A Comparison of Dynamic Load Balancing Algorithms

Size: px
Start display at page:

Download "A Comparison of Dynamic Load Balancing Algorithms"

Transcription

1 A Comparison of Dynamic Load Balancing Algorithms Toufik Taibi 1, Abdelouahab Abid 2 and Engku Fariez Engku Azahan 2 1 College of Information Technology, United Arab Emirates University, P.O. Box 17555, Al Ain, United Arab Emirates; 2 Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, Selangor, Malaysia Received: 25/9/2006 Accepted: 24/12/2006 Taibi, Toufik, Abid, Abdelouahab, and Azahan, Engku (2007) A Comparison of Dynamic Load Balancing Algorithms. J.J. Appl. Sci: Natural Sciences 9 (2): (2007) : :(2) 9 Abstract: Distributed computing has the potential for running large-scale applications using heterogeneous and geographically distributed resources. However, a number of major technical issues must be handled before the full potential of distributed computing can be realized. Efficient job scheduling is a major prerequisite for the effective utilization of resources. Dynamic load balancing is the core of an efficient job scheduler. This paper describes the features of a Javabased simulator intended to analyze the performance of three load balancing algorithms, namely: senderinitiated, receiver-initiated and symmetrically-initiated algorithms using Average Waiting Time (AWT) and Average Turnaround Time (ATT) as criteria. Simulation results revealed that the symmetricallyinitiated algorithm performs better in almost all cases. Keywords: Dynamic load balancing, Sender-initiated algorithm, Receiver-initiated algorithm, Symmetrically initiated algorithm, Simulation. :.... :.. Introduction One of the primary goals of distributed computing is to share access to geographically distributed heterogeneous resources in a transparent manner. In such an environment, applications whose computational requirements exceed local resources can be executed. Moreover, the average job turnaround time will be reduced through workload balancing across multiple computing facilities. Distributed computing has evolved from Network of Workstations (NOW) [5] [6] to computational grids [4] in a bid to become a viable alternative to expensive dedicated parallel machines [3]. However, a number of major technical issues must be handled before the full potential of distributed computing can be realized. Efficient job scheduling is a major prerequisite for the effective utilization of resources. Dynamic load balancing is the core of an efficient job scheduler. Although numerous researchers have proposed scheduling algorithms for parallel architectures [2], the problem of scheduling jobs in a heterogeneous distributed environment is fundamentally different [4]. This paper describes features of a Java-based simulator intended to analyze the performance of three load balancing algorithms, namely: sender-initiated, receiverinitiated and symmetrically-initiated algorithms using Average Waiting Time (AWT) 125

2 Toufik Taibi, Abdelouahab Abid and Engku Fariez Engku Azahan * Principal author's address: toufikt@uaeu.ac.ae 126

3 and Average Turnaround Time (ATT) as criteria. The repeated simulation trails revealed that the symmetrically-initiated algorithm performs better in almost all cases. The rest of the paper is organized as follows. Section 2 describes the three load balancing algorithms. Section 3 describes the features of the simulator. Section 4 describes the simulation results after comparing the performance of the three algorithms, while section 5 concludes the paper. Dynamic Load Balancing Algorithms In static scheduling, once a job is assigned to a node (processing site), it remains there until its execution is completed. Static scheduling requires prior knowledge of the execution times and the communication behaviours of the jobs. The latter is used to co-locate communication-dependent jobs in the same node. The assumption of prior knowledge of jobs is not realistic for most distributed applications. As such, we have to rely on an adhoc scheduling strategy that is adaptive (dynamic) and allows its assignment decision to be made locally (decentralized). The target performance goals for scheduling are system utilization and fairness to the user jobs. A simple heuristic strategy to achieve higher utilization of a system is to avoid having idle nodes as much as possible. Assume that a controller job (running in a designated node) is used to maintain information about the queue size of each node in the system (centralized approach). Since jobs arrive and depart from the system asynchronously, an arriving job makes a request to the controller for the assignment to a node and the controller schedules the job to the node with the shortest queue. To update the queue size information, each node must inform the controller whenever a job is completed and departs from the node. Joining the job with the shortest queue is a static load sharing scheduling strategy that attempts to reduce node idling and to equalize node queue sizes (load balancing). Load balancing is a stronger requirement than load sharing as it improves utilization, achieves a sort of fairness in terms of equal workload for each node and reduces ATT of the jobs [1]. Load balancing can be made adaptive by allowing jobs to migrate from a longer queue to a shorter queue dynamically. If a central controller is not used for transferring a job from one node (sender) to the other (receiver), the job transfer must be initiated either by sender or receiver or both. Figure 1 shows the opportunities of job distribution in a distributed system. In a lightly loaded system, there is little opportunity for job distribution since most nodes are underutilized. In heavily loaded systems, there is little opportunity for job distribution since most nodes are not free to accept new jobs. In moderately loaded systems, there are good opportunities to distribute jobs from overutilized to underutilized nodes. Probability of job Distribution Node Utilization Figure 1. Opportunities for Task Distribution 127

4 Toufik Taibi, Abdelouahab Abid and Engku Fariez Engku Azahan 1. Sender-Initiated Algorithm The sender-initiated algorithm, as the name implies, is activated by a sender that wishes to off-load some of its computation. This algorithm facilitates job migration from a heavily loaded node to a lightly loaded node. There are three basic decisions that need to be made before a transfer of a job can take place: Transfer policy : When does a node become the sender? Selection policy : How does a sender choose a job for transfer? Location policy : What node should be the target receiver? If the queue size is the only indicator of the workload (which is the case in our simulation), a sender can use a transfer policy that initiates the algorithm when detecting that its queue length (SQ) has exceeded a certain threshold (ST) upon the arrival of a new job. The location policy requires knowledge of load distribution to locate a suitable receiver. The sender can send a multicast message to all other nodes asking for a reply about their queue sizes. Upon receiving this information, the sender can select the node with the smallest queue length (RQ) as the target receiver, provided that the queue length of the sender (SQ) is greater than the queue length of the target receiver (RQ) (i.e. SQ>RQ). Figure 2 depicts the flowchart of the sender-initiated algorithm. Job Arrives SQ+1>ST no yes Multicast Receivers & Receive RQs no Select Smallest RQ Queue Job SQ>RQ yes Migrate Job To Receiver Figure 2. Flowchart of the Sender-Initiated Algorithm Multicasting from a sender, receiving replies from receivers and migration of jobs between senders and receivers incurs, additional communication overhead, which increases the actual load of the system. In an already heavily loaded system, the problem could be worsened by the possibility of a ping-pong effect among senders trying to off-load jobs fruitlessly if all nodes are initiating the algorithm simultaneously. The sender-initiated algorithm, however, performs very well in a lightly loaded system as it is easy to find a receiver and the communication overhead has little effect on the system performance. 128

5 2. Receiver-Initiated Algorithm Sender-initiated algorithm is a push model, where jobs are pushed from one node to other nodes. A receiver can pull a job from other nodes to its queue if it is underutilized. The receiver-initiated algorithm can use a similar transfer policy of the sender-initiated algorithm, which activates the pull operation when its queue length falls below a certain threshold (RT), upon the departure of a job. Similarly multicasting can be used to implement the location policy that identifies a heavily loaded sender. However, the selection policy requires pre-emption since the jobs at the sender node have already started their execution. The decision about which job to remove is not as obvious as in the sender-initiated algorithm. The benefit of load sharing must overweigh the pre-emption and migration communication overhead. In our simulator, we remove the last job in the queue. At high system load, job migrations are few and a sender can be found easily. Load sharing is effectively accomplished with little overhead. When the system load is low, although there will be many migration initiations, degradation of performance due to the additional network traffic is not significant. As such, on average the receiver-initiated algorithm performs better than the sender-initiated algorithm. Figure 3 shows a node queue with sender/receiver thresholds, while Figure 4 depicts the flowchart of the receiver-initiated algorithm. ST RT End (SQ or RQ) Start Figure 3. A Node Queue with Sender/Receiver Thresholds Job Departs RQ-1<RT no Execute Next Job yes Multicast Senders & Receive SQs no yes Select Biggest SQ RQ<SQ Migrate Job from Sender Figure 4. Flowchart of the Receiver-Initiated Algorithm 3. Symmetrically-Initiated Algorithm Since the sender-initiated and receiver-initiated algorithms work well at different system loads, it seems logical to combine them. A node can activate the senderinitiated algorithms when its queue size exceeds one threshold ST, and can activate the receiver-initiated algorithm when its queue size falls below another threshold RT. As such, each node may dynamically play the role of either a sender or a receiver. 129

6 Toufik Taibi, Abdelouahab Abid and Engku Fariez Engku Azahan The Simulator The simulator was coded in Java. Figure 5 shows the simulator's main window. The Stop and Start/Pause buttons are for controlling the simulator, while the progress bar on top shows the simulation completion time. The simulator has four menus: File, Simulator, Results and Help. The Simulator menu allows the control of the simulator and the setting of the simulation parameters. It also allows the running of a comparative simulation, which is running all three types of simulation one after another using the same settings and showing a message window. The Results menu allows the display of the simulation log file and the result graph. Using the simulator, the user is able to perform the following actions: Controlling the simulator, which involves starting, stopping and pausing the simulation. Running the three algorithms in sequence with the same parameters and comparing their performance using AWT and ATT as factors. This is what we call comparative simulation. Changing basic simulation parameters such as number of nodes, range of the number of generated jobs and simulation type (selecting which of three algorithms to run). (See Figure 6.) Changing advanced simulation parameters such as queue length, ST, RT, job arrival time (fix or random, in which case a range of values is entered) and job burst time (fix or random, in which case a range of values is entered). (See Figure 7.) Displaying graphs. In the case of a single simulation run using one of the three algorithms, time is plotted against AWT and ATT. In the case of a comparative simulation, time is plotted against the AWT and ATT of each of the three algorithms. Figure 5. Simulator s Main Window 130

7 Figure 6. Simulator s Basic Settings Figure 7. Simulator s Advanced Settings Figure 8 shows a running simulation of the sender-initiated algorithm in a distributed system of nine nodes. Figure 8. A Running Simulation 131

8 Toufik Taibi, Abdelouahab Abid and Engku Fariez Engku Azahan Comparative Simulation Results Figure 9. Graph Results for Single Simulation Run Figure 9 shows the graph results of a single simulation run. The graph shows AWT and ATT of the whole system versus time. As it can be seen, both AWT and ATT steadily increase with time as more and more jobs are created. At a certain time interval, the graph levels off; this is when no new jobs are created. Figure 10. Graph Results for Comparative Simulation Figure 10 shows the graph results for a comparative simulation. Here, two separate graphs are shown for AWT and ATT. For the graph above, all three algorithms perform similarly at first. As time passes, the symmetrically-initiated algorithm shows an improvement over the other two, while the receiver-initiated algorithm performs better than the sender-initiated algorithm. As with the previous graph, it is observed that after a certain period of time, the graph levels off as no new jobs are introduced into the system. Conclusion The paper described the features of a simulator to compare the performance of three dynamic load balancing algorithms, namely: sender-initiated, receiverinitiated and symmetrically-initiated. The expectation that the symmetricallyinitiated algorithm generally works better holds true for almost all cases. This was so since a node can implement both sender-initiated and receiver-initiated algorithms depending on its queue length. Restricting to either one algorithm 132

9 causes the node to lose all benefits of dynamic load balancing when system load changes frequently. The symmetrically-initiated algorithm does carry with it an additional overhead since it utilizes two algorithms. However, since both algorithms are almost complementary (sender-initiated works only when queue size is large, and receiver-initiated works only when queue size is small), the effect is at most negligible. As a future enhancement, the simulator would run on multiple nodes (i.e., multiple computers each running an instance of the simulator). This would better reflect the nature of a distributed system. References 1- Chow, R. & Johnson, T. (1998) Distributed Operating Systems and Algorithms, Reading, MA, Addison-Wesley. 2- Krallmann, J., Schwiegelshohn, U. & Yahyapour, R. (1999) On the design and evaluation of job scheduling algorithms. Proceedings of 5 th Workshop on Job Scheduling Strategies for Parallel Processing, San Juan, Puerto Rico, Overeinder, B.J. & Sloot, P.M.A. (1996) A dynamic load balancing system for parallel cluster computing. Future Generation Computer Systems, 12: Shan, H., Oliker, L. & Biswas, R. (2003) Job superscheduler architecture and performance in computational grid environments. Proceedings of Super Computing Conference, Phoenix, USA, Piotrowski, A. & Dandamudi, S.P. (1997) A comparative study of load sharing on networks of workstations. Proceedings of International Conference on Parallel and Distributed Computing Systems, New Orleans, USA, Zaki, M., Li, W. & Parthasarathy, S. (1996) Customized dynamic load balancing for a network of workstations. Proceedings of 5th IEEE International Symposium on High-Performance Distributed Computing (HPDC), Syracuse, USA,

An Effective Dynamic Load Balancing Algorithm for Grid System

An Effective Dynamic Load Balancing Algorithm for Grid System An Effective Dynamic Load Balancing Algorithm for Grid System Prakash Kumar #1, Pradeep Kumar #2, Vikas Kumar *3 1,2 Department of CSE, NIET, MTU University, Noida, India 3 Linux Administrator, Eurus Internetworks

More information

Dynamic Load Balancing in a Network of Workstations

Dynamic Load Balancing in a Network of Workstations Dynamic Load Balancing in a Network of Workstations 95.515F Research Report By: Shahzad Malik (219762) November 29, 2000 Table of Contents 1 Introduction 3 2 Load Balancing 4 2.1 Static Load Balancing

More information

How To Compare Load Sharing And Job Scheduling In A Network Of Workstations

How To Compare Load Sharing And Job Scheduling In A Network Of Workstations A COMPARISON OF LOAD SHARING AND JOB SCHEDULING IN A NETWORK OF WORKSTATIONS HELEN D. KARATZA Department of Informatics Aristotle University of Thessaloniki 546 Thessaloniki, GREECE Email: karatza@csd.auth.gr

More information

A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems

A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems RUPAM MUKHOPADHYAY, DIBYAJYOTI GHOSH AND NANDINI MUKHERJEE Department of Computer

More information

CSE LOVELY PROFESSIONAL UNIVERSITY

CSE LOVELY PROFESSIONAL UNIVERSITY Comparison of load balancing algorithms in a Cloud Jaspreet kaur M.TECH CSE LOVELY PROFESSIONAL UNIVERSITY Jalandhar, punjab ABSTRACT This paper presents an approach for scheduling algorithms that can

More information

A novel load balancing algorithm for computational grid

A novel load balancing algorithm for computational grid International Journal of Computational Intelligence Techniques, ISSN: 0976 0466 & E-ISSN: 0976 0474 Volume 1, Issue 1, 2010, PP-20-26 A novel load balancing algorithm for computational grid Saravanakumar

More information

A Dynamic Approach for Load Balancing using Clusters

A Dynamic Approach for Load Balancing using Clusters A Dynamic Approach for Load Balancing using Clusters ShwetaRajani 1, RenuBagoria 2 Computer Science 1,2,Global Technical Campus, Jaipur 1,JaganNath University, Jaipur 2 Email: shwetarajani28@yahoo.in 1

More information

Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age.

Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age. Volume 3, Issue 10, October 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Load Measurement

More information

Design and Implementation of Efficient Load Balancing Algorithm in Grid Environment

Design and Implementation of Efficient Load Balancing Algorithm in Grid Environment Design and Implementation of Efficient Load Balancing Algorithm in Grid Environment Sandip S.Patil, Preeti Singh Department of Computer science & Engineering S.S.B.T s College of Engineering & Technology,

More information

A Comparative Performance Analysis of Load Balancing Algorithms in Distributed System using Qualitative Parameters

A Comparative Performance Analysis of Load Balancing Algorithms in Distributed System using Qualitative Parameters A Comparative Performance Analysis of Load Balancing Algorithms in Distributed System using Qualitative Parameters Abhijit A. Rajguru, S.S. Apte Abstract - A distributed system can be viewed as a collection

More information

Parallel Job Scheduling in Homogeneous Distributed Systems

Parallel Job Scheduling in Homogeneous Distributed Systems Parallel Job Scheduling in Homogeneous Distributed Systems Helen D. Karatza Department of Informatics Aristotle University of Thessaloniki 51 Thessaloniki, Greece Ralph C. Hilzer Computer Science Department

More information

PERFORMANCE EVALUATION OF THREE DYNAMIC LOAD BALANCING ALGORITHMS ON SPMD MODEL

PERFORMANCE EVALUATION OF THREE DYNAMIC LOAD BALANCING ALGORITHMS ON SPMD MODEL PERFORMANCE EVALUATION OF THREE DYNAMIC LOAD BALANCING ALGORITHMS ON SPMD MODEL Najib A. Kofahi Associate Professor Department of Computer Sciences Faculty of Information Technology and Computer Sciences

More information

Scheduling Allowance Adaptability in Load Balancing technique for Distributed Systems

Scheduling Allowance Adaptability in Load Balancing technique for Distributed Systems Scheduling Allowance Adaptability in Load Balancing technique for Distributed Systems G.Rajina #1, P.Nagaraju #2 #1 M.Tech, Computer Science Engineering, TallaPadmavathi Engineering College, Warangal,

More information

Job Superscheduler Architecture and Performance in Computational Grid Environments

Job Superscheduler Architecture and Performance in Computational Grid Environments Job Superscheduler Architecture and Performance in Computational Grid Environments Hongzhang Shan, Leonid Oliker Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

More information

DYNAMIC LOAD BALANCING IN A DECENTRALISED DISTRIBUTED SYSTEM

DYNAMIC LOAD BALANCING IN A DECENTRALISED DISTRIBUTED SYSTEM DYNAMIC LOAD BALANCING IN A DECENTRALISED DISTRIBUTED SYSTEM 1 Introduction In parallel distributed computing system, due to the lightly loaded and overloaded nodes that cause load imbalance, could affect

More information

A Review of Customized Dynamic Load Balancing for a Network of Workstations

A Review of Customized Dynamic Load Balancing for a Network of Workstations A Review of Customized Dynamic Load Balancing for a Network of Workstations Taken from work done by: Mohammed Javeed Zaki, Wei Li, Srinivasan Parthasarathy Computer Science Department, University of Rochester

More information

CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT

CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT 81 CHAPTER 5 WLDMA: A NEW LOAD BALANCING STRATEGY FOR WAN ENVIRONMENT 5.1 INTRODUCTION Distributed Web servers on the Internet require high scalability and availability to provide efficient services to

More information

Performance Evaluation of Mobile Agent-based Dynamic Load Balancing Algorithm

Performance Evaluation of Mobile Agent-based Dynamic Load Balancing Algorithm Performance Evaluation of Mobile -based Dynamic Load Balancing Algorithm MAGDY SAEB, CHERINE FATHY Computer Engineering Department Arab Academy for Science, Technology & Maritime Transport Alexandria,

More information

LOAD BALANCING TECHNIQUES

LOAD BALANCING TECHNIQUES LOAD BALANCING TECHNIQUES Two imporatnt characteristics of distributed systems are resource multiplicity and system transparency. In a distributed system we have a number of resources interconnected by

More information

Design of an Optimized Virtual Server for Efficient Management of Cloud Load in Multiple Cloud Environments

Design of an Optimized Virtual Server for Efficient Management of Cloud Load in Multiple Cloud Environments Design of an Optimized Virtual Server for Efficient Management of Cloud Load in Multiple Cloud Environments Ajay A. Jaiswal 1, Dr. S. K. Shriwastava 2 1 Associate Professor, Department of Computer Technology

More information

A Clustered Approach for Load Balancing in Distributed Systems

A Clustered Approach for Load Balancing in Distributed Systems SSRG International Journal of Mobile Computing & Application (SSRG-IJMCA) volume 2 Issue 1 Jan to Feb 2015 A Clustered Approach for Load Balancing in Distributed Systems Shweta Rajani 1, Niharika Garg

More information

An Empirical Study and Analysis of the Dynamic Load Balancing Techniques Used in Parallel Computing Systems

An Empirical Study and Analysis of the Dynamic Load Balancing Techniques Used in Parallel Computing Systems An Empirical Study and Analysis of the Dynamic Load Balancing Techniques Used in Parallel Computing Systems Ardhendu Mandal and Subhas Chandra Pal Department of Computer Science and Application, University

More information

MEASURING PERFORMANCE OF DYNAMIC LOAD BALANCING ALGORITHMS IN DISTRIBUTED COMPUTING APPLICATIONS

MEASURING PERFORMANCE OF DYNAMIC LOAD BALANCING ALGORITHMS IN DISTRIBUTED COMPUTING APPLICATIONS MEASURING PERFORMANCE OF DYNAMIC LOAD BALANCING ALGORITHMS IN DISTRIBUTED COMPUTING APPLICATIONS Priyesh Kanungo 1 Professor and Senior Systems Engineer (Computer Centre), School of Computer Science and

More information

Load Balancing Algorithms for Peer to Peer and Client Server Distributed Environments

Load Balancing Algorithms for Peer to Peer and Client Server Distributed Environments Load Balancing Algorithms for Peer to Peer and Client Server Distributed Environments Sameena Naaz Afshar Alam Ranjit Biswas Department of Computer Science Jamia Hamdard, New Delhi, India ABSTRACT Advancements

More information

Various Schemes of Load Balancing in Distributed Systems- A Review

Various Schemes of Load Balancing in Distributed Systems- A Review 741 Various Schemes of Load Balancing in Distributed Systems- A Review Monika Kushwaha Pranveer Singh Institute of Technology Kanpur, U.P. (208020) U.P.T.U., Lucknow Saurabh Gupta Pranveer Singh Institute

More information

Proposal of Dynamic Load Balancing Algorithm in Grid System

Proposal of Dynamic Load Balancing Algorithm in Grid System www.ijcsi.org 186 Proposal of Dynamic Load Balancing Algorithm in Grid System Sherihan Abu Elenin Faculty of Computers and Information Mansoura University, Egypt Abstract This paper proposed dynamic load

More information

Performance Analysis of Load Balancing Algorithms in Distributed System

Performance Analysis of Load Balancing Algorithms in Distributed System Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 1 (2014), pp. 59-66 Research India Publications http://www.ripublication.com/aeee.htm Performance Analysis of Load Balancing

More information

Comparison on Different Load Balancing Algorithms of Peer to Peer Networks

Comparison on Different Load Balancing Algorithms of Peer to Peer Networks Comparison on Different Load Balancing Algorithms of Peer to Peer Networks K.N.Sirisha *, S.Bhagya Rekha M.Tech,Software Engineering Noble college of Engineering & Technology for Women Web Technologies

More information

Evaluation of Job-Scheduling Strategies for Grid Computing

Evaluation of Job-Scheduling Strategies for Grid Computing Evaluation of Job-Scheduling Strategies for Grid Computing Volker Hamscher 1, Uwe Schwiegelshohn 1, Achim Streit 2, and Ramin Yahyapour 1 1 Computer Engineering Institute, University of Dortmund, 44221

More information

The Impact of Migration on Parallel Job. The Pennsylvania State University. University Park PA 16802. fyyzhang, anandg@cse.psu.edu. P. O.

The Impact of Migration on Parallel Job. The Pennsylvania State University. University Park PA 16802. fyyzhang, anandg@cse.psu.edu. P. O. The Impact of Migration on Parallel Job Scheduling for Distributed Systems Y. Zhang 1,H.Franke 2, J. E. Moreira 2, and A. Sivasubramaniam 1 1 Department of Computer Science & Engineering The Pennsylvania

More information

Job Scheduling in a Distributed System Using Backfilling with Inaccurate Runtime Computations

Job Scheduling in a Distributed System Using Backfilling with Inaccurate Runtime Computations 2010 International Conference on Complex, Intelligent and Software Intensive Systems Job Scheduling in a Distributed System Using Backfilling with Inaccurate Runtime Computations Sofia K. Dimitriadou Department

More information

Sla Aware Load Balancing Algorithm Using Join-Idle Queue for Virtual Machines in Cloud Computing

Sla Aware Load Balancing Algorithm Using Join-Idle Queue for Virtual Machines in Cloud Computing Sla Aware Load Balancing Using Join-Idle Queue for Virtual Machines in Cloud Computing Mehak Choudhary M.Tech Student [CSE], Dept. of CSE, SKIET, Kurukshetra University, Haryana, India ABSTRACT: Cloud

More information

Resource Allocation Schemes for Gang Scheduling

Resource Allocation Schemes for Gang Scheduling Resource Allocation Schemes for Gang Scheduling B. B. Zhou School of Computing and Mathematics Deakin University Geelong, VIC 327, Australia D. Walsh R. P. Brent Department of Computer Science Australian

More information

AN EFFICIENT LOAD BALANCING APPROACH IN CLOUD SERVER USING ANT COLONY OPTIMIZATION

AN EFFICIENT LOAD BALANCING APPROACH IN CLOUD SERVER USING ANT COLONY OPTIMIZATION AN EFFICIENT LOAD BALANCING APPROACH IN CLOUD SERVER USING ANT COLONY OPTIMIZATION Shanmuga Priya.J 1, Sridevi.A 2 1 PG Scholar, Department of Information Technology, J.J College of Engineering and Technology

More information

A Survey on Load Balancing and Scheduling in Cloud Computing

A Survey on Load Balancing and Scheduling in Cloud Computing IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 7 December 2014 ISSN (online): 2349-6010 A Survey on Load Balancing and Scheduling in Cloud Computing Niraj Patel

More information

Load balancing; Termination detection

Load balancing; Termination detection Load balancing; Termination detection Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 14, 2013 CPD (DEI / IST) Parallel and Distributed

More information

A Genetic-Fuzzy Logic Based Load Balancing Algorithm in Heterogeneous Distributed Systems

A Genetic-Fuzzy Logic Based Load Balancing Algorithm in Heterogeneous Distributed Systems A Genetic-Fuzzy Logic Based Load Balancing Algorithm in Heterogeneous Distributed Systems Kun-Ming Yu *, Ching-Hsien Hsu and Chwani-Lii Sune Department of Computer Science and Information Engineering Chung-Hua

More information

PPD: Scheduling and Load Balancing 2

PPD: Scheduling and Load Balancing 2 PPD: Scheduling and Load Balancing 2 Fernando Silva Computer Science Department Center for Research in Advanced Computing Systems (CRACS) University of Porto, FCUP http://www.dcc.fc.up.pt/~fds 2 (Some

More information

DYNAMIC GRAPH ANALYSIS FOR LOAD BALANCING APPLICATIONS

DYNAMIC GRAPH ANALYSIS FOR LOAD BALANCING APPLICATIONS DYNAMIC GRAPH ANALYSIS FOR LOAD BALANCING APPLICATIONS DYNAMIC GRAPH ANALYSIS FOR LOAD BALANCING APPLICATIONS by Belal Ahmad Ibraheem Nwiran Dr. Ali Shatnawi Thesis submitted in partial fulfillment of

More information

Comparative Study of Load Balancing Algorithms

Comparative Study of Load Balancing Algorithms IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 3 (Mar. 2013), V2 PP 45-50 Comparative Study of Load Balancing Algorithms Jyoti Vashistha 1, Anant Kumar Jayswal

More information

SIMULATION OF LOAD BALANCING ALGORITHMS: A Comparative Study

SIMULATION OF LOAD BALANCING ALGORITHMS: A Comparative Study SIMULATION OF LOAD BALANCING ALGORITHMS: A Comparative Study Milan E. Soklic Abstract This article introduces a new load balancing algorithm, called diffusive load balancing, and compares its performance

More information

Keywords Load balancing, Dispatcher, Distributed Cluster Server, Static Load balancing, Dynamic Load balancing.

Keywords Load balancing, Dispatcher, Distributed Cluster Server, Static Load balancing, Dynamic Load balancing. Volume 5, Issue 7, July 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Hybrid Algorithm

More information

Code and Process Migration! Motivation!

Code and Process Migration! Motivation! Code and Process Migration! Motivation How does migration occur? Resource migration Agent-based system Details of process migration Lecture 6, page 1 Motivation! Key reasons: performance and flexibility

More information

Adaptive Processor Allocation for Moldable Jobs in Computational Grid

Adaptive Processor Allocation for Moldable Jobs in Computational Grid 10 International Journal of Grid and High Performance Computing, 1(1), 10-21, January-March 2009 Adaptive Processor Allocation for Moldable Jobs in Computational Grid Kuo-Chan Huang, National Taichung

More information

Performance Comparison of Assignment Policies on Cluster-based E-Commerce Servers

Performance Comparison of Assignment Policies on Cluster-based E-Commerce Servers Performance Comparison of Assignment Policies on Cluster-based E-Commerce Servers Victoria Ungureanu Department of MSIS Rutgers University, 180 University Ave. Newark, NJ 07102 USA Benjamin Melamed Department

More information

An Overview of CORBA-Based Load Balancing

An Overview of CORBA-Based Load Balancing An Overview of CORBA-Based Load Balancing Jian Shu, Linlan Liu, Shaowen Song, Member, IEEE Department of Computer Science Nanchang Institute of Aero-Technology,Nanchang, Jiangxi, P.R.China 330034 dylan_cn@yahoo.com

More information

Implementing New Approach for Enhancing Performance and Throughput in a Distributed Database

Implementing New Approach for Enhancing Performance and Throughput in a Distributed Database 290 The International Arab Journal of Information Technology, Vol. 10, No. 3, May 2013 Implementing New Approach for Enhancing Performance and in a Distributed Database Khaled Maabreh 1 and Alaa Al-Hamami

More information

Advanced Task Scheduling for Cloud Service Provider Using Genetic Algorithm

Advanced Task Scheduling for Cloud Service Provider Using Genetic Algorithm IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021 Volume 2, Issue 7(July 2012), PP 141-147 Advanced Task Scheduling for Cloud Service Provider Using Genetic Algorithm 1 Sourav Banerjee, 2 Mainak Adhikari,

More information

Comparison of PBRR Scheduling Algorithm with Round Robin and Heuristic Priority Scheduling Algorithm in Virtual Cloud Environment

Comparison of PBRR Scheduling Algorithm with Round Robin and Heuristic Priority Scheduling Algorithm in Virtual Cloud Environment www.ijcsi.org 99 Comparison of PBRR Scheduling Algorithm with Round Robin and Heuristic Priority Scheduling Algorithm in Cloud Environment Er. Navreet Singh 1 1 Asst. Professor, Computer Science Department

More information

Grid Scheduling Dictionary of Terms and Keywords

Grid Scheduling Dictionary of Terms and Keywords Grid Scheduling Dictionary Working Group M. Roehrig, Sandia National Laboratories W. Ziegler, Fraunhofer-Institute for Algorithms and Scientific Computing Document: Category: Informational June 2002 Status

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 36 ISSN 2229-5518

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 36 ISSN 2229-5518 International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 36 An Efficient Approach for Load Balancing in Cloud Environment Balasundaram Ananthakrishnan Abstract Cloud computing

More information

Grid Computing Approach for Dynamic Load Balancing

Grid Computing Approach for Dynamic Load Balancing International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-4, Issue-1 E-ISSN: 2347-2693 Grid Computing Approach for Dynamic Load Balancing Kapil B. Morey 1*, Sachin B. Jadhav

More information

A REVIEW PAPER ON LOAD BALANCING AMONG VIRTUAL SERVERS IN CLOUD COMPUTING USING CAT SWARM OPTIMIZATION

A REVIEW PAPER ON LOAD BALANCING AMONG VIRTUAL SERVERS IN CLOUD COMPUTING USING CAT SWARM OPTIMIZATION A REVIEW PAPER ON LOAD BALANCING AMONG VIRTUAL SERVERS IN CLOUD COMPUTING USING CAT SWARM OPTIMIZATION Upasana Mittal 1, Yogesh Kumar 2 1 C.S.E Student,Department of Computer Science, SUSCET, Mohali, (India)

More information

EFFICIENT SCHEDULING STRATEGY USING COMMUNICATION AWARE SCHEDULING FOR PARALLEL JOBS IN CLUSTERS

EFFICIENT SCHEDULING STRATEGY USING COMMUNICATION AWARE SCHEDULING FOR PARALLEL JOBS IN CLUSTERS EFFICIENT SCHEDULING STRATEGY USING COMMUNICATION AWARE SCHEDULING FOR PARALLEL JOBS IN CLUSTERS A.Neela madheswari 1 and R.S.D.Wahida Banu 2 1 Department of Information Technology, KMEA Engineering College,

More information

Global Load Balancing and Primary Backup Approach for Fault Tolerant Scheduling in Computational Grid

Global Load Balancing and Primary Backup Approach for Fault Tolerant Scheduling in Computational Grid Global Load Balancing and Primary Backup Approach for Fault Tolerant Scheduling in Computational Grid S. Gokuldev & Shahana Moideen Department of Computer Science and Engineering SNS College of Engineering,

More information

159.735. Final Report. Cluster Scheduling. Submitted by: Priti Lohani 04244354

159.735. Final Report. Cluster Scheduling. Submitted by: Priti Lohani 04244354 159.735 Final Report Cluster Scheduling Submitted by: Priti Lohani 04244354 1 Table of contents: 159.735... 1 Final Report... 1 Cluster Scheduling... 1 Table of contents:... 2 1. Introduction:... 3 1.1

More information

Load Balancing using DWARR Algorithm in Cloud Computing

Load Balancing using DWARR Algorithm in Cloud Computing IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 12 May 2015 ISSN (online): 2349-6010 Load Balancing using DWARR Algorithm in Cloud Computing Niraj Patel PG Student

More information

The International Journal Of Science & Technoledge (ISSN 2321 919X) www.theijst.com

The International Journal Of Science & Technoledge (ISSN 2321 919X) www.theijst.com THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Efficient Parallel Processing on Public Cloud Servers using Load Balancing Manjunath K. C. M.Tech IV Sem, Department of CSE, SEA College of Engineering

More information

DECENTRALIZED LOAD BALANCING IN HETEROGENEOUS SYSTEMS USING DIFFUSION APPROACH

DECENTRALIZED LOAD BALANCING IN HETEROGENEOUS SYSTEMS USING DIFFUSION APPROACH DECENTRALIZED LOAD BALANCING IN HETEROGENEOUS SYSTEMS USING DIFFUSION APPROACH P.Neelakantan Department of Computer Science & Engineering, SVCET, Chittoor pneelakantan@rediffmail.com ABSTRACT The grid

More information

A Comparison of General Approaches to Multiprocessor Scheduling

A Comparison of General Approaches to Multiprocessor Scheduling A Comparison of General Approaches to Multiprocessor Scheduling Jing-Chiou Liou AT&T Laboratories Middletown, NJ 0778, USA jing@jolt.mt.att.com Michael A. Palis Department of Computer Science Rutgers University

More information

Elastic Load Balancing in Cloud Storage

Elastic Load Balancing in Cloud Storage Elastic Load Balancing in Cloud Storage Surabhi Jain, Deepak Sharma (Lecturer, Department of Computer Science, Lovely Professional University, Phagwara-144402) (Assistant Professor, Department of Computer

More information

The Importance of Software License Server Monitoring

The Importance of Software License Server Monitoring The Importance of Software License Server Monitoring NetworkComputer How Shorter Running Jobs Can Help In Optimizing Your Resource Utilization White Paper Introduction Semiconductor companies typically

More information

PERFORMANCE COMPARISON OF COMMON OBJECT REQUEST BROKER ARCHITECTURE(CORBA) VS JAVA MESSAGING SERVICE(JMS) BY TEAM SCALABLE

PERFORMANCE COMPARISON OF COMMON OBJECT REQUEST BROKER ARCHITECTURE(CORBA) VS JAVA MESSAGING SERVICE(JMS) BY TEAM SCALABLE PERFORMANCE COMPARISON OF COMMON OBJECT REQUEST BROKER ARCHITECTURE(CORBA) VS JAVA MESSAGING SERVICE(JMS) BY TEAM SCALABLE TIGRAN HAKOBYAN SUJAL PATEL VANDANA MURALI INTRODUCTION Common Object Request

More information

A Robust Dynamic Load-balancing Scheme for Data Parallel Application on Message Passing Architecture

A Robust Dynamic Load-balancing Scheme for Data Parallel Application on Message Passing Architecture A Robust Dynamic Load-balancing Scheme for Data Parallel Application on Message Passing Architecture Yangsuk Kee Department of Computer Engineering Seoul National University Seoul, 151-742, Korea Soonhoi

More information

Design and Implementation of Distributed Process Execution Environment

Design and Implementation of Distributed Process Execution Environment Design and Implementation of Distributed Process Execution Environment Project Report Phase 3 By Bhagyalaxmi Bethala Hemali Majithia Shamit Patel Problem Definition: In this project, we will design and

More information

Load balancing; Termination detection

Load balancing; Termination detection Load balancing; Termination detection Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 13, 2014 CPD (DEI / IST) Parallel and Distributed

More information

Module 15: Network Structures

Module 15: Network Structures Module 15: Network Structures Background Topology Network Types Communication Communication Protocol Robustness Design Strategies 15.1 A Distributed System 15.2 Motivation Resource sharing sharing and

More information

Optimization of AODV routing protocol in mobile ad-hoc network by introducing features of the protocol LBAR

Optimization of AODV routing protocol in mobile ad-hoc network by introducing features of the protocol LBAR Optimization of AODV routing protocol in mobile ad-hoc network by introducing features of the protocol LBAR GUIDOUM AMINA University of SIDI BEL ABBES Department of Electronics Communication Networks,

More information

STUDY AND SIMULATION OF A DISTRIBUTED REAL-TIME FAULT-TOLERANCE WEB MONITORING SYSTEM

STUDY AND SIMULATION OF A DISTRIBUTED REAL-TIME FAULT-TOLERANCE WEB MONITORING SYSTEM STUDY AND SIMULATION OF A DISTRIBUTED REAL-TIME FAULT-TOLERANCE WEB MONITORING SYSTEM Albert M. K. Cheng, Shaohong Fang Department of Computer Science University of Houston Houston, TX, 77204, USA http://www.cs.uh.edu

More information

Load Balancing to Save Energy in Cloud Computing

Load Balancing to Save Energy in Cloud Computing presented at the Energy Efficient Systems Workshop at ICT4S, Stockholm, Aug. 2014 Load Balancing to Save Energy in Cloud Computing Theodore Pertsas University of Manchester United Kingdom tpertsas@gmail.com

More information

Load Distribution in Large Scale Network Monitoring Infrastructures

Load Distribution in Large Scale Network Monitoring Infrastructures Load Distribution in Large Scale Network Monitoring Infrastructures Josep Sanjuàs-Cuxart, Pere Barlet-Ros, Gianluca Iannaccone, and Josep Solé-Pareta Universitat Politècnica de Catalunya (UPC) {jsanjuas,pbarlet,pareta}@ac.upc.edu

More information

Load Balancing in Distributed System. Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal

Load Balancing in Distributed System. Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal Load Balancing in Distributed System Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal Objectives of This Module Show the differences between the terms CPU scheduling, Job

More information

Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration

Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration Efficient Scheduling Of On-line Services in Cloud Computing Based on Task Migration 1 Harish H G, 2 Dr. R Girisha 1 PG Student, 2 Professor, Department of CSE, PESCE Mandya (An Autonomous Institution under

More information

An Architecture Model of Sensor Information System Based on Cloud Computing

An Architecture Model of Sensor Information System Based on Cloud Computing An Architecture Model of Sensor Information System Based on Cloud Computing Pengfei You, Yuxing Peng National Key Laboratory for Parallel and Distributed Processing, School of Computer Science, National

More information

Operating System Concepts. Operating System 資 訊 工 程 學 系 袁 賢 銘 老 師

Operating System Concepts. Operating System 資 訊 工 程 學 系 袁 賢 銘 老 師 Lecture 7: Distributed Operating Systems A Distributed System 7.2 Resource sharing Motivation sharing and printing files at remote sites processing information in a distributed database using remote specialized

More information

Load Balancing. Load Balancing 1 / 24

Load Balancing. Load Balancing 1 / 24 Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait

More information

Towards a Load Balancing in a Three-level Cloud Computing Network

Towards a Load Balancing in a Three-level Cloud Computing Network Towards a Load Balancing in a Three-level Cloud Computing Network Shu-Ching Wang, Kuo-Qin Yan * (Corresponding author), Wen-Pin Liao and Shun-Sheng Wang Chaoyang University of Technology Taiwan, R.O.C.

More information

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances:

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances: Scheduling Scheduling Scheduling levels Long-term scheduling. Selects which jobs shall be allowed to enter the system. Only used in batch systems. Medium-term scheduling. Performs swapin-swapout operations

More information

A number of tasks executing serially or in parallel. Distribute tasks on processors so that minimal execution time is achieved. Optimal distribution

A number of tasks executing serially or in parallel. Distribute tasks on processors so that minimal execution time is achieved. Optimal distribution Scheduling MIMD parallel program A number of tasks executing serially or in parallel Lecture : Load Balancing The scheduling problem NP-complete problem (in general) Distribute tasks on processors so that

More information

Simulation Software 1

Simulation Software 1 Simulation Software 1 Introduction The features that should be programmed in simulation are: Generating random numbers from the uniform distribution Generating random variates from any distribution Advancing

More information

Load Balancing in cloud computing

Load Balancing in cloud computing Load Balancing in cloud computing 1 Foram F Kherani, 2 Prof.Jignesh Vania Department of computer engineering, Lok Jagruti Kendra Institute of Technology, India 1 kheraniforam@gmail.com, 2 jigumy@gmail.com

More information

RESEARCH PAPER International Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009

RESEARCH PAPER International Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009 An Algorithm for Dynamic Load Balancing in Distributed Systems with Multiple Supporting Nodes by Exploiting the Interrupt Service Parveen Jain 1, Daya Gupta 2 1,2 Delhi College of Engineering, New Delhi,

More information

Running a Workflow on a PowerCenter Grid

Running a Workflow on a PowerCenter Grid Running a Workflow on a PowerCenter Grid 2010-2014 Informatica Corporation. No part of this document may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise)

More information

A Review on Load Balancing In Cloud Computing 1

A Review on Load Balancing In Cloud Computing 1 www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 4 Issue 6 June 2015, Page No. 12333-12339 A Review on Load Balancing In Cloud Computing 1 Peenaz Pathak, 2 Er.Kamna

More information

Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing

Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Heterogeneous Workload Consolidation for Efficient Management of Data Centers in Cloud Computing Deep Mann ME (Software Engineering) Computer Science and Engineering Department Thapar University Patiala-147004

More information

Dynamic Load Balancing Strategy for Grid Computing

Dynamic Load Balancing Strategy for Grid Computing Dynamic Load Balancing Strategy for Grid Computing Belabbas Yagoubi and Yahya Slimani Abstract Workload and resource management are two essential functions provided at the service level of the grid software

More information

Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information

Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information Continuous Fastest Path Planning in Road Networks by Mining Real-Time Traffic Event Information Eric Hsueh-Chan Lu Chi-Wei Huang Vincent S. Tseng Institute of Computer Science and Information Engineering

More information

AN ADAPTIVE DISTRIBUTED LOAD BALANCING TECHNIQUE FOR CLOUD COMPUTING

AN ADAPTIVE DISTRIBUTED LOAD BALANCING TECHNIQUE FOR CLOUD COMPUTING AN ADAPTIVE DISTRIBUTED LOAD BALANCING TECHNIQUE FOR CLOUD COMPUTING Gurpreet Singh M.Phil Research Scholar, Computer Science Dept. Punjabi University, Patiala gurpreet.msa@gmail.com Abstract: Cloud Computing

More information

Muse Server Sizing. 18 June 2012. Document Version 0.0.1.9 Muse 2.7.0.0

Muse Server Sizing. 18 June 2012. Document Version 0.0.1.9 Muse 2.7.0.0 Muse Server Sizing 18 June 2012 Document Version 0.0.1.9 Muse 2.7.0.0 Notice No part of this publication may be reproduced stored in a retrieval system, or transmitted, in any form or by any means, without

More information

A New Hybrid Load Balancing Algorithm in Grid Computing Systems

A New Hybrid Load Balancing Algorithm in Grid Computing Systems A New Hybrid Load Balancing Algorithm in Grid Computing Systems Leyli Mohammad Khanli 1, Behnaz Didevar 2 1 University of Tabriz, Department of Computer Science, 2 Department of Technical and Engineering,

More information

Chapter 14: Distributed Operating Systems

Chapter 14: Distributed Operating Systems Chapter 14: Distributed Operating Systems Chapter 14: Distributed Operating Systems Motivation Types of Distributed Operating Systems Network Structure Network Topology Communication Structure Communication

More information

CPU Scheduling Outline

CPU Scheduling Outline CPU Scheduling Outline What is scheduling in the OS? What are common scheduling criteria? How to evaluate scheduling algorithms? What are common scheduling algorithms? How is thread scheduling different

More information

Load Balancing In Cloud Computing

Load Balancing In Cloud Computing Load Balancing In Cloud Computing 1 Akash Jain, 2 Ms.Pinal Patel 1 IT System & Network Security 1 Gujarat Technological University, Ahmedabad, India Abstract: Cloud computing can be define as a structured

More information

Fair Scheduling Algorithm with Dynamic Load Balancing Using In Grid Computing

Fair Scheduling Algorithm with Dynamic Load Balancing Using In Grid Computing Research Inventy: International Journal Of Engineering And Science Vol.2, Issue 10 (April 2013), Pp 53-57 Issn(e): 2278-4721, Issn(p):2319-6483, Www.Researchinventy.Com Fair Scheduling Algorithm with Dynamic

More information

Load Balancing Scheduling with Shortest Load First

Load Balancing Scheduling with Shortest Load First , pp. 171-178 http://dx.doi.org/10.14257/ijgdc.2015.8.4.17 Load Balancing Scheduling with Shortest Load First Ranjan Kumar Mondal 1, Enakshmi Nandi 2 and Debabrata Sarddar 3 1 Department of Computer Science

More information

Shareability and Locality Aware Scheduling Algorithm in Hadoop for Mobile Cloud Computing

Shareability and Locality Aware Scheduling Algorithm in Hadoop for Mobile Cloud Computing Shareability and Locality Aware Scheduling Algorithm in Hadoop for Mobile Cloud Computing Hsin-Wen Wei 1,2, Che-Wei Hsu 2, Tin-Yu Wu 3, Wei-Tsong Lee 1 1 Department of Electrical Engineering, Tamkang University

More information

Fuzzy Active Queue Management for Assured Forwarding Traffic in Differentiated Services Network

Fuzzy Active Queue Management for Assured Forwarding Traffic in Differentiated Services Network Fuzzy Active Management for Assured Forwarding Traffic in Differentiated Services Network E.S. Ng, K.K. Phang, T.C. Ling, L.Y. Por Department of Computer Systems & Technology Faculty of Computer Science

More information

Factors to Describe Job Shop Scheduling Problem

Factors to Describe Job Shop Scheduling Problem Job Shop Scheduling Job Shop A work location in which a number of general purpose work stations exist and are used to perform a variety of jobs Example: Car repair each operator (mechanic) evaluates plus

More information

Hierarchical Status Information Exchange Scheduling and Load Balancing For Computational Grid Environments

Hierarchical Status Information Exchange Scheduling and Load Balancing For Computational Grid Environments IJCSNS International Journal of Computer Science and Network Security, VOL.0 No.2, February 200 77 Hierarchical Status Information Exchange Scheduling and Load Balancing For Computational Grid Environments

More information

Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff

Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff Process Scheduling CS 241 February 24, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements Mid-semester feedback survey (linked off web page) MP4 due Friday (not Tuesday) Midterm Next Tuesday,

More information