRANGEMENTS Irina Genriha Latvian University, Tel. +371 26387099, e-mail: irina.genriha@inbox. MORTGAGE LENDER PROTECTION UNDER INSURANCE ARRANGEMENTS Irina Genriha Latvian University, Tel. +371 2638799, e-mail: [email protected] Since September 28, when the crisis deepened in the first place

More information

Credit Risk Modeling: Default Probabilities. Jaime Frade

Credit Risk Modeling: Default Probabilities. Jaime Frade Credit Risk Modeling: Default Probabilities Jaime Frade December 26, 2008 Contents 1 Introduction 1 1.1 Credit Risk Methodology...................... 1 2 Preliminaries 2 2.1 Financial Definitions.........................

More information

CORPORATE CREDIT RISK MODELING: QUANTITATIVE RATING SYSTEM AND PROBABILITY OF DEFAULT ESTIMATION

CORPORATE CREDIT RISK MODELING: QUANTITATIVE RATING SYSTEM AND PROBABILITY OF DEFAULT ESTIMATION CORPORATE CREDIT RISK MODELING: QUANTITATIVE RATING SYSTEM AND PROBABILITY OF DEFAULT ESTIMATION João Eduardo Fernandes 1 April 2005 (Revised October 2005) ABSTRACT: Research on corporate credit risk modeling

More information

Measuring the Discrimination Quality of Suites of Scorecards:

Measuring the Discrimination Quality of Suites of Scorecards: Measuring the Discrimination Quality of Suites of Scorecards: ROCs Ginis, ounds and Segmentation Lyn C Thomas Quantitative Financial Risk Management Centre, University of Southampton UK CSCC X, Edinburgh

More information

Bonds and Yield to Maturity

Bonds and Yield to Maturity Bonds and Yield to Maturity Bonds A bond is a debt instrument requiring the issuer to repay to the lender/investor the amount borrowed (par or face value) plus interest over a specified period of time.

More information

Over the past several years, the issuance of small business loan securitizations

Over the past several years, the issuance of small business loan securitizations Standard & Poor s Small Business Portfolio Model Introduces a Potential New Tool for Community Development Loan Risk Analysis* Weili Chen and Winston Chang Standard & Poor s Over the past several years,

More information

MACHINE LEARNING IN HIGH ENERGY PHYSICS

MACHINE LEARNING IN HIGH ENERGY PHYSICS MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!

More information

New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction

New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.

More information

The Western Hemisphere Credit & Loan Reporting Initiative (WHCRI)

The Western Hemisphere Credit & Loan Reporting Initiative (WHCRI) The Western Hemisphere Credit & Loan Reporting Initiative (WHCRI) Public Credit Registries as a Tool for Bank Regulation and Supervision Matías Gutierrez Girault & Jane Hwang III Evaluation Workshop Mexico

More information

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not. Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

More information

Statistics in Retail Finance. Chapter 7: Fraud Detection in Retail Credit

Statistics in Retail Finance. Chapter 7: Fraud Detection in Retail Credit Statistics in Retail Finance Chapter 7: Fraud Detection in Retail Credit 1 Overview > Detection of fraud remains an important issue in retail credit. Methods similar to scorecard development may be employed,

More information

Credit Risk Management

Credit Risk Management Synopsis Credit Risk Management 1. Introduction Learning Objectives This module introduces the key ideas for managing credit risk. Managing credit risk is a complex multidimensional problem and as a result

More information

Real Estate Risk Assessment. Sustainable Real Estate Markets Restoring Confidence in Financial Markets. Peter Champness. MIPIM Cannes.

Real Estate Risk Assessment. Sustainable Real Estate Markets Restoring Confidence in Financial Markets. Peter Champness. MIPIM Cannes. Real Estate Risk Assessment Sustainable Real Estate Markets Restoring Confidence in Financial Markets Peter Champness PaM MIPIM Cannes March 2011 Background to Risk Assessment in Real Estate (PaM Model)

More information

Despite its emphasis on credit-scoring/rating model validation,

Despite its emphasis on credit-scoring/rating model validation, RETAIL RISK MANAGEMENT Empirical Validation of Retail Always a good idea, development of a systematic, enterprise-wide method to continuously validate credit-scoring/rating models nonetheless received

More information

The Financial Crisis and the Bankruptcy of Small and Medium Sized-Firms in the Emerging Market

The Financial Crisis and the Bankruptcy of Small and Medium Sized-Firms in the Emerging Market The Financial Crisis and the Bankruptcy of Small and Medium Sized-Firms in the Emerging Market Sung-Chang Jung, Chonnam National University, South Korea Timothy H. Lee, Equifax Decision Solutions, Georgia,

More information

A Study of Differences in Standard & Poor s and Moody s. Corporate Credit Ratings

A Study of Differences in Standard & Poor s and Moody s. Corporate Credit Ratings A Study of Differences in Standard & Poor s and Moody s Corporate Credit Ratings Shourya Ghosh The Leonard N. Stern School of Business Glucksman Institute for Research in Securities Markets Faculty Advisor:

More information

Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios

Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios By: Michael Banasiak & By: Daniel Tantum, Ph.D. What Are Statistical Based Behavior Scoring Models And How Are

More information

Predicting Bankruptcy with Robust Logistic Regression

Predicting Bankruptcy with Robust Logistic Regression Journal of Data Science 9(2011), 565-584 Predicting Bankruptcy with Robust Logistic Regression Richard P. Hauser and David Booth Kent State University Abstract: Using financial ratio data from 2006 and

More information

TW3421x - An Introduction to Credit Risk Management Default Probabilities External credit ratings. Dr. Pasquale Cirillo.

TW3421x - An Introduction to Credit Risk Management Default Probabilities External credit ratings. Dr. Pasquale Cirillo. TW3421x - An Introduction to Credit Risk Management Default Probabilities External credit ratings Dr. Pasquale Cirillo Week 4 Lesson 2 Credit ratings A credit rating is meant to provide reliable information

More information

Bond Valuation. Capital Budgeting and Corporate Objectives

Bond Valuation. Capital Budgeting and Corporate Objectives Bond Valuation Capital Budgeting and Corporate Objectives Professor Ron Kaniel Simon School of Business University of Rochester 1 Bond Valuation An Overview Introduction to bonds and bond markets» What

More information

Nominal and ordinal logistic regression

Nominal and ordinal logistic regression Nominal and ordinal logistic regression April 26 Nominal and ordinal logistic regression Our goal for today is to briefly go over ways to extend the logistic regression model to the case where the outcome

More information

Variable Selection for Credit Risk Model Using Data Mining Technique

Variable Selection for Credit Risk Model Using Data Mining Technique 1868 JOURNAL OF COMPUTERS, VOL. 6, NO. 9, SEPTEMBER 2011 Variable Selection for Credit Risk Model Using Data Mining Technique Kuangnan Fang Department of Planning and statistics/xiamen University, Xiamen,

More information

CREDIT RISK ASSESSMENT FOR MORTGAGE LENDING

CREDIT RISK ASSESSMENT FOR MORTGAGE LENDING IMPACT: International Journal of Research in Business Management (IMPACT: IJRBM) ISSN(E): 2321-886X; ISSN(P): 2347-4572 Vol. 3, Issue 4, Apr 2015, 13-18 Impact Journals CREDIT RISK ASSESSMENT FOR MORTGAGE

More information

Investor Guide to Bonds

Investor Guide to Bonds Investor Guide Investor Guide to Bonds threadneedle.com Introduction Why invest in bonds? Although your capital is normally considered safe in a traditional deposit account, low interest rates have eroded

More information

PREDICTING FINANCIAL DISTRESS OF COMPANIES: REVISITING THE Z-SCORE AND ZETA MODELS. Edward I. Altman*

PREDICTING FINANCIAL DISTRESS OF COMPANIES: REVISITING THE Z-SCORE AND ZETA MODELS. Edward I. Altman* PREDICTING FINANCIAL DISTRESS OF COMPANIES: REVISITING THE Z-SCORE AND ZETA MODELS Edward I. Altman* July 2000 *Max L. Heine Professor of Finance, Stern School of Business, New York University. This paper

More information

Export Pricing and Credit Constraints: Theory and Evidence from Greek Firms. Online Data Appendix (not intended for publication) Elias Dinopoulos

Export Pricing and Credit Constraints: Theory and Evidence from Greek Firms. Online Data Appendix (not intended for publication) Elias Dinopoulos Export Pricing and Credit Constraints: Theory and Evidence from Greek Firms Online Data Appendix (not intended for publication) Elias Dinopoulos University of Florida Sarantis Kalyvitis Athens University

More information

Market Implied Ratings FAQ Updated: June 2010

Market Implied Ratings FAQ Updated: June 2010 Market Implied Ratings FAQ Updated: June 2010 1. What are MIR (Market Implied Ratings)? Moody s Analytics Market Implied Ratings translate prices from the CDS, bond and equity markets into standard Moody

More information

Bond Valuation. FINANCE 350 Global Financial Management. Professor Alon Brav Fuqua School of Business Duke University. Bond Valuation: An Overview

Bond Valuation. FINANCE 350 Global Financial Management. Professor Alon Brav Fuqua School of Business Duke University. Bond Valuation: An Overview Bond Valuation FINANCE 350 Global Financial Management Professor Alon Brav Fuqua School of Business Duke University 1 Bond Valuation: An Overview Bond Markets What are they? How big? How important? Valuation

More information

Credit Risk Assessments of Swedish Real Estate Companies

Credit Risk Assessments of Swedish Real Estate Companies Department of Real Estate and Construction Management Thesis no. 240 Real Estate Economics and Financial Services Master of Science, 30 credits Real Estate Economics MSc Credit Risk Assessments of Swedish

More information

Chapter 7 Credit Rating Systems

Chapter 7 Credit Rating Systems Page 259 Chapter 7 Credit Rating Systems 1 Introduction In this chapter we explore the traditional and prevalent approach to credit risk assessment the credit rating system. Most rating systems are based

More information

Credit Scoring Methods A Comparative Analysis

Credit Scoring Methods A Comparative Analysis Credit Scoring Methods A Comparative Analysis North American Power Credit Organization Scottsdale: January 2013, Inc. 813 East Ballard Colbert, WA, 99005 [email protected] Phone: (509) 468-2956

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

The Importance and Nature of Assessing Life Insurance Company Financial Strength

The Importance and Nature of Assessing Life Insurance Company Financial Strength WHITE PAPER MARCH 2011 The Importance and Nature of Assessing Life Insurance Company Financial Strength OCC Bulletin 2004-56 acknowledges that life insurance holdings can serve a number of appropriate

More information

Classification Problems

Classification Problems Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems

More information

STATISTICA Formula Guide: Logistic Regression. Table of Contents

STATISTICA Formula Guide: Logistic Regression. Table of Contents : Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

More information

Cash Flow in Predicting Financial Distress and Bankruptcy

Cash Flow in Predicting Financial Distress and Bankruptcy Cash Flow in Predicting Financial Distress and Bankruptcy OGNJAN ARLOV, SINISA RANKOV, SLOBODAN KOTLICA Faculty of Business Studies University Megatrend Belgrade Goce Delceva 8 SERBIA [email protected],

More information

CORPORATE DISTRESS PREDICTION MODELS IN A TURBULENT ECONOMIC AND BASEL II ENVIRONMENT. Edward I. Altman* Comments to:

CORPORATE DISTRESS PREDICTION MODELS IN A TURBULENT ECONOMIC AND BASEL II ENVIRONMENT. Edward I. Altman* Comments to: CORPORATE DISTRESS PREDICTION MODELS IN A TURBULENT ECONOMIC AND BASEL II ENVIRONMENT Edward I. Altman* Comments to: [email protected] Tel: 212 998-0709 September 2002 *This report was written by Dr.

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 22, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 22, 2014 1 /

More information

INSTITUTIONAL INVESTMENT & FIDUCIARY SERVICES: Building a Better Portfolio: The Case for High Yield Bonds

INSTITUTIONAL INVESTMENT & FIDUCIARY SERVICES: Building a Better Portfolio: The Case for High Yield Bonds 14\GBS\22\25062C.docx INSTITUTIONAL INVESTMENT & FIDUCIARY SERVICES: Building a Better Portfolio: The Case for High Yield Bonds By Adam Marks, Area Vice President and Jamia Canlas, Senior Analyst By looking

More information

L3: Statistical Modeling with Hadoop

L3: Statistical Modeling with Hadoop L3: Statistical Modeling with Hadoop Feng Li [email protected] School of Statistics and Mathematics Central University of Finance and Economics Revision: December 10, 2014 Today we are going to learn...

More information

Statistics in Retail Finance. Chapter 6: Behavioural models

Statistics in Retail Finance. Chapter 6: Behavioural models Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural

More information

Machine Learning with MATLAB David Willingham Application Engineer

Machine Learning with MATLAB David Willingham Application Engineer Machine Learning with MATLAB David Willingham Application Engineer 2014 The MathWorks, Inc. 1 Goals Overview of machine learning Machine learning models & techniques available in MATLAB Streamlining the

More information

Title: Lending Club Interest Rates are closely linked with FICO scores and Loan Length

Title: Lending Club Interest Rates are closely linked with FICO scores and Loan Length Title: Lending Club Interest Rates are closely linked with FICO scores and Loan Length Introduction: The Lending Club is a unique website that allows people to directly borrow money from other people [1].

More information

Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

More information

How To Understand The Concept Of Securitization

How To Understand The Concept Of Securitization Asset Securitization 1 No securitization Mortgage borrowers Bank Investors 2 No securitization Consider a borrower that needs a bank loan to buy a house The bank lends the money in exchange of monthly

More information

High Yield Municipal Bond Outlook

High Yield Municipal Bond Outlook INSIGHTS High Yield Municipal Bond Outlook 203.621.1700 2014, Rocaton Investment Advisors, LLC EXECUTIVE SUMMARY Uncertainty surrounding Federal Reserve interest rate policies and negative municipal headlines

More information

Appendix B D&B Rating & Score Explanations

Appendix B D&B Rating & Score Explanations Appendix B D&B Rating & Score Explanations 1 D&B Rating & Score Explanations Contents Rating Keys 3-7 PAYDEX Key 8 Commercial Credit/Financial Stress Scores 9-17 Small Business Risk Account Solution 18-19

More information

- Short term notes (bonds) Maturities of 1-4 years - Medium-term notes/bonds Maturities of 5-10 years - Long-term bonds Maturities of 10-30 years

- Short term notes (bonds) Maturities of 1-4 years - Medium-term notes/bonds Maturities of 5-10 years - Long-term bonds Maturities of 10-30 years Contents 1. What Is A Bond? 2. Who Issues Bonds? Government Bonds Corporate Bonds 3. Basic Terms of Bonds Maturity Types of Coupon (Fixed, Floating, Zero Coupon) Redemption Seniority Price Yield The Relation

More information

Lecture Notes on MONEY, BANKING, AND FINANCIAL MARKETS. Peter N. Ireland Department of Economics Boston College. [email protected]

Lecture Notes on MONEY, BANKING, AND FINANCIAL MARKETS. Peter N. Ireland Department of Economics Boston College. irelandp@bc.edu Lecture Notes on MONEY, BANKING, AND FINANCIAL MARKETS Peter N. Ireland Department of Economics Boston College [email protected] http://www.bc.edu/~irelandp/ec61.html Chapter 6: The Risk and Term Structure

More information

Multivariate Statistical Inference and Applications

Multivariate Statistical Inference and Applications Multivariate Statistical Inference and Applications ALVIN C. RENCHER Department of Statistics Brigham Young University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim

More information

Regression III: Advanced Methods

Regression III: Advanced Methods Lecture 4: Transformations Regression III: Advanced Methods William G. Jacoby Michigan State University Goals of the lecture The Ladder of Roots and Powers Changing the shape of distributions Transforming

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the

More information

Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

More information

Agenda. Mathias Lanner Sas Institute. Predictive Modeling Applications. Predictive Modeling Training Data. Beslutsträd och andra prediktiva modeller

Agenda. Mathias Lanner Sas Institute. Predictive Modeling Applications. Predictive Modeling Training Data. Beslutsträd och andra prediktiva modeller Agenda Introduktion till Prediktiva modeller Beslutsträd Beslutsträd och andra prediktiva modeller Mathias Lanner Sas Institute Pruning Regressioner Neurala Nätverk Utvärdering av modeller 2 Predictive

More information

Reject Inference in Credit Scoring. Jie-Men Mok

Reject Inference in Credit Scoring. Jie-Men Mok Reject Inference in Credit Scoring Jie-Men Mok BMI paper January 2009 ii Preface In the Master programme of Business Mathematics and Informatics (BMI), it is required to perform research on a business

More information

Statistics for Retail Finance. Chapter 8: Regulation and Capital Requirements

Statistics for Retail Finance. Chapter 8: Regulation and Capital Requirements Statistics for Retail Finance 1 Overview > We now consider regulatory requirements for managing risk on a portfolio of consumer loans. Regulators have two key duties: 1. Protect consumers in the financial

More information

Vasicek Single Factor Model

Vasicek Single Factor Model Alexandra Kochendörfer 7. Februar 2011 1 / 33 Problem Setting Consider portfolio with N different credits of equal size 1. Each obligor has an individual default probability. In case of default of the

More information

Why high-yield municipal bonds may be attractive in today s market environment

Why high-yield municipal bonds may be attractive in today s market environment Spread Why high-yield municipal bonds may be attractive in today s market environment February 2014 High-yield municipal bonds may be attractive given their: Historically wide spreads Attractive prices

More information

Java Modules for Time Series Analysis

Java Modules for Time Series Analysis Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series

More information

Bonds, in the most generic sense, are issued with three essential components.

Bonds, in the most generic sense, are issued with three essential components. Page 1 of 5 Bond Basics Often considered to be one of the most conservative of all investments, bonds actually provide benefits to both conservative and more aggressive investors alike. The variety of

More information

Topics in Chapter. Key features of bonds Bond valuation Measuring yield Assessing risk

Topics in Chapter. Key features of bonds Bond valuation Measuring yield Assessing risk Bond Valuation 1 Topics in Chapter Key features of bonds Bond valuation Measuring yield Assessing risk 2 Determinants of Intrinsic Value: The Cost of Debt Net operating profit after taxes Free cash flow

More information

Meteor Asset Management

Meteor Asset Management Meteor Asset Management Counterparty Credit Default Swap Rates 27 th January 2012 This information is for professional investors only and should not be presented to, or relied upon by, private investors.

More information

Interest Rates and Bond Valuation

Interest Rates and Bond Valuation Interest Rates and Bond Valuation Chapter 6 Key Concepts and Skills Know the important bond features and bond types Understand bond values and why they fluctuate Understand bond ratings and what they mean

More information

Chapter 3 Fixed Income Securities

Chapter 3 Fixed Income Securities Chapter 3 Fixed Income Securities Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Fixed-income securities. Stocks. Real assets (capital budgeting). Part C Determination

More information

Life Insurer Financial Profile

Life Insurer Financial Profile Life Insurer Financial Profile Company New York Life Ins Northwestern Massachusetts John Hancock Life Mutual of Omaha Lincoln National Pacific Life Ins Co Genworth Life Ins Co Long Term Care Mutual Life

More information

Use the table for the questions 18 and 19 below.

Use the table for the questions 18 and 19 below. Use the table for the questions 18 and 19 below. The following table summarizes prices of various default-free zero-coupon bonds (expressed as a percentage of face value): Maturity (years) 1 3 4 5 Price

More information

Virtual Site Event. Predictive Analytics: What Managers Need to Know. Presented by: Paul Arnest, MS, MBA, PMP February 11, 2015

Virtual Site Event. Predictive Analytics: What Managers Need to Know. Presented by: Paul Arnest, MS, MBA, PMP February 11, 2015 Virtual Site Event Predictive Analytics: What Managers Need to Know Presented by: Paul Arnest, MS, MBA, PMP February 11, 2015 1 Ground Rules Virtual Site Ground Rules PMI Code of Conduct applies for this

More information

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York BME I5100: Biomedical Signal Processing Linear Discrimination Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff biology is not

More information

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4.

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4. Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví Pavel Kříž Seminář z aktuárských věd MFF 4. dubna 2014 Summary 1. Application areas of Insurance Analytics 2. Insurance Analytics

More information

MANAGING CREDIT RISK: THE CHALLENGE FOR THE NEW MILLENNIUM. Dr. Edward I. Altman Stern School of Business New York University

MANAGING CREDIT RISK: THE CHALLENGE FOR THE NEW MILLENNIUM. Dr. Edward I. Altman Stern School of Business New York University MANAGING CREDIT RISK: THE CHALLENGE FOR THE NEW MILLENNIUM Dr. Edward I. Altman Stern School of Business New York University Credit Risk: A Global Challenge In Low Credit Risk Regions (1998 - No Longer

More information

Credit Risk Analysis Using Logistic Regression Modeling

Credit Risk Analysis Using Logistic Regression Modeling Credit Risk Analysis Using Logistic Regression Modeling Introduction A loan officer at a bank wants to be able to identify characteristics that are indicative of people who are likely to default on loans,

More information

Application of Quantitative Credit Risk Models in Fixed Income Portfolio Management

Application of Quantitative Credit Risk Models in Fixed Income Portfolio Management Application of Quantitative Credit Risk Models in Fixed Income Portfolio Management Ron D Vari, Ph.D., Kishore Yalamanchili, Ph.D., and David Bai, Ph.D. State Street Research and Management September 26-3,

More information

RISK MANAGEMENT. Risk governance. Risk management framework MANAGEMENT S DISCUSSION AND ANALYSIS RISK MANAGEMENT

RISK MANAGEMENT. Risk governance. Risk management framework MANAGEMENT S DISCUSSION AND ANALYSIS RISK MANAGEMENT RISK MANAGEMENT Effective risk management is fundamental to the success of the Bank, and is recognized as one of the Bank s five strategic priorities. Scotiabank has a strong, disciplined risk management

More information