A graph based framework for the definition of tools dealing with sparse and irregular distributed data-structures
|
|
|
- Jack Blankenship
- 10 years ago
- Views:
Transcription
1 A graph based framework for the definition of tools dealing with sparse and irregular distributed data-structures Serge Chaumette, Jean-Michel Lepine, Franck Rubi To cite this version: Serge Chaumette, Jean-Michel Lepine, Franck Rubi. A graph based framework for the definition of tools dealing with sparse and irregular distributed data-structures. 3rd International Workshop on High-Level Programming Models and Supportive Environments (HIPS 98), Mar 998, Orlando, Florida, United States. IEEE Computer Society, pp <hal-36323> HAL Id: hal Submitted on 2 Feb 29 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
2 Agraphbasedframeworkforthedenitionoftoolsdealingwith sparseandirregulardistributeddata-structures SergeChaumette,Jean-MichelL pineandfranckrubi Tel.:(+335) Fax:(+335) Lib ration,3345talence,france. LaBRI,LaboratoireBordelaisdeRechercheenInformatique,Universit BordeauxI,35Coursdela Keywords ProgrammingEnvironments,DataParallelism,Tools,Visualization,SparseDataStructures,DistributedData Structures,IrregularDataStructures,Graphs Abstract Industrialapplicationsmainlyusestandarddatastructuressuchasmatrices,butmostofthetimeprovideaspecic asmatricescomingfromthedomainofniteelements[23].thegapbetweentheimplementationandtheabstract cicimplementationsareespeciallyoftenlyusedwhendealingwithlargesparseandirregulardata-structures,such problem-orientedimplementation,e.g.compressedsparsecolumn(csc)seeforinstancesparskit[2].spe- datastructureitimplementsisevenbiggerwhenconsideringdataparallelapplicationswheredatastructuresare distributedoveranetworkofprocessors.hencethereisaneedfortoolsthatmakeitpossiblefordevelopersto visualizeboththeirdata,theirstructure,andtheoperationsthatareappliedtoit,whatevertheireectiveimplementationandtheirdistributionare.suchtoolsmustprovidehighlevelviews,i.e.abstractfromthephysical implementationtoreachthedeveloper'sview.theymustcarrythesemanticsoftheapplicationsandprovide synthesisorlteringmechanismsthatmakeitpossibletofocusonaspecicaspectoftheproblem. prototypestoolsbasedonitwhichwehavedeveloped.theresultingenvironmentiscomposedoftwolayers:the Inthispaper,wepresentaframeworkwhichwehavesetuptosupportthedevelopmentofsuchtools,and rstlayerisamodelthatwehavedenedandimplementedashighlevellibrariesthatmakeitpossibletoeciently ThisworksissupportedbytheFrenchGDR-PRCPRS.
3 areintegratedwithinagraphicalenvironmentcalledvisit[7]whichispartofthehpfitresearcheort2[7,8,9]. abstractfromtheimplementation;thesecondlayeroersprototypetoolsbuiltontopoftheselibraries.thesetools andgmd/scaiinbonn,germany.theaimofthisprojectistoprovideanintegratedhpfdevelopment HPFITisajointprojectinvolvingthreeresearchlaboratories:LIPinLyon,France,LaBRIinBordeaux,France, environmentthatsupportssparseandirregulardatastructures. Thetwomainresearchdirectionswithinthedataparallelframeworkareexpressionmodes(orlanguages) Introductionandrelatedwork andtools. ulardatastructuresindata-parallellanguages(see[4,5])ortodevelopdedicatedlibraries,toprovide Expressioniswidelystudied.Theaimofmanyinitiativesiseithertointroducesparseandirreg- SPARSEKIT[2],P-SPARSLIB[22]orPETSc[2]). programmerswithreadyimplementationsofpossiblysparsedistributeddatastructures(seeforinstance P2D2[3],Pharos[25],Paradyn[8]).Wewillnotdescribealloftheminthispaperbecausetheyareless Toolsexist,buttheymainlydealwithregular(HPF-like)datastructures(seeforinstanceEPPP[6], relatedtoourgoalwhichistodealwithirregulardatastructures(see[9]foracompletesurvey). theparadigmofdata-parallelprogramming.nevertheless,theresearchwhichhasbeendoneduring Concerningirregularitythereisstillalottobedoneintermsoftoolsthatwouldhelpuserstotackle pastyearsintheareaofmessagepassinghasprovenquitesuccessfulinprovidingsupporttoend-users own.furthermore,publicdomaintools(suchasparagraph[5])arenowbeingdeliveredeitherasfully (seeforinstancetopsys[2,3,6]).bothhardwareandsoftwarevendorssupplyenvironmentsoftheir supportedorsimplyasportedtools.thesetoolsthatwereusedwhendealingwithmessagepassing applicationscanstillbeusedwithintheframeworkofdataparallelismprovidedtheexecutionsupport isdistributed(inwhichcasethecompilertranslatesdataparallelismtomessagepassingparallelism). 2ThisworkispartlysupportedbytheCNRS-INRIAprojectReMaPandbytheFrenchGDR-PRCPRS. 2
4 Nevertheless,thereisalackofrelationshipbetweentheinformationtheyprovide(whichisintermsof messages)andthesemanticsoftheapplication(whichisintermsofdata).thismakesthemhardlyusable measurement.thereasonforthislackofadequationisthatthebehaviorofanalgorithmismostofthe toexplorethealgorithmicbehavioroftheapplication,althoughtheycanstillbeusefulforperformance timebetterunderstoodwhenconsideringtheabstractstructureitworkswith,ratherthanthephysical implementationofthisdatastructure.forinstanceifthealgorithmhandlesatreethatisimplemented usingavector,itismostprobablythecasethatthisalgorithmcanbebetterunderstoodintermsof requireinformationthatcannotalwaysbeaccessedeasily,suchasdistributionofdata.aconvenientway thetreethanintermsofthevector.oneofthereasonswhyhighleveltoolsaremissingisthatthey implementedinivd[4].thisisalwaysquiteheavyfortheprogrammer.anothermanneristohave toproceedistorelyontheusertosupplytheseinformation.thisistheapproachwhichisforinstance timeasthelanguagelibrariesthemselves.thisistheapproachwhichisachievedinoneofptools librariesthatinstrumentthebasicsofthelanguageandwhicharelinkedtotheapplicationatthesame projectscalleddistributedarrayqueryandvisualization(daqv[7]).thisisnotstraightforwardly portable. data-structuresinsideapplications:wewanttoprovidetoolsdealingwithsuchdatastructuresatahigh Ourapproachisquitedierent.Ouraimisnottoprovidesupportforusingsparseandirregular librariestoabstractfromimplementationanddistributionofdatastructures.theselibrariesareportable levelofabstraction.furthermore,wewanttomakeiteasytodevelopsuchtools.hence,werstdesigned andrelyverylittleontheprogrammer.wethendevelopedtoolsbasedontheselibraries.inthispaper wepresentboththeconceptsoftheselibrariesandthetoolsbasedonthem. weproposeinsection2.section3introducesthewaywemodelizedatastructures.wethendescribethe Therestofthispaperisorganizedasfollows.Werstdescribetheoverallarchitectureofthemodel toolsbasedonourmodel.itisillustratedwithtwosoftwarecomponentswhichwehavedeveloped:data threecurrentlevelsofourmodelinsections4,5and6.section7presentsthegeneralprinciplesofthe DistributionDisplayandTraceDataDisplay.Weeventuallysketchfutureworkdirections. 3
5 Ourmodeliscomposedoffourlevels.Eachoftheselevels,i.e.implementation,abstraction,mapping 2 Generalarchitectureofthemodel andviewisagraph(gure2):.igraph:theimplementationgraph(gure(a))describestheimplementationofthedatastructure, e.g.threevectorsforacompressedsparsecolumnstorage. intermsofdataitemsandaccessfunctions,i.e.thewaytheyareaccessedwithintheapplication 2.AGraph:theAbstractionGraph(gure(b))describestheabstractdatastructuretheapplication 3.MGraph:theMappingGraphdescribestherelationshipbetweentheIGraphandtheAGraph.This developerhasinminde.g.amatrix. 4.VGraph:theViewGraph(gures(c)and(d))describeshowatoolwilleventuallyseethedata graphisabridgethatcarriesthesemanticsbetweentheimplementationandtheabstraction. Itisnotyetimplemented(seesection8),butonecanworkwiththeAGraph,whichisequivalent structuree.g.acolumnofamatrix.thislevelprovidesforsynthesisandlteringofinformation. Althoughthiswillnotbedetailedhere,themodelprovidesthesameeciencywhenworkingatthe tohavinganidentitybetweentheagraphandthevgraph. mappinggraphlevelorattheimplementationgraphlevel(seegure3). 3Wedeneadatastructureintermsofentrypointsandaccessfunctions.Thisapproachreectstheway Modelizationofadatastructure adatastructureisimplemented.itleadstoamodelizationintermsofagraph.forinstanceavector intv[]canberepresentedbyagraph,therootofwhichisv[]andthenodesarev[i]. AdatastructureDSisasetofdataitemsthatarestructuredbymeansofaccessfunctions. DenitionDatastructure where: DS=(D;d;F;e;E) 4
6 Successor function for the first vector... Entry Point... e f (a)implementation... Successor function for the third vector f (b)abstractionasamatrix (c)viewasamatrix (d)viewasacolumn disapositiveintegerrepresentingthenumberofaccessfunctions; Disthesetofdataitems; Figure:Architectureoftheframework Fisad-upleofaccessfunctions; eisapositiveintegerrepresentingthenumberofentrypoints; Eisthesetofentrypointsinthedata-structure. canthemselvesbedatastructures,i.e.graphs. Irregulardatastructurescanbedescribedusingthisframework:thenodesofthedatastructuregraph tationtheremightbedierentsetsofaccessfunctions,dependingonhowtheprogrammeraccessesthe Accessfunctionsfiexpresshowoneaccessesthebasicdataitems.Notethatforthesameimplemen- 5
7 Implementation Graph Mapping Graph Abstraction Graph View Graph Tools (Visualization, traces analysis, debug,...) Figure2:Architectureofthemodel User Efficiency Implementation Mapping Abstraction View data-structure. Figure3:Eciencyofthemodellevels Model Level Denition2Accessfunction Anaccessfunctionisafunctionoverthenodesofthedatastructuresthatbeinggivenanodeproduces anothernode. Eachaccessfunctionmakesitpossibletomovewithinadimensionofthedata-structure. f:n!n n7!f(n) whichrepresentaccessfunctions. Inotherwords,adata-structureisagraph,thenodesofwhichcontainthedataitems,theverticesof Denition3Adatastructureisagraph DS=(N;d;F;r;R) 6
8 where: Nisasetofnodes; Fisad-upleofsuccessorfunctions; disthenumberofsuccessorfunctions; risthenumberofrootsofthegraph. Risthesetofrootsofthegraph. directaccessdatastructures. Therearesomedatastructures,whereeachdataitemcanbeaccesseddirectly,likesets;wecallthem Denition4Directaccessdata-structure AdatastructureDS=(D;d;F;e;E)issaiddirectaccessifandonlyifE=D,d=,F=;and e=jdj. Insuchacaseallofthedataitemsofthedatastructurearerootsofthegraphusedtodescribeit. likenotationsformulti-dimensionalobjectsrepresentedbygraphs. In[7],weintroducefurtherdenitionsbasedonpreviousworkbyM.Alabau[],thatprovidematrix- Inthissectionwepresentanexample,theaimofwhichistoillustratehowthedenitionsofsection3 4 Describingtheimplementationdatastructure canbeusedtomodelaneectiveimplementation. connectedgraph.thenodesarethevaluesofthethreevectorsplustheentrypoint.wegivethree Theimplementationcontainsthreevectorsofdierentsizes.Anentrypointisaddedtoobtaina successorfunctions;eachfunctionallowstoaccessthenodesofoneofthethreevectors. alsobeinterpretedasacompressedsparserowimplementation,orasanyotherdatastructure.the ThisgraphmaymatchaCompressedSparseColumnimplementationofasparsematrix.Itmay interpretationofthisimplementationasagraphdoesnotdescribethesemanticsofwhatiseectively implemented.thebenetisthatthedescriptionofthisgraphbytheprogrammerisstraightforward. 7
9 Successor function for the first vector... Entry Point Figure5showsasampleofthecodetheprogrammermustwriteinordertodescribethisimplementation. Figure4:Agraphmodelizationoftheirregularstructure Successor function for third vector 5Wecallabstractiontheabstractdatastructurethattheuserwantstomanipulate.Sinceanabstraction Describingtheabstractiondata-structure aimoftheabstractionistooeraninterpretationoftheimplementation.forinstancethethreevectors isitselfadata-structure,itcanberepresentedbyanentrypointandaccessfunctions,i.e.agraph.the ofsection4canbeinterpretedasacscstorageofamatrix(seegure6). abstractiongraph. Hence,abstractingfromanimplementationconsistsinmappingtheimplementationgraphtothe 6Themappingestablishesacorrespondencebetweentheimplementationgraphandtheabstractiongraph. Mapping Itisusedtomovefromtheabstractiontotheimplementationandvice-versa. graphandanodeoftheabstractiongraph.suchanodecanonlyexistprovidedthereisanodeofthe Itisagraph,thenodesofwhicharedenedasapaircontainingbothanodeoftheimplementation implementationcorrespondingtothegivennodeoftheabstraction(theabstractionwhichisdenseusually hasmorenodesthantheimplementationwhichissparse).assumewehaveafunctionthatgivenanode 8
10 datastructure).nowonwewillcallthisfunctionabs_to_imp. oftheabstractionreturnseitheranodeoftheimplementationornull(probablyaholeinthesparse Denition5Nodes=f(abstoimp(anode);anode)=anode2agraphenodesg Wecanthendenethenodesofthemappinggraphasfollows: RemarkWecanalsodeneafunctionimp_to_abs(implementationnodetoabstractionnode).It allowsanothersymmetricdenitionofthemappinggraph.theusercandenethetwofunctions(togain eciency).oneofthesefunctionsmaybediculttowrite:itcanbelefttothetoolstoconstructit usingtheotherfunction,storingthisinformationinahashtable. 7Theframeworkpresentedaboveisbeingusedtodevelophighleveltools.Inthissectionwepresenttwo Usage prototypes. 7. Usingourlibraries,highleveltoolsworkonlywithgraphs,whichtheycanforinstancescan,usingeither Generalprinciple oftheloopsshowngures7and8. graphs.thisisusedforinstancebythetracesvisualizationtooldescribedbelow. Furthermore,thelibrarymakesitpossibletoattachadditionalinformationtoanynodeofanyofthe Thegoalofourtoolsistooerasetofsoftwarecomponentstovisualizeandanalyzethebehaviorof 7.2 Eectiveusage data-parallelprogramsintermsofthedatatheyworkwith.theframeworkpresentedaboveisbeingused viewgraphs. todevelopthesetools.theyareimplementedeitherintermsofabstractiongraphs,mappinggraphsor DDD(DataDistributionDisplay)andTDD(TraceDataDisplay).Partsofthesetoolsarecomponents Asofwriting,someofthesetoolsareavailableasprototypes.Thissectiondescribestwoofthem: 9
11 ofthehpfitproject.acompletedescriptioncanbefoundin[2].weonlypresentscreendumpshere. TheycomefromaCholeskyfactorizationofasparsesymmetricpositivedenitematrix.Theparallel machinewhichhasbeenusedtorunittocollecttracesisanibmsp2. languageandcompiledusingadaptor[]extentedwithalibrarycalleddddt(distributedderived Weinterfacedourtoolswithadataparallelsystem.ThesourceprogramiswritteninaHPF2-like Foranecientparallelexecution,aspecicirregulardistribution[]isused. DatatypeforTree).Thislibraryallowsthemanipulationofhierarchicalaccessirregulardatastructures[7]. 7.3 Figure9showsthedistributionofthedataonthevirtualprocessors(onecolorbyprocessor). DataDistributionDisplay dataitem(resp.processor).datadistributiondisplaycanbeusedbeforetheexecutionifthedistribution Usingthemouse,theusermayselectavirtualprocessor(resp.data)andvisualizethecorresponding isregularorcomputable. Theparallelapplicationisinstrumentedtogeneratetracesintermsofaccessestodataitems.Atruntime, 7.4 TraceDataDisplay TraceDataDisplayisapostmortemtoolbasedonruntimegeneratedtracesandonthemappinggraph atracecollectorrecordseventsoneachprocessor.filteringmethodsareusedtolimittheamountoftraces. ofourmodel. thecholeskyfactorization[].thiscanforinstancehelptheusertoestimatethequalityofthedata Figureshowswhichdataitemsareinvolvedinremotereadoperationsduringtherstpartof distribution. Inthispaperwehavesetupaformalapproachtothemodelizationofsparseandirregulardatastructures. 8 Conclusionandfuturework Usingthisframework,wehaveshownthatitispossibletodescribeimplementations,onlyintroducing semanticsinthemappingfromtheimplementationtotheabstraction.dependingofwhattheyaredoing,
12 toolsbuildontopofthisframeworkcaneitherusetheabstractiongraph,or,tobemoreecient,usethe mappinggraphthatmakesitpossibletoscanthedatastructureavoidingtolookatholes. ourmodel,weareprovidedwithanabstractionthatrepresentsamatrixasshowngure(a).theuser Anotherlevelofabstractionthatwestillhavetoimplementisthatofltering.Assumethatwithin maywanttoseeeitherthematrixitself,or,forinstance,agivenrowofthismatrix(seegure(b)), orevenallitemsofeachrowasauniqueitem,i.e.heneedstoltertheabstraction.thereforeweare workingonthedenitionofaviewgraphwithamappingfromtheabstractiontoit..designinglibrariesthatwouldprovidestandardabstractionsusingthismodelforstandardimplementations,likethoseofsparskitforinstance; Thenextstepswithinthisprojectare: 2.extendingthehighleveltoolsbasedonthismodel,toaddthemtoVisit[7]insidetheHPFIT 3.validatingthetoolswiththeend-userstoproposeviewsadaptedtotheirneeds; environment; 4.interfacingthisframeworktoexistingsoftwareenvironmentssuchasDAQV[7]orEMILY[24]. References []M.Alabau.Uneexpressiondesalgorithmesmassivementparall les structuresdedonn esirr guli res.th se, [2]T.Bemmerl.Anintegratedandportabletoolenvironmentforparallelcomputers.InProceedingsoftheIEEE LaBRIUniversit BORDEAUXI,September994. [3]T.BemmerlandA.Bode.Anintegratedenvironmentforprogrammingdistributedmemorymultiprocessors.InBodeA.,editor,ProceedingsoftheSecondEuropeanDistributedMemoryComputingConference InternationalConferenceonParallelProcessing(St.Charles,USA),pages553,988. [4]A.J.C.BikandH.A.G.Wijsho.Compilationtechniquesforsparsematrixcomputations.Technical (M nchen),volume487oflecturenotesincomput.sci.,pages342.springer-verlag,99. report,universityofleiden.
13 [5]A.J.C.BikandH.A.G.Wijsho.Advancedcompileroptimizationsforsparsecomputations.Journalof [6]A.Bode.Developmentsindistributedmemoryarchitectures.InProceedingsofMicrosystem'9(Bratislava, ParallelandDistributedComputing,(3):424,995. Systems,TUM-I93,SFB-BerichtNr.342/9/9A,January99,seiten6. MethodenundWerkzeugef rdienutzungparallelerrechnerarchitekturen,topsys,toolsforparallel CSSR),99.AlsoinTechnischeUniversit tm nchen,institutf rinformatik,sonderforschungsbereich342: [7]T.Brandes,S.Chaumette,M.-C.Counilh,A.Darte,J.C.Mignot,F.Desprez,andJ.Roman.HPFIT:ASet ofintegratedtoolsfortheparallelizationofapplicationsusinghighperformancefortran:partii:data StructuresVisualizationandHPFSupportforIrregularDataStructureswithHierarchicalScheme.Parallel [8]T.Brandes,S.Chaumette,M.-C.Counilh,A.Darte,J.C.Mignot,F.Desprez,andJ.Roman.HPFIT:ASet Computing,996.EditedbyJ.DongarraandB.Tourancheau. andthetranstoolenvironment.parallelcomputing,996.editedbyj.dongarraandb.tourancheau. ofintegratedtoolsfortheparallelizationofapplicationsusinghighperformancefortran:parti:hpfit [9]T.Brandes,S.Chaumette,andF.Desprez.TransTOOL:atoolforportingscienticapplicationsonparalleldistributedmemorymachines.In2ndEuropeanSchoolofComputerScience,ParallelProgramming []T.BrandesandF.Zimmermann.ADAPTOR-ATransformationToolforHPFPrograms.InK.M.Decker EnvironmentsForHighPerformanceComputing,996. andr.m.rehmann,editors,programmingenvironmentsformassivelyparalleldistributedsystems,pages []P.Charrier,FackL.,andJ.Roman.Blockdatapartitionforparallelnesteddissection.InProceedingsofthe 996.Birkh userverlag,april994. [2]S.Chaumette,F.Rubi,andLepineJ.M.Internalreport,LaBRI,Universit Bordeaux-I,997.Tobe 7thSIAMconferenceonparallelprocessingforscienticcomputing.SiamEditions,995. [3]DoreenChengandRobertHood.Aportabledebuggerforparallelanddistributedprograms.InProc.of published. [4]M.C.Hao,A.H.Karp,M.Mackey,V.Singh,andJ.Chien.On-the-yvisualizationanddebuggingofparallel Supercomputing'94,994. programs. 2
14 [5]M.T.HeathandJ.A.Etheridge.Visualizingtheperformanceofparallelprograms.IEEESoftware,8(5):2939, [6]G.Hurteau,V.VanDongen,andG.Gao.OverviewofEPPP-anEnvironmentforPortableParallelProgramming.InProceedingsofSupercomputingSymposium'94,Canada'sEighthAnnualHigh ftp://ftp.crim.ca/apar/public/papers/994/ss94-eppp.ps.gz. PerformanceComputingConference,pages927,Toronto,Ontario,June994.Alsoavailableas September99. [7]A.Malony,MaryZosel,MayJohn,AlanKarp,andDavidPresberg.PTOOLSprojectproposalDistributedArrayQueryandVisualization.Availableashttp:// [8]BartonP.Miller,MarkD.Callaghan,JonathanM.Cargille,JereyK.Hollingsworth,R.BruceIrvin, toolsforparallelanddistributedcomputersystems. KarenL.Karavanic,KrishnaKunchithapadam,andTiaNewhall.TheParadynParallelPerformanceMeasurementTools.IEEEComputer,28():674,November995.Specialissueonperformanceevaluation [9]J.LPazat.SpringSchoolondataParallelism,chapterToolsforHighPerformanceFortran:aSurvey.Springer [2]BalayS.,GroppDW.D,McInnesL.C.,andSmithB.F.ModernSoftwareToolsinScienticComputing, Verlag,996. chapterecientmanagementofparallelisminobject-orientednumericalsoftwarelibraries,pages6322. [2]Y.Saad.SPARSEKIT:ABasicToolsKitforSparseMatrixComputations,June994.Version2.Documentation. BirkhauserPress,997.Alsoavailableathttp:// [22]Y.SaadandA.V.Malevsky.P-SPARSLIB:aportablelibraryofdistributedmemorysparseiterativesolvers, [23]G.StrangandG.F.Fix.AnAnalysisoftheFiniteElementMethod.PrenticeHall, Documentation. [24]LoosT.andBramleyR. EMILY:avisualizationtoolforlargesparsematrices. Availableas [25]ThePHAROSTeam.ThePHAROSproject.Availableashttp:// 3
15 5/*composedhereof3Vectorsofdifferentsizes*/ 3******************************************************************************/ 4externIDSiDS;/*TheIrregularDataStructure*/ /***************************************************************************** 6/* */ 2 IMPLEMENTATIONNODEINDEXDEFINITION intd2; }; 987structIDSIndex{ 2/* */ intd;/*di(i=,or2)giveapositioninthecorrespondingvector*/ intd;/*anindexfortheirregulardatastructure,avalue */ 3/*functionusedtocreateanewIDSIndex 4IDSIndexidsindex_new(intv,intv,intv2){ 5...allocatetheidsindexandcopyv,v,v2todo,d,d2... 7} 6returniDSIndex; */ 2******************************************************************************/ 2/*functionusedtogivetheindexroot 22staticIDSIndexgetRoot(IGraphiGraph){ 8/***************************************************************************** 9IMPLEMENTATIONGRAPHDEFINITION(IGraph) 24} 23returnidsindex_new(-,-,-)); 25/* */ */ 3/*attheendofavector,wereturnNULLvalue 29/*=>onlyonedimustbedifferentof- 28/*weallowonlymoveinonevectoratatime 27staticIDSIndexnext(intdim,IDSIndexiDSIndex){ 26/*thisfunctionreturnsthenextnodeifexistsindimensiondim */ */ */ switch(dim){ case: if(idsindex->d<ids->v_size-) if((idsindex->d!=-) (idsindex->d2!=-))returnnull; case2: } case:...thesameascasebutfordimensionor2... break; returnidsindex_new(idsindex->d+,idsindex->d,idsindex->d2)); 44staticvoid*getNodeValue(IDSIndexiDSindex){ 4returnNULL; 4} 42/* */ 43/*thisfunctionreturnsforaniDSindexthecorrespondingvalue 45/*onlyonedi(i=,or2)hasavaluedifferentfrom-*/ 46if(iDSIndex->d!=-)return(void*)&(iDS->V[iDSIndex->d]); 47if(iDSIndex->d!=-)return(void*)&(iDS->V[iDSIndex->d]); */ 48if(iDSIndex->d2!=-)return(void*)&(iDS->V2[iDSIndex->d2]); 5} 5/* */ 49returnNULL; Figure5:IGraphdescription 4
16 e f Figure6:Abstractionasadensematrixgraph f 32 void 45 agraph_matrixoperation(agraphagraph, ANodeIndexi,ij; void(*matrixoperation)(inti,intj,void*value)){ 678 for(i=agraph_getroot(agraph);i!=null;i=anodeindex_next(,i)) 9 for(ij=anodeindex_clone(i);ij!=null;ij=anodeindex_next(,ij)) matrixoperation(anodeindex_depth(,ij), 2 } anode_getvalue(ij)); anodeindex_depth(,ij), Figure7:Scanningthedatastructurethroughtheabstractiongraph 5
17 32 void 45 mgraph_matrixoperation(mgraphmgraph, MNodeIndexi; void(*matrixoperation)(inti,intj,void*value)){ 867 for(i=mgraph_getroot(mgraph);i!=null;i=mnodeindex_next(,i)){ 9 matrixoperation(anodeindex_depth(,a), ANodeIndexa=mnodeindex_getANodeIndex(i); 2 } anode_getvalue(a)); anodeindex_depth(,a), Figure8:Scanningthedatastructurethroughthemappinggraph 3 } Figure9:DataDistribution Figure:TraceData 6
18 f f e (a)abstractionasamatrix e f (b)viewasarow Figure:Introductionofaviewgraph 7
ibalance-abf: a Smartphone-Based Audio-Biofeedback Balance System
ibalance-abf: a Smartphone-Based Audio-Biofeedback Balance System Céline Franco, Anthony Fleury, Pierre-Yves Guméry, Bruno Diot, Jacques Demongeot, Nicolas Vuillerme To cite this version: Céline Franco,
Mobility management and vertical handover decision making in heterogeneous wireless networks
Mobility management and vertical handover decision making in heterogeneous wireless networks Mariem Zekri To cite this version: Mariem Zekri. Mobility management and vertical handover decision making in
A usage coverage based approach for assessing product family design
A usage coverage based approach for assessing product family design Jiliang Wang To cite this version: Jiliang Wang. A usage coverage based approach for assessing product family design. Other. Ecole Centrale
QASM: a Q&A Social Media System Based on Social Semantics
QASM: a Q&A Social Media System Based on Social Semantics Zide Meng, Fabien Gandon, Catherine Faron-Zucker To cite this version: Zide Meng, Fabien Gandon, Catherine Faron-Zucker. QASM: a Q&A Social Media
Faut-il des cyberarchivistes, et quel doit être leur profil professionnel?
Faut-il des cyberarchivistes, et quel doit être leur profil professionnel? Jean-Daniel Zeller To cite this version: Jean-Daniel Zeller. Faut-il des cyberarchivistes, et quel doit être leur profil professionnel?.
Overview of model-building strategies in population PK/PD analyses: 2002-2004 literature survey.
Overview of model-building strategies in population PK/PD analyses: 2002-2004 literature survey. Céline Dartois, Karl Brendel, Emmanuelle Comets, Céline Laffont, Christian Laveille, Brigitte Tranchand,
VR4D: An Immersive and Collaborative Experience to Improve the Interior Design Process
VR4D: An Immersive and Collaborative Experience to Improve the Interior Design Process Amine Chellali, Frederic Jourdan, Cédric Dumas To cite this version: Amine Chellali, Frederic Jourdan, Cédric Dumas.
Use of tabletop exercise in industrial training disaster.
Use of tabletop exercise in industrial training disaster. Alexis Descatha, Thomas Loeb, François Dolveck, Nathalie-Sybille Goddet, Valerie Poirier, Michel Baer To cite this version: Alexis Descatha, Thomas
Study on Cloud Service Mode of Agricultural Information Institutions
Study on Cloud Service Mode of Agricultural Information Institutions Xiaorong Yang, Nengfu Xie, Dan Wang, Lihua Jiang To cite this version: Xiaorong Yang, Nengfu Xie, Dan Wang, Lihua Jiang. Study on Cloud
FP-Hadoop: Efficient Execution of Parallel Jobs Over Skewed Data
FP-Hadoop: Efficient Execution of Parallel Jobs Over Skewed Data Miguel Liroz-Gistau, Reza Akbarinia, Patrick Valduriez To cite this version: Miguel Liroz-Gistau, Reza Akbarinia, Patrick Valduriez. FP-Hadoop:
Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski.
Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Fabienne Comte, Celine Duval, Valentine Genon-Catalot To cite this version: Fabienne
Expanding Renewable Energy by Implementing Demand Response
Expanding Renewable Energy by Implementing Demand Response Stéphanie Bouckaert, Vincent Mazauric, Nadia Maïzi To cite this version: Stéphanie Bouckaert, Vincent Mazauric, Nadia Maïzi. Expanding Renewable
An update on acoustics designs for HVAC (Engineering)
An update on acoustics designs for HVAC (Engineering) Ken MARRIOTT To cite this version: Ken MARRIOTT. An update on acoustics designs for HVAC (Engineering). Société Française d Acoustique. Acoustics 2012,
Online vehicle routing and scheduling with continuous vehicle tracking
Online vehicle routing and scheduling with continuous vehicle tracking Jean Respen, Nicolas Zufferey, Jean-Yves Potvin To cite this version: Jean Respen, Nicolas Zufferey, Jean-Yves Potvin. Online vehicle
Additional mechanisms for rewriting on-the-fly SPARQL queries proxy
Additional mechanisms for rewriting on-the-fly SPARQL queries proxy Arthur Vaisse-Lesteven, Bruno Grilhères To cite this version: Arthur Vaisse-Lesteven, Bruno Grilhères. Additional mechanisms for rewriting
Managing Risks at Runtime in VoIP Networks and Services
Managing Risks at Runtime in VoIP Networks and Services Oussema Dabbebi, Remi Badonnel, Olivier Festor To cite this version: Oussema Dabbebi, Remi Badonnel, Olivier Festor. Managing Risks at Runtime in
ANIMATED PHASE PORTRAITS OF NONLINEAR AND CHAOTIC DYNAMICAL SYSTEMS
ANIMATED PHASE PORTRAITS OF NONLINEAR AND CHAOTIC DYNAMICAL SYSTEMS Jean-Marc Ginoux To cite this version: Jean-Marc Ginoux. ANIMATED PHASE PORTRAITS OF NONLINEAR AND CHAOTIC DYNAMICAL SYSTEMS. A.H. Siddiqi,
Information Technology Education in the Sri Lankan School System: Challenges and Perspectives
Information Technology Education in the Sri Lankan School System: Challenges and Perspectives Chandima H. De Silva To cite this version: Chandima H. De Silva. Information Technology Education in the Sri
Minkowski Sum of Polytopes Defined by Their Vertices
Minkowski Sum of Polytopes Defined by Their Vertices Vincent Delos, Denis Teissandier To cite this version: Vincent Delos, Denis Teissandier. Minkowski Sum of Polytopes Defined by Their Vertices. Journal
Novel Client Booking System in KLCC Twin Tower Bridge
Novel Client Booking System in KLCC Twin Tower Bridge Hossein Ameri Mahabadi, Reza Ameri To cite this version: Hossein Ameri Mahabadi, Reza Ameri. Novel Client Booking System in KLCC Twin Tower Bridge.
Global Identity Management of Virtual Machines Based on Remote Secure Elements
Global Identity Management of Virtual Machines Based on Remote Secure Elements Hassane Aissaoui, P. Urien, Guy Pujolle To cite this version: Hassane Aissaoui, P. Urien, Guy Pujolle. Global Identity Management
Aligning subjective tests using a low cost common set
Aligning subjective tests using a low cost common set Yohann Pitrey, Ulrich Engelke, Marcus Barkowsky, Romuald Pépion, Patrick Le Callet To cite this version: Yohann Pitrey, Ulrich Engelke, Marcus Barkowsky,
SELECTIVELY ABSORBING COATINGS
SELECTIVELY ABSORBING COATINGS J. Vuletin, P. Kuli ik, M. Bosanac To cite this version: J. Vuletin, P. Kuli ik, M. Bosanac. SELECTIVELY ABSORBING COATINGS. Journal de Physique Colloques, 1981, 42 (C1),
Towards Collaborative Learning via Shared Artefacts over the Grid
Towards Collaborative Learning via Shared Artefacts over the Grid Cornelia Boldyreff, Phyo Kyaw, Janet Lavery, David Nutter, Stephen Rank To cite this version: Cornelia Boldyreff, Phyo Kyaw, Janet Lavery,
New implementions of predictive alternate analog/rf test with augmented model redundancy
New implementions of predictive alternate analog/rf test with augmented model redundancy Haithem Ayari, Florence Azais, Serge Bernard, Mariane Comte, Vincent Kerzerho, Michel Renovell To cite this version:
ANALYSIS OF SNOEK-KOSTER (H) RELAXATION IN IRON
ANALYSIS OF SNOEK-KOSTER (H) RELAXATION IN IRON J. San Juan, G. Fantozzi, M. No, C. Esnouf, F. Vanoni To cite this version: J. San Juan, G. Fantozzi, M. No, C. Esnouf, F. Vanoni. ANALYSIS OF SNOEK-KOSTER
Territorial Intelligence and Innovation for the Socio-Ecological Transition
Territorial Intelligence and Innovation for the Socio-Ecological Transition Jean-Jacques Girardot, Evelyne Brunau To cite this version: Jean-Jacques Girardot, Evelyne Brunau. Territorial Intelligence and
Application-Aware Protection in DWDM Optical Networks
Application-Aware Protection in DWDM Optical Networks Hamza Drid, Bernard Cousin, Nasir Ghani To cite this version: Hamza Drid, Bernard Cousin, Nasir Ghani. Application-Aware Protection in DWDM Optical
What Development for Bioenergy in Asia: A Long-term Analysis of the Effects of Policy Instruments using TIAM-FR model
What Development for Bioenergy in Asia: A Long-term Analysis of the Effects of Policy Instruments using TIAM-FR model Seungwoo Kang, Sandrine Selosse, Nadia Maïzi To cite this version: Seungwoo Kang, Sandrine
Running an HCI Experiment in Multiple Parallel Universes
Running an HCI Experiment in Multiple Parallel Universes,, To cite this version:,,. Running an HCI Experiment in Multiple Parallel Universes. CHI 14 Extended Abstracts on Human Factors in Computing Systems.
Cobi: Communitysourcing Large-Scale Conference Scheduling
Cobi: Communitysourcing Large-Scale Conference Scheduling Haoqi Zhang, Paul André, Lydia Chilton, Juho Kim, Steven Dow, Robert Miller, Wendy E. Mackay, Michel Beaudouin-Lafon To cite this version: Haoqi
Cracks detection by a moving photothermal probe
Cracks detection by a moving photothermal probe J. Bodnar, M. Egée, C. Menu, R. Besnard, A. Le Blanc, M. Pigeon, J. Sellier To cite this version: J. Bodnar, M. Egée, C. Menu, R. Besnard, A. Le Blanc, et
Towards Unified Tag Data Translation for the Internet of Things
Towards Unified Tag Data Translation for the Internet of Things Loïc Schmidt, Nathalie Mitton, David Simplot-Ryl To cite this version: Loïc Schmidt, Nathalie Mitton, David Simplot-Ryl. Towards Unified
DEM modeling of penetration test in static and dynamic conditions
DEM modeling of penetration test in static and dynamic conditions Quoc Anh Tran, Bastien Chevalier, Pierre Breul To cite this version: Quoc Anh Tran, Bastien Chevalier, Pierre Breul. DEM modeling of penetration
Virtual plants in high school informatics L-systems
Virtual plants in high school informatics L-systems Janka Majherov To cite this version: Janka Majherov. Virtual plants in high school informatics L-systems. Michael E. Auer. Conference ICL2007, September
GDS Resource Record: Generalization of the Delegation Signer Model
GDS Resource Record: Generalization of the Delegation Signer Model Gilles Guette, Bernard Cousin, David Fort To cite this version: Gilles Guette, Bernard Cousin, David Fort. GDS Resource Record: Generalization
Performance Evaluation of Encryption Algorithms Key Length Size on Web Browsers
Performance Evaluation of Encryption Algorithms Key Length Size on Web Browsers Syed Zulkarnain Syed Idrus, Syed Alwee Aljunid, Salina Mohd Asi, Suhizaz Sudin To cite this version: Syed Zulkarnain Syed
Partial and Dynamic reconfiguration of FPGAs: a top down design methodology for an automatic implementation
Partial and Dynamic reconfiguration of FPGAs: a top down design methodology for an automatic implementation Florent Berthelot, Fabienne Nouvel, Dominique Houzet To cite this version: Florent Berthelot,
An integrated planning-simulation-architecture approach for logistics sharing management: A case study in Northern Thailand and Southern China
An integrated planning-simulation-architecture approach for logistics sharing management: A case study in Northern Thailand and Southern China Pree Thiengburanathum, Jesus Gonzalez-Feliu, Yacine Ouzrout,
Diversity against accidental and deliberate faults
Diversity against accidental and deliberate faults Yves Deswarte, Karama Kanoun, Jean-Claude Laprie To cite this version: Yves Deswarte, Karama Kanoun, Jean-Claude Laprie. Diversity against accidental
ISO9001 Certification in UK Organisations A comparative study of motivations and impacts.
ISO9001 Certification in UK Organisations A comparative study of motivations and impacts. Scott McCrosson, Michele Cano, Eileen O Neill, Abdessamad Kobi To cite this version: Scott McCrosson, Michele Cano,
A modeling approach for locating logistics platforms for fast parcels delivery in urban areas
A modeling approach for locating logistics platforms for fast parcels delivery in urban areas Olivier Guyon, Nabil Absi, Dominique Feillet, Thierry Garaix To cite this version: Olivier Guyon, Nabil Absi,
Optimization results for a generalized coupon collector problem
Optimization results for a generalized coupon collector problem Emmanuelle Anceaume, Yann Busnel, Ernst Schulte-Geers, Bruno Sericola To cite this version: Emmanuelle Anceaume, Yann Busnel, Ernst Schulte-Geers,
Florin Paun. To cite this version: HAL Id: halshs-00628978 https://halshs.archives-ouvertes.fr/halshs-00628978
Demand Readiness Level (DRL), a new tool to hybridize Market Pull and Technology Push approaches. Introspective analysis of the new trends in Technology Transfer practices. Florin Paun To cite this version:
Surgical Tools Recognition and Pupil Segmentation for Cataract Surgical Process Modeling
Surgical Tools Recognition and Pupil Segmentation for Cataract Surgical Process Modeling David Bouget, Florent Lalys, Pierre Jannin To cite this version: David Bouget, Florent Lalys, Pierre Jannin. Surgical
Multilateral Privacy in Clouds: Requirements for Use in Industry
Multilateral Privacy in Clouds: Requirements for Use in Industry Ina Schiering, Markus Hansen To cite this version: Ina Schiering, Markus Hansen. Multilateral Privacy in Clouds: Requirements for Use in
Advantages and disadvantages of e-learning at the technical university
Advantages and disadvantages of e-learning at the technical university Olga Sheypak, Galina Artyushina, Anna Artyushina To cite this version: Olga Sheypak, Galina Artyushina, Anna Artyushina. Advantages
Improved Method for Parallel AES-GCM Cores Using FPGAs
Improved Method for Parallel -GCM Cores Using FPGAs Karim Moussa Ali Abdellatif, Roselyne Chotin-Avot, abib Mehrez To cite this version: Karim Moussa Ali Abdellatif, Roselyne Chotin-Avot, abib Mehrez.
Heterogeneous PLC-RF networking for LLNs
Heterogeneous PLC-RF networking for LLNs Cedric Chauvenet, Bernard Tourancheau To cite this version: Cedric Chauvenet, Bernard Tourancheau. Heterogeneous PLC-RF networking for LLNs. CFIP 2011 - Colloque
ControVol: A Framework for Controlled Schema Evolution in NoSQL Application Development
ControVol: A Framework for Controlled Schema Evolution in NoSQL Application Development Stefanie Scherzinger, Thomas Cerqueus, Eduardo Cunha de Almeida To cite this version: Stefanie Scherzinger, Thomas
IntroClassJava: A Benchmark of 297 Small and Buggy Java Programs
IntroClassJava: A Benchmark of 297 Small and Buggy Java Programs Thomas Durieux, Martin Monperrus To cite this version: Thomas Durieux, Martin Monperrus. IntroClassJava: A Benchmark of 297 Small and Buggy
Methodology of organizational learning in risk management : Development of a collective memory for sanitary alerts
Methodology of organizational learning in risk management : Development of a collective memory for sanitary alerts Wim Van Wassenhove, Jean-Luc Wybo To cite this version: Wim Van Wassenhove, Jean-Luc Wybo.
An Automatic Reversible Transformation from Composite to Visitor in Java
An Automatic Reversible Transformation from Composite to Visitor in Java Akram To cite this version: Akram. An Automatic Reversible Transformation from Composite to Visitor in Java. CIEL 2012, P. Collet,
The truck scheduling problem at cross-docking terminals
The truck scheduling problem at cross-docking terminals Lotte Berghman,, Roel Leus, Pierre Lopez To cite this version: Lotte Berghman,, Roel Leus, Pierre Lopez. The truck scheduling problem at cross-docking
SIMS AND SCANNING ION MICROSCOPY
SIMS AND SCANNING ION MICROSCOPY G. Allen, I. Brown To cite this version: G. Allen, I. Brown. SIMS AND SCANNING ION MICROSCOPY. Journal de Physique Colloques, 1989, 50 (C2), pp.c2-121-c2-125. .
Distributed network topology reconstruction in presence of anonymous nodes
Distributed network topology reconstruction in presence of anonymous nodes Thi-Minh Dung Tran, Alain Y Kibangou To cite this version: Thi-Minh Dung Tran, Alain Y Kibangou Distributed network topology reconstruction
P2Prec: A Social-Based P2P Recommendation System
P2Prec: A Social-Based P2P Recommendation System Fady Draidi, Esther Pacitti, Didier Parigot, Guillaume Verger To cite this version: Fady Draidi, Esther Pacitti, Didier Parigot, Guillaume Verger. P2Prec:
Flauncher and DVMS Deploying and Scheduling Thousands of Virtual Machines on Hundreds of Nodes Distributed Geographically
Flauncher and Deploying and Scheduling Thousands of Virtual Machines on Hundreds of Nodes Distributed Geographically Daniel Balouek, Adrien Lèbre, Flavien Quesnel To cite this version: Daniel Balouek,
Undulators and wigglers for the new generation of synchrotron sources
Undulators and wigglers for the new generation of synchrotron sources P. Elleaume To cite this version: P. Elleaume. Undulators and wigglers for the new generation of synchrotron sources. Journal de Physique
Understanding Big Data Spectral Clustering
Understanding Big Data Spectral Clustering Romain Couillet, Florent Benaych-Georges To cite this version: Romain Couillet, Florent Benaych-Georges Understanding Big Data Spectral Clustering 205 IEEE 6th
Hinky: Defending Against Text-based Message Spam on Smartphones
Hinky: Defending Against Text-based Message Spam on Smartphones Abdelkader Lahmadi, Laurent Delosière, Olivier Festor To cite this version: Abdelkader Lahmadi, Laurent Delosière, Olivier Festor. Hinky:
A model driven approach for bridging ILOG Rule Language and RIF
A model driven approach for bridging ILOG Rule Language and RIF Valerio Cosentino, Marcos Didonet del Fabro, Adil El Ghali To cite this version: Valerio Cosentino, Marcos Didonet del Fabro, Adil El Ghali.
Using Feature Modelling and Automations to Select among Cloud Solutions
Using Feature Modelling and Automations to Select among Cloud Solutions Clément Quinton, Laurence Duchien, Patrick Heymans, Stéphane Mouton, Etienne Charlier To cite this version: Clément Quinton, Laurence
Good Practices as a Quality-Oriented Modeling Assistant
Good Practices as a Quality-Oriented Modeling Assistant Vincent Le Gloahec, Régis Fleurquin, Salah Sadou To cite this version: Vincent Le Gloahec, Régis Fleurquin, Salah Sadou. Good Practices as a Quality-Oriented
Distance education engineering
Distance education engineering Olivier Marty To cite this version: Olivier Marty. Distance education engineering. Working paper. 2012. HAL Id: halshs-00776581 https://halshs.archives-ouvertes.fr/halshs-00776581
Business intelligence systems and user s parameters: an application to a documents database
Business intelligence systems and user s parameters: an application to a documents database Babajide Afolabi, Odile Thiery To cite this version: Babajide Afolabi, Odile Thiery. Business intelligence systems
Adaptive Fault Tolerance in Real Time Cloud Computing
Adaptive Fault Tolerance in Real Time Cloud Computing Sheheryar Malik, Fabrice Huet To cite this version: Sheheryar Malik, Fabrice Huet. Adaptive Fault Tolerance in Real Time Cloud Computing. 2011 IEEE
Proposal for the configuration of multi-domain network monitoring architecture
Proposal for the configuration of multi-domain network monitoring architecture Aymen Belghith, Bernard Cousin, Samer Lahoud, Siwar Ben Adj Said To cite this version: Aymen Belghith, Bernard Cousin, Samer
Crowdsourcing and digitization
Crowdsourcing and digitization Mathieu Andro To cite this version: Mathieu Andro. Crowdsourcing and digitization. The Ebooks on Demand Conference 2014 (Innsbruck University, April 11th 2014), Apr 2014,
Identifying Objective True/False from Subjective Yes/No Semantic based on OWA and CWA
Identifying Objective True/False from Subjective Yes/No Semantic based on OWA and CWA Duan Yucong, Christophe Cruz, Christophe Nicolle To cite this version: Duan Yucong, Christophe Cruz, Christophe Nicolle.
Comparative optical study and 2 m laser performance of the Tm3+ doped oxyde crystals : Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O
Comparative optical study and 2 m laser performance of the Tm3+ doped oxyde crystals : Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O R. Moncorge, H. Manaa, M. Koselja, G. Boulon, C. Madej, J. Souriau,
Donatella Corti, Alberto Portioli-Staudacher. To cite this version: HAL Id: hal-01055802 https://hal.inria.fr/hal-01055802
A Structured Comparison of the Service Offer and the Service Supply Chain of Manufacturers Competing in the Capital Goods and Durable Consumer Goods Industries Donatella Corti, Alberto Portioli-Staudacher
How to use Big Data technologies to optimize operations in Upstream Petroleum Industry
How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader Baaziz, Luc Quoniam To cite this version: Abdelkader Baaziz, Luc Quoniam. How to use Big Data technologies
Design and Implementation of Laiwu Black Information Management System Based on ExtJS
Design and Implementation of Laiwu Black Information Management System Based on ExtJS Chen Dong, Liu Pingzeng, Zhang Yunfan, Ma Hongjian To cite this version: Chen Dong, Liu Pingzeng, Zhang Yunfan, Ma
Application of computational fluid dynamics to spray drying
Application of computational fluid dynamics to spray drying Simon Lo To cite this version: Simon Lo. Application of computational fluid dynamics to spray drying. Le Lait, 2005, 85 (4-5), pp.353-359.
Design and architecture of an online system for Vocational Education and Training
Design and architecture of an online system for Vocational Education and Training Christos Bouras, Eri Giannaka, Thrasyvoulos Tsiatsos To cite this version: Christos Bouras, Eri Giannaka, Thrasyvoulos
