Virtualization is set to become a key requirement
|
|
|
- Gervais Lawson
- 10 years ago
- Views:
Transcription
1 Xen, the virtual machine monitor The art of virtualization Moshe Bar Virtualization is set to become a key requirement for every server in the data center. This trend is a direct consequence of an industrywide focus on the need to reduce the Total Cost of Operation (TCO) of enterprise computing infrastructure. In spite of the widespread adoption of relatively cheap, industry standard x86-based servers, enterprises have seen costs and complexity escalate rapidly. Virtualization is set to become a key requirement for every server in the data center Today, for every dollar spent on computing hardware, as many as five dollars are spent on lifetime costs support, maintenance, and software licenses. Operating System Virtualization, a concept pioneered by IBM in 1972 on the System 360, has become a key requirement, because it enables server consolidation, allowing multiple operating system and application images to share each server, cutting both hardware and lifetime costs. But virtualization offers many, as yet, unrealized benefits including development, staging and testing, dynamic provisioning, real-time migration, high availability and load balancing. Today s virtualization offerings are crippled by poor performance, lack of scalability, and an inability to offer the fine-grained resource guarantees that are required to provide true application level SLAs, and support dynamic load balancing and high availability. This article introduces Xen, a powerful, free software virtualization technology. Virtualization: the new infrastructure requirement The need for Operating System (OS) level virtualization has arisen as a result of a strange coincidence of market forces. First, enterprise software application architectures have become complex, multi-threaded, multi-process and multi-tiered systems, which are difficult to provision, configure and manage. Second, the adoption of so-called scale-out computing infrastructure based on inexpensive, industry-standard servers, which has led to a proliferation of servers in the data center. Frequently, IT staff provision one application per server, because it s the easiest way to ensure that the application and its configuration state can be isolated from other applications in the data center. Moreover, it provides a simple model for dealing with reliability and servicing if the server fails, only the single application it hosts will fail. If the application must be protected against downtime during server maintenance, or from faults, then it s relatively straightforward to clone the entire state of a server, and copy it to an identical machine that can be brought into service to replace the system that goes offline. Finally, provisioning resources at the server level provides a way to identify the true resource needs of an application. If multiple Free Software Magazine Issue 5, June
2 One App, One Box. On today s servers, one operating system image, together with one application composed of multiple threads and processes, is tied to a single physical server. This leads to higher costs because each physical server requires maintenance and software licenses, and less flexibility because the application load is not matched to the server s capacity, causing over/under utilization Emulated Virtualization. The guest OS is binary-rewritten to let the hypervisor intercept and manage all changes to hardware data structures, causing frequent address space context switches applications share a single server it s difficult to determine the real resource needs of each, and to provision additional resources as needed. Of course, serious drawbacks result from the apparent convenience of tying applications to the physical infrastructure. First, if the application demands less than the full capacity of the server, the CIO will quickly find that most servers are severely under-utilized (typically today, with the incredible capabilities of modern 2- or 4-way servers, utilization figures are about 10-15% per server - Gartner group, August 2004). Serious drawbacks result from the apparent convenience of tying applications to the physical infrastructure Of course, each server consumes a full power load, and therefore requires cooling to match. But it also costs about five times as much to maintain evenly split between the cost of software licenses and the cost of running the server. The net result: proliferation of under-utilized and expensive servers. Finally, the true benefits of scale-out computing are placed firmly out of reach: Easy maintenance, dialup/dial-down provisioning of additional resources in response to the dynamically changing resource requirements of different applications, support for high availability and remote standby and handoff, and an ability to easily develop, test, stage and rapidly provision new applications across distributed data centers are all impossible without the help of OS virtualization. What virtualization enables OS virtualization is achieved by inserting a layer of software between the OS and the underlying server hardware. This layer is responsible for allowing multiple OS images (and their running applications) to share the resources of a single server. Each OS believes that it has the resources of the entire machine under its control, but beneath its feet, the virtualization layer transparently ensures that resources are properly shared between different OS images and their applications. It is important not to confuse OS virtualization with socalled application virtualization, a software technique that in effect bundles all processes, threads and application related state for each different application hosted by an OS, into a virtual container. Application virtualization software vendors, such as Trigence, attempt to provide balanced performance to each virtual container, by applying applicationspecific policies to the OS scheduler. This achieves few of the benefits of true OS virtualization, the least of which is its inability to take advantage of new hardware features for virtualization, and consequently is not considered a serious contender in the data center. In OS virtualization, the virtualization layer (often called the hypervisor or Virtual Machine Monitor (VMM)) must manage all hardware structures, such as page tables, and I/O devices, DMA controllers and the like, to ensure that each OS, when running, sees a consistent underlying hardware 2 Free Software Magazine Issue 5, June 2005
3 layer. Whenever the hypervisor performs a context switch between OS images, it must first preserve any state that the currently running OS will expect to be in place, in the hardware data structures, when its execution is later resumed, and then it must prepare the hardware for the next, incoming OS image. Of course, this comes at a price. The additional overhead that is required to manage all hardware states for the OS, and to present to it an idealized hardware abstraction causes a significant performance overhead. Because many hardware data structures, such as the Translation Lookaside Buffer (TLB), exist to speed up execution within the OS, when these are invalidated on a context switch, performance suffers dramatically because the incoming (newly running) OS image will fault on each page reference until the TLB is refreshed with its state. It is important not to confuse OS virtualization with so-called application virtualization, a software technique that in effect bundles all processes, threads and application related state for each different application hosted by an OS, into a virtual container There is another price too: vendors of virtualization software today charge a hefty premium (multiples of the server cost) for their software, to which must be added the usual OS and application costs. But while today s virtualization products have allowed enterprises to realize significant benefits in the development, testing and QA of n-tier applications, a very high performance hypervisor is a requirement for production-grade server consolidation and to realize the promise of a more dynamic IT infrastructure. Xen, a free software hypervisor, is poised to deliver these benefits, because it outperforms existing hypervisors by an order of magnitude while providing guaranteed service levels to each guest OS. Furthermore, Xen is freely available as free software, and is being broadly supported by major industry players. Xen: the best in virtualization, for free Xen uses a very different technique than the hypervisors available today, namely para-virtualization. In para- Para-virtualization. The guest OS is ported to the Xen virtual hardware interface. All guest OS modifications of hardware data structures are performed via the API. The hypervisor is mapped into the guest OS address space, avoiding a TLB flush on a context switch into the hypervisor. Guest OSes are optimized for virtualization virtualization, the guest OS is ported to an idealized hardware layer, which completely virtualizes all hardware interfaces. When the OS updates hardware data structures, such as the page table, or initiates a DMA operation, it makes calls into an API that is offered by the hypervisor. Xen fulfills the need for an unencumbered virtualization standard, and offers an opportunity to all players to take advantage of the massive trend towards dynamic datacenter management This, in turn, allows the hypervisor to keep track of all changes made by the OS, and to optimally decide how to modify the hardware on any context switch. The hypervisor is mapped into the address space of each guest OS, minimizing the context switch time between any OS and the hypervisor. Finally, by co-operatively working with the guest OSes, the hypervisor gains additional insight into the intentions of the OS, and can make the OS aware of the fact that it has been virtualized. This can be a great advantage to the guest OS for example the hypervisor can tell the guest that real time has passed between its last run, and its present run, permitting it to make smarter re-scheduling decisions to appropriately respond to a rapidly changing environment. Para-virtualization provides significant benefits in terms of Free Software Magazine Issue 5, June
4 device drivers and device interfaces. Essentially, device drivers can be virtualized using a para-virtualization model (by splitting the OS drivers into a top and bottom half), and running the bottom half as a separate domain, with memory, CPU and other resource guarantees. Moreover, the hypervisor itself is protected from bugs and crashes in device drivers, and can make use of any device drivers available on the market. Also, the virtualized OS image is much more portable across hardware, since the low levels of the driver and hardware management are modules that run under control of the hypervisor. The net result is that Xen offers superb performance typically more than an order of magnitude faster than any hypervisor on the market. The drawback of para-virtualization is that the guest OS must be ported to the idealized hardware interface. Of course, this is not an issue with operating systems such as Linux, Free BSD, and Solaris. But for closed source operating systems, a para-virtualized hypervisor must rely on hardware support for virtualization to ensure that the native binary of the guest OS can still share resources with other guest OSes. Xen is a para-virtualizing hypervisor. It relies on one of two approaches to achieve fast virtualization: 1. Hypervisor replicated versions (in memory) of the above state, so that the guest OS is aware it doesn t have full access to and control of the CPU. 2. Hardware based CPU support for multiple guest OSes (replicated stack, task segment structure, GDT and flags) and (in future) support for I/O virtualization. In the first approach, the hypervisor maintains in-memory copies of all hardware state, and transparently effects changes to the hardware data structures on a context switch, to ensure that the incoming guest OS sees consistent hardware state when it resumes operation. Careful management of state is required to ensure that the minimal set of changes is made to the hardware, to maximize efficiency. This is nowhere more important than in management of virtual memory, via the page table and TLB, by both the hypervisor and the ported OS. In the second approach, the Xen hypervisor uses hardware based virtualization technologies such as Intel s Silverdale and Vanderpool Technologies (VT) or AMD s Pacifica. These new capabilities support multiple instances of hardware state, one for each guest OS. Initial versions of this hardware provide CPU support for virtualization, but it is anticipated that in due course these capabilities will be extended into the chipset architectures, to support virtualization of I/O subsystems. When the major chip vendors ship their CPU support for virtualization, Xen will be able to perform even better. Intel s VT, for example, introduces a software-managed TLB and Global Descriptor Table, which removes the need for Xen to replicate and control these structures, and for the OS to support virtualization of the page tables. Virtualization and the promise of utility computing For all the potential benefits of virtualization and utility computing, few enterprises have yet managed to achieve the levels of performance and support for a broad range of software and hardware that they desire. Xen fulfils that need. Xen uses a very different technique than the hypervisors available today, namely para-virtualization With a high performance hypervisor, it will become possible to deliver on many of the key demands of major enterprises for an adaptive, responsive IT architecture. Xen supports a very wide range of hardware platforms, and therefore its guest OSes can run on a wide variety of hardware. Xen will soon support SMP guest operating systems, a key requirement for applications that today run on large SMP machines. Xen also offers a capability for live VM migration, in which a running guest OS, in its virtual machine, is moved to a second machine in a very short time. While existing products on the market today claim live migration as a feature, they typically cause the migrated application to be unresponsive for tens of seconds while it is moved. Under Xen, with a feature that enables copy on write for guest OS pages, the downtime is typically 30-60ms, orders of magnitude faster than available today. With these raw capabilities, Xen is ideally positioned to allow major enterprises to realize the promise of utility computing. Xen moves the level of infrastructure up above the basic hardware, by providing a common, low-level, high 4 Free Software Magazine Issue 5, June 2005
5 Xen s Live Relocation. In a data center, Xen s live relocation capability can be used to move a running guest OS and application from one server to another, to achieve dynamic load balancing. This is done while the guest OS is running, with an almost imperceptible interruption in service for the moved image (about 30-60ms) speed set of execution primitives that can be used to provide a dynamic and responsive computing environment. The need for a free hypervisor Today, several hypervisors are available on the market. None are free, and all are closed and tied into expensive, proprietary software stacks. Hardware vendors, rapidly moving to support virtualization, are naturally unhappy at the potential proliferation of virtualization technologies because it has the potential to slow down adoption. To fully take advantage of current and future virtualization features, the best technology should be widely adopted by the market. In addition, major enterprises want a virtualization layer that is not tied to any one OS, and that offers the best performance. Xen fulfills the need for an unencumbered virtualization standard, and offers an opportunity to all players to take advantage of the massive trend towards dynamic datacenter management. Xen is a free software project, run under the free software community rules. By virtue of its availability, and because it offers the best virtualization technology available, it is a natural candidate for a broadly adopted standard hypervisor. The free software community has embraced Xen as offering both the right technology through its para-virtualization approach and extremely high performance and lack of bias towards any chip architecture, operating system or application vendor. Copyright information (The following license is effective immediately) c by Moshe Bar Verbatim copying and distribution of this entire article is permitted in any medium without royalty provided this notice is preserved. About the author Free software veteran and openmosix Project leader Moshe Bar is a founder and the CTO of XenSource, Inc. Prior to XenSource, Bar co-founded Qlusters, Inc., where he served as CTO, leading the company s technology and product strategy. Previously, Moshe was VP, ERP implementations, at Baan Europe. He is the author of three books on Linux internals and free software development tools, a senior editor at byte.com, a founding research member of Democritos (the Italian national institute for nuclear simulation), and teaches at the UNESCO and U.N. Atomic Agencies. Free Software Magazine Issue 5, June
The XenServer Product Family:
The XenServer Product Family: A XenSource TM White Paper Virtualization Choice for Every Server: The Next Generation of Server Virtualization The business case for virtualization is based on an industry-wide
Full and Para Virtualization
Full and Para Virtualization Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF x86 Hardware Virtualization The x86 architecture offers four levels
COS 318: Operating Systems. Virtual Machine Monitors
COS 318: Operating Systems Virtual Machine Monitors Kai Li and Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Introduction u Have
Uses for Virtual Machines. Virtual Machines. There are several uses for virtual machines:
Virtual Machines Uses for Virtual Machines Virtual machine technology, often just called virtualization, makes one computer behave as several computers by sharing the resources of a single computer between
Virtualization. Jukka K. Nurminen 23.9.2015
Virtualization Jukka K. Nurminen 23.9.2015 Virtualization Virtualization refers to the act of creating a virtual (rather than actual) version of something, including virtual computer hardware platforms,
Virtualization. Dr. Yingwu Zhu
Virtualization Dr. Yingwu Zhu What is virtualization? Virtualization allows one computer to do the job of multiple computers. Virtual environments let one computer host multiple operating systems at the
The Xen of Virtualization
The Xen of Virtualization Assignment for CLC-MIRI Amin Khan Universitat Politècnica de Catalunya March 4, 2013 Amin Khan (UPC) Xen Hypervisor March 4, 2013 1 / 19 Outline 1 Introduction 2 Architecture
Virtualization Technology. Zhiming Shen
Virtualization Technology Zhiming Shen Virtualization: rejuvenation 1960 s: first track of virtualization Time and resource sharing on expensive mainframes IBM VM/370 Late 1970 s and early 1980 s: became
VMware and CPU Virtualization Technology. Jack Lo Sr. Director, R&D
ware and CPU Virtualization Technology Jack Lo Sr. Director, R&D This presentation may contain ware confidential information. Copyright 2005 ware, Inc. All rights reserved. All other marks and names mentioned
Enterprise-Class Virtualization with Open Source Technologies
Enterprise-Class Virtualization with Open Source Technologies Alex Vasilevsky CTO & Founder Virtual Iron Software June 14, 2006 Virtualization Overview Traditional x86 Architecture Each server runs single
Chapter 16: Virtual Machines. Operating System Concepts 9 th Edition
Chapter 16: Virtual Machines Silberschatz, Galvin and Gagne 2013 Chapter 16: Virtual Machines Overview History Benefits and Features Building Blocks Types of Virtual Machines and Their Implementations
The Art of Virtualization with Free Software
Master on Free Software 2009/2010 {mvidal,jfcastro}@libresoft.es GSyC/Libresoft URJC April 24th, 2010 (cc) 2010. Some rights reserved. This work is licensed under a Creative Commons Attribution-Share Alike
Understanding Full Virtualization, Paravirtualization, and Hardware Assist. Introduction...1 Overview of x86 Virtualization...2 CPU Virtualization...
Contents Introduction...1 Overview of x86 Virtualization...2 CPU Virtualization...3 The Challenges of x86 Hardware Virtualization...3 Technique 1 - Full Virtualization using Binary Translation...4 Technique
IOS110. Virtualization 5/27/2014 1
IOS110 Virtualization 5/27/2014 1 Agenda What is Virtualization? Types of Virtualization. Advantages and Disadvantages. Virtualization software Hyper V What is Virtualization? Virtualization Refers to
Virtualization benefits Introduction to XenSource How Xen is changing virtualization The Xen hypervisor architecture Xen paravirtualization
www.xensource.com Virtualization benefits Introduction to XenSource How Xen is changing virtualization The Xen hypervisor architecture Xen paravirtualization Interoperable virtualization The XenEnterprise*
COM 444 Cloud Computing
COM 444 Cloud Computing Lec 3: Virtual Machines and Virtualization of Clusters and Datacenters Prof. Dr. Halûk Gümüşkaya [email protected] [email protected] http://www.gumuskaya.com Virtual
Chapter 14 Virtual Machines
Operating Systems: Internals and Design Principles Chapter 14 Virtual Machines Eighth Edition By William Stallings Virtual Machines (VM) Virtualization technology enables a single PC or server to simultaneously
Hardware Based Virtualization Technologies. Elsie Wahlig [email protected] Platform Software Architect
Hardware Based Virtualization Technologies Elsie Wahlig [email protected] Platform Software Architect Outline What is Virtualization? Evolution of Virtualization AMD Virtualization AMD s IO Virtualization
Virtualization. Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/
Virtualization Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/ What is Virtualization? Virtualization is the simulation of the software and/ or hardware upon which other software runs. This
Virtualization for Cloud Computing
Virtualization for Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF CLOUD COMPUTING On demand provision of computational resources
International Journal of Advancements in Research & Technology, Volume 1, Issue6, November-2012 1 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 1, Issue6, November-2012 1 VIRTUALIZATION Vikas Garg Abstract: The main aim of the research was to get the knowledge of present trends
Parallels Virtuozzo Containers
Parallels Virtuozzo Containers White Paper Top Ten Considerations For Choosing A Server Virtualization Technology www.parallels.com Version 1.0 Table of Contents Introduction... 3 Technology Overview...
Virtualization. Types of Interfaces
Virtualization Virtualization: extend or replace an existing interface to mimic the behavior of another system. Introduced in 1970s: run legacy software on newer mainframe hardware Handle platform diversity
Virtualization. ! Physical Hardware. ! Software. ! Isolation. ! Software Abstraction. ! Encapsulation. ! Virtualization Layer. !
Starting Point: A Physical Machine Virtualization Based on materials from: Introduction to Virtual Machines by Carl Waldspurger Understanding Intel Virtualization Technology (VT) by N. B. Sahgal and D.
OPEN SOURCE VIRTUALIZATION TRENDS. SYAMSUL ANUAR ABD NASIR Warix Technologies / Fedora Community Malaysia
OPEN SOURCE VIRTUALIZATION TRENDS SYAMSUL ANUAR ABD NASIR Warix Technologies / Fedora Community Malaysia WHAT I WILL BE TALKING ON? Introduction to Virtualization Full Virtualization, Para Virtualization
Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies
Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies Kurt Klemperer, Principal System Performance Engineer [email protected] Agenda Session Length:
Virtual Machine Monitors. Dr. Marc E. Fiuczynski Research Scholar Princeton University
Virtual Machine Monitors Dr. Marc E. Fiuczynski Research Scholar Princeton University Introduction Have been around since 1960 s on mainframes used for multitasking Good example VM/370 Have resurfaced
Developing a dynamic, real-time IT infrastructure with Red Hat integrated virtualization
Developing a dynamic, real-time IT infrastructure with Red Hat integrated virtualization www.redhat.com Table of contents Introduction Page 3 Benefits of virtualization Page 3 Virtualization challenges
Virtual machines and operating systems
V i r t u a l m a c h i n e s a n d o p e r a t i n g s y s t e m s Virtual machines and operating systems Krzysztof Lichota [email protected] A g e n d a Virtual machines and operating systems interactions
Virtual Machines. COMP 3361: Operating Systems I Winter 2015 http://www.cs.du.edu/3361
s COMP 3361: Operating Systems I Winter 2015 http://www.cs.du.edu/3361 1 Virtualization! Create illusion of multiple machines on the same physical hardware! Single computer hosts multiple virtual machines
The Benefits of Virtualizing Citrix XenApp with Citrix XenServer
White Paper The Benefits of Virtualizing Citrix XenApp with Citrix XenServer This white paper will discuss how customers can achieve faster deployment, higher reliability, easier management, and reduced
WHITE PAPER Mainstreaming Server Virtualization: The Intel Approach
WHITE PAPER Mainstreaming Server Virtualization: The Intel Approach Sponsored by: Intel John Humphreys June 2006 Tim Grieser IDC OPINION Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.872.8200
I/O Virtualization Using Mellanox InfiniBand And Channel I/O Virtualization (CIOV) Technology
I/O Virtualization Using Mellanox InfiniBand And Channel I/O Virtualization (CIOV) Technology Reduce I/O cost and power by 40 50% Reduce I/O real estate needs in blade servers through consolidation Maintain
Lecture 2 Cloud Computing & Virtualization. Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu
Lecture 2 Cloud Computing & Virtualization Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu Outline Introduction to Virtualization The Major Approaches
Data Centers and Cloud Computing
Data Centers and Cloud Computing CS377 Guest Lecture Tian Guo 1 Data Centers and Cloud Computing Intro. to Data centers Virtualization Basics Intro. to Cloud Computing Case Study: Amazon EC2 2 Data Centers
Microkernels, virtualization, exokernels. Tutorial 1 CSC469
Microkernels, virtualization, exokernels Tutorial 1 CSC469 Monolithic kernel vs Microkernel Monolithic OS kernel Application VFS System call User mode What was the main idea? What were the problems? IPC,
COS 318: Operating Systems. Virtual Machine Monitors
COS 318: Operating Systems Virtual Machine Monitors Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall10/cos318/ Introduction Have been around
Satish Mohan. Head Engineering. AMD Developer Conference, Bangalore
Satish Mohan Head Engineering AMD Developer Conference, Bangalore Open source software Allows developers worldwide to collaborate and benefit. Strategic elimination of vendor lock in OSS naturally creates
Models For Modeling and Measuring the Performance of a Xen Virtual Server
Measuring and Modeling the Performance of the Xen VMM Jie Lu, Lev Makhlis, Jianjiun Chen BMC Software Inc. Waltham, MA 2451 Server virtualization technology provides an alternative for server consolidation
Chapter 5 Cloud Resource Virtualization
Chapter 5 Cloud Resource Virtualization Contents Virtualization. Layering and virtualization. Virtual machine monitor. Virtual machine. Performance and security isolation. Architectural support for virtualization.
Virtualization Overview
VMWARE W HWHITE I T E PPAPER A P E R Virtualization Overview 1 Table of Contents Introduction... 3 Virtualization in a Nutshell... 3 Virtualization Approaches... 4 Virtualization for Server Consolidation
Virtualization. Introduction to Virtualization Virtual Appliances Benefits to Virtualization Example Virtualization Products
Virtualization Originally prepared by Greg Bosch; last modified April 2012 by B. Davison I. Introduction to Virtualization II. Virtual Appliances III. Benefits to Virtualization IV. Example Virtualization
nanohub.org An Overview of Virtualization Techniques
An Overview of Virtualization Techniques Renato Figueiredo Advanced Computing and Information Systems (ACIS) Electrical and Computer Engineering University of Florida NCN/NMI Team 2/3/2006 1 Outline Resource
CPET 581 Cloud Computing: Technologies and Enterprise IT Strategies. Virtualization of Clusters and Data Centers
CPET 581 Cloud Computing: Technologies and Enterprise IT Strategies Lecture 4 Virtualization of Clusters and Data Centers Text Book: Distributed and Cloud Computing, by K. Hwang, G C. Fox, and J.J. Dongarra,
Distributed and Cloud Computing
Distributed and Cloud Computing K. Hwang, G. Fox and J. Dongarra Chapter 3: Virtual Machines and Virtualization of Clusters and datacenters Adapted from Kai Hwang University of Southern California March
Introduction to Virtual Machines
Introduction to Virtual Machines Carl Waldspurger (SB SM 89, PhD 95), VMware R&D 2010 VMware Inc. All rights reserved Overview Virtualization and VMs Processor Virtualization Memory Virtualization I/O
Hypervisors. Introduction. Introduction. Introduction. Introduction. Introduction. Credits:
Hypervisors Credits: P. Chaganti Xen Virtualization A practical handbook D. Chisnall The definitive guide to Xen Hypervisor G. Kesden Lect. 25 CS 15-440 G. Heiser UNSW/NICTA/OKL Virtualization is a technique
www.see-grid-sci.eu Regional SEE-GRID-SCI Training for Site Administrators Institute of Physics Belgrade March 5-6, 2009
SEE-GRID-SCI Virtualization and Grid Computing with XEN www.see-grid-sci.eu Regional SEE-GRID-SCI Training for Site Administrators Institute of Physics Belgrade March 5-6, 2009 Milan Potocnik University
Virtualization: What does it mean for SAS? Karl Fisher and Clarke Thacher, SAS Institute Inc., Cary, NC
Paper 347-2009 Virtualization: What does it mean for SAS? Karl Fisher and Clarke Thacher, SAS Institute Inc., Cary, NC ABSTRACT SAS groups virtualization into four categories: Hardware Virtualization,
Servervirualisierung mit Citrix XenServer
Servervirualisierung mit Citrix XenServer Paul Murray, Senior Systems Engineer, MSG EMEA Citrix Systems International GmbH [email protected] Virtualization Wave is Just Beginning Only 6% of x86
Basics of Virtualisation
Basics of Virtualisation Volker Büge Institut für Experimentelle Kernphysik Universität Karlsruhe Die Kooperation von The x86 Architecture Why do we need virtualisation? x86 based operating systems are
Networking for Caribbean Development
Networking for Caribbean Development BELIZE NOV 2 NOV 6, 2015 w w w. c a r i b n o g. o r g Virtualization: Architectural Considerations and Implementation Options Virtualization Virtualization is the
Virtualization. 2010 VMware Inc. All rights reserved
Virtualization Based on materials from: Introduction to Virtual Machines by Carl Waldspurger Understanding Intel Virtualization Technology (VT) by N. B. Sahgal and D. Rodgers Intel Virtualization Technology
APPLICATION OF SERVER VIRTUALIZATION IN PLATFORM TESTING
APPLICATION OF SERVER VIRTUALIZATION IN PLATFORM TESTING Application testing remains a complex endeavor as Development and QA managers need to focus on delivering projects on schedule, controlling costs,
Parallels Virtuozzo Containers vs. VMware Virtual Infrastructure:
Parallels Virtuozzo Containers vs. VMware Virtual Infrastructure: An Independent Architecture Comparison TABLE OF CONTENTS Introduction...3 A Tale of Two Virtualization Solutions...5 Part I: Density...5
Virtualization and the U2 Databases
Virtualization and the U2 Databases Brian Kupzyk Senior Technical Support Engineer for Rocket U2 Nik Kesic Lead Technical Support for Rocket U2 Opening Procedure Orange arrow allows you to manipulate the
Distributed Systems. Virtualization. Paul Krzyzanowski [email protected]
Distributed Systems Virtualization Paul Krzyzanowski [email protected] Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 License. Virtualization
Intel s Virtualization Extensions (VT-x) So you want to build a hypervisor?
Intel s Virtualization Extensions (VT-x) So you want to build a hypervisor? Mr. Jacob Torrey February 26, 2014 Dartmouth College 153 Brooks Road, Rome, NY 315.336.3306 http://ainfosec.com @JacobTorrey
Virtualizing Exchange
Virtualizing Exchange Simplifying and Optimizing Management of Microsoft Exchange Server Using Virtualization Technologies By Anil Desai Microsoft MVP September, 2008 An Alternative to Hosted Exchange
HRG Assessment: Stratus everrun Enterprise
HRG Assessment: Stratus everrun Enterprise Today IT executive decision makers and their technology recommenders are faced with escalating demands for more effective technology based solutions while at
Xen and the Art of. Virtualization. Ian Pratt
Xen and the Art of Virtualization Ian Pratt Keir Fraser, Steve Hand, Christian Limpach, Dan Magenheimer (HP), Mike Wray (HP), R Neugebauer (Intel), M Williamson (Intel) Computer Laboratory Outline Virtualization
Hypervisors and Virtual Machines
Hypervisors and Virtual Machines Implementation Insights on the x86 Architecture DON REVELLE Don is a performance engineer and Linux systems/kernel programmer, specializing in high-volume UNIX, Web, virtualization,
Virtualizare sub Linux: avantaje si pericole. Dragos Manac
Virtualizare sub Linux: avantaje si pericole Dragos Manac 1 Red Hat Enterprise Linux 5 Virtualization Major Hypervisors Xen: University of Cambridge Computer Laboratory Fully open sourced Set of patches
An Oracle White Paper November 2010. Oracle Real Application Clusters One Node: The Always On Single-Instance Database
An Oracle White Paper November 2010 Oracle Real Application Clusters One Node: The Always On Single-Instance Database Executive Summary... 1 Oracle Real Application Clusters One Node Overview... 1 Always
Enabling Technologies for Distributed Computing
Enabling Technologies for Distributed Computing Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF Multi-core CPUs and Multithreading Technologies
RPM Brotherhood: KVM VIRTUALIZATION TECHNOLOGY
RPM Brotherhood: KVM VIRTUALIZATION TECHNOLOGY Syamsul Anuar Abd Nasir Fedora Ambassador Malaysia 1 ABOUT ME Technical Consultant for Warix Technologies - www.warix.my Warix is a Red Hat partner Offers
Parallels Virtuozzo Containers
Parallels Virtuozzo Containers White Paper Greener Virtualization www.parallels.com Version 1.0 Greener Virtualization Operating system virtualization by Parallels Virtuozzo Containers from Parallels is
kvm: Kernel-based Virtual Machine for Linux
kvm: Kernel-based Virtual Machine for Linux 1 Company Overview Founded 2005 A Delaware corporation Locations US Office Santa Clara, CA R&D - Netanya/Poleg Funding Expertise in enterprise infrastructure
Optimizing Network Virtualization in Xen
Optimizing Network Virtualization in Xen Aravind Menon EPFL, Switzerland Alan L. Cox Rice university, Houston Willy Zwaenepoel EPFL, Switzerland Abstract In this paper, we propose and evaluate three techniques
KVM: A Hypervisor for All Seasons. Avi Kivity [email protected]
KVM: A Hypervisor for All Seasons Avi Kivity [email protected] November 2007 Virtualization Simulation of computer system in software Components Processor: register state, instructions, exceptions Memory
Hybrid Virtualization The Next Generation of XenLinux
Hybrid Virtualization The Next Generation of XenLinux Jun Nakajima Principal Engineer Intel Open Source Technology Center Legal Disclaimer INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL
Windows Server 2008 R2 Hyper-V Live Migration
Windows Server 2008 R2 Hyper-V Live Migration White Paper Published: August 09 This is a preliminary document and may be changed substantially prior to final commercial release of the software described
Comparing Free Virtualization Products
A S P E I T Tr a i n i n g Comparing Free Virtualization Products A WHITE PAPER PREPARED FOR ASPE BY TONY UNGRUHE www.aspe-it.com toll-free: 877-800-5221 Comparing Free Virtualization Products In this
The future is in the management tools. Profoss 22/01/2008
The future is in the management tools Profoss 22/01/2008 Niko Nelissen Co founder & VP Business development Q layer Agenda Introduction Virtualization today Server & desktop virtualization Storage virtualization
Virtual Computing and VMWare. Module 4
Virtual Computing and VMWare Module 4 Virtual Computing Cyber Defense program depends on virtual computing We will use it for hands-on learning Cyber defense competition will be hosted on a virtual computing
Virtual Machines. www.viplavkambli.com
1 Virtual Machines A virtual machine (VM) is a "completely isolated guest operating system installation within a normal host operating system". Modern virtual machines are implemented with either software
Cloud Computing #6 - Virtualization
Cloud Computing #6 - Virtualization Main source: Smith & Nair, Virtual Machines, Morgan Kaufmann, 2005 Today What do we mean by virtualization? Why is it important to cloud? What is the penalty? Current
Deputy Secretary for Information Technology Date Issued: November 20, 2009 Date Revised: December 20, 2010. Revision History Description:
Information Technology Policy Commonwealth of Pennsylvania Governor's Office of Administration/Office for Information Technology ITP Number: ITP-SYM008 ITP Title: Server Virtualization Policy Issued by:
Optimizing Network Virtualization in Xen
Optimizing Network Virtualization in Xen Aravind Menon EPFL, Lausanne [email protected] Alan L. Cox Rice University, Houston [email protected] Willy Zwaenepoel EPFL, Lausanne [email protected]
Analysis on Virtualization Technologies in Cloud
Analysis on Virtualization Technologies in Cloud 1 V RaviTeja Kanakala, V.Krishna Reddy, K.Thirupathi Rao 1 Research Scholar, Department of CSE, KL University, Vaddeswaram, India I. Abstract Virtualization
Windows Server 2008 R2 Hyper-V Live Migration
Windows Server 2008 R2 Hyper-V Live Migration Table of Contents Overview of Windows Server 2008 R2 Hyper-V Features... 3 Dynamic VM storage... 3 Enhanced Processor Support... 3 Enhanced Networking Support...
How To Understand The Power Of A Virtual Machine Monitor (Vm) In A Linux Computer System (Or A Virtualized Computer)
KVM - The kernel-based virtual machine Timo Hirt [email protected] 13. Februar 2010 Abstract Virtualization has been introduced in the 1960s, when computing systems were large and expensive to operate. It
Virtualization. Explain how today s virtualization movement is actually a reinvention
Virtualization Learning Objectives Explain how today s virtualization movement is actually a reinvention of the past. Explain how virtualization works. Discuss the technical challenges to virtualization.
Enhanced Virtualization on Intel Architecturebased
White Paper Server Virtualization on Intel Architecture Enhanced Virtualization on Intel Architecturebased Servers Improve Utilization, Manage Change, Reduce Costs Server virtualization on Intel processor-based
9/26/2011. What is Virtualization? What are the different types of virtualization.
CSE 501 Monday, September 26, 2011 Kevin Cleary [email protected] What is Virtualization? What are the different types of virtualization. Practical Uses Popular virtualization products Demo Question,
Multi-core Programming System Overview
Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,
Virtualization and Other Tricks.
Virtualization and Other Tricks. Pavel Parízek, Tomáš Kalibera, Peter Libič DEPARTMENT OF DISTRIBUTED AND DEPENDABLE SYSTEMS http://d3s.mff.cuni.cz CHARLES UNIVERSITY PRAGUE Faculty of Mathematics and
Virtualization Technologies (ENCS 691K Chapter 3)
Virtualization Technologies (ENCS 691K Chapter 3) Roch Glitho, PhD Associate Professor and Canada Research Chair My URL - http://users.encs.concordia.ca/~glitho/ The Key Technologies on Which Cloud Computing
Server Virtualization and Consolidation
Server Virtualization and Consolidation An Ideal cost effective solution to maximize your Return on Investment of your organization's hardware infrastructure It is quit evident today that Business owners,
solution brief September 2011 Can You Effectively Plan For The Migration And Management of Systems And Applications on Vblock Platforms?
solution brief September 2011 Can You Effectively Plan For The Migration And Management of Systems And Applications on Vblock Platforms? CA Capacity Management and Reporting Suite for Vblock Platforms
Enabling Technologies for Distributed and Cloud Computing
Enabling Technologies for Distributed and Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF Multi-core CPUs and Multithreading
How To Make A Virtual Machine Aware Of A Network On A Physical Server
VMready Virtual Machine-Aware Networking White Paper Table of Contents Executive Summary... 2 Current Server Virtualization Environments... 3 Hypervisors... 3 Virtual Switches... 3 Leading Server Virtualization
