Application of Advanced CFD Technology to Energy-Saving Hull form Development
|
|
|
- Brittney Baldwin
- 10 years ago
- Views:
Transcription
1 50 Application of Advanced CFD Technology to Energy-Saving Hull form Development MAKOTO NISHIGAKI *1 MAKOTO KAWABUCHI *2 SATORU ISHIKAWA *3 Due to the advancement of computational fluid dynamics (CFD) technology, CFD can cope with many cases of hull form development. Mitsubishi Heavy Industries, Ltd. (MHI) evaluates hull resistance and propulsive efficiency using the most of the latest CFD technology, which can be robustly applied to wave-making computation in consideration of free surface against complex forms of hulls and appendages, as well as propeller-considered self-propulsion computation at a high degree of accuracy and speed, while deriving refinements for forms of hulls and appendages from information such as the circumstances of waves created by the hull and flow around the hull. We will continue to use such technologies to further improve the energy-saving performance of vessels. 1. Introduction While CFD technology is making remarkable progress, in a bid to be effectively applied to developing energy-saving hull forms, it is an important factor, as well as to have an estimated accuracy sufficient to derive refinements, to be able to quickly generate grids so that performance can be evaluated for complex forms of actual ships, to be able to robustly correspond to analyses including free surface and to be able to perform large-scale grid and numerous computations at a high speed. Using the latest CFD software and large-scale parallel computers that meet these goals, MHI is performing wave-making and self-propulsion computations to promote energy-saving hull form development, which is introduced in this report with examples. 2. Computing method 2.1 Wave-making computation Optimization in the shape of stern edge is essential for the development of energy-saving hull forms, as it seriously affects the properties of stern wave-making and consequently the ship s propulsive performance. With the existing CFD method for free surface flow using structured grids and the surface tracking method, in which grids are transformed in accordance with changes in the water surface, CFD was not fully used to actually design the stern edge form, since the expert knowledge/time required for grid generation as well as the robustness of the computation was limited As a result, MHI has been shifting to unstructured grids and the surface capturing method, in which grids are fixed and free surface analysis uses a density function, with the aim of establishing a more robust computing method. As unstructured hexahedral grid technology advanced, it is now likely that high-quality grids can be generated in a short time, even for complex geometries. As for the surface capturing method, it is also likely that robust wave patterns can be acquired at a high degree of accuracy as multi-purpose CFD code technology advanced. Previously, the number of grids has been limited due to computing capability, resulting in *1 Chief Staff Manager, Nagasaki Research & Development Center, Technology & Innovation Headquarters *2 Nagasaki Research & Development Center, Technology & Innovation Headquarters *3 Senior Manager, Nagasaki Research & Development Center, Technology & Innovation Headquarters
2 rough grids in areas distant from the hull and dense grids only in areas close to the hull, and we have been striving to reduce wave-making resistance caused by the divergence wave ( 八 -shaped wave) splitting from the bow, setting the wave profiles as a major evaluation index. However, to perform more accurate computing, it is desirable to expand the range of grid fragmentation, and when reviewing the stern form in particular, we expanded the range of grid fragmentation around the free surface in the rear part of the hull as well, as the state of transverse waves there will also matter. Because the automatic mesh generator is used to generate unstructured grid, factors such as the number of grids in the corresponding parts are not fully fixed between the two hull forms being compared, unlike in the structured grid. To prevent grids from affecting computing results, the number of grid compartments has to be increased more than in the structured grid. Considering these factors, the number of grids was increased from the previous hundreds of thousands level to the million to tens of millions level. Table 1 shows a comparison of the existing CFD and the latest CFD computing methods, while Figure 1 shows an example of computed grid comparisons around the stern and Figure 2 shows a comparison of computing results. It can be seen that the latest CFD can capture a broad range of wave-making circumstances, while truly reflecting the stern form and sharply increasing the number of grids. 51 Table 1 Comparison of previous CFD and latest CFD methods Previous CFD Latest CFD Treatment of stern shape Modified or simplified to ensure Complex geometry truly stable computing accounted for Grid type Structured grid Unstructured hexahedral grid Treatment of free surface in wave-making computation Surface tracking method 1) Surface capturing method 2) (VOF ) Grid number Hundreds of thousands Millions to tens of millions Propeller model in self-propulsion computing Body force model by UQCM 4) Body force model by UQCM 4) Turbulence model Number of CPUs used in parallel computing SR222 revised Baldwin Lomax model (0 equation) SST k-ω (2 equation) ) Method that transforms grids in accordance with changes in free surface 2) Surface capturing method: A method to analyze free surface by density functions using fixed grids 3) VOF: Volume of Fluid 4) UQCM: Unsteady Quasi-Continuous Method Figure 1 Comparison of wave-making computation grid using previous CFD (left) and latest CFD (right) (RoRo vessel) While the transom was extended and the stern tube was curled to ensure computing stability with the previous CFD using a structured grid, stern geometry is truly reflected and the number of grids is greatly increased with the latest CFD using unstructured hexahedral grids. Figure 2 Comparison of wave-making computation results by previous CFD (left) and latest CFD (right) (KRISO container ship) The latest CFD captures the wave extending obliquely backward from the bow and the stern in a wide range. Figure 3 shows an example of comparisons between an experiment and the wave pattern computing results using the latest CFD, in which the positions and heights of longitudinal and transverse waves were mostly in agreement between the experiment and CFD.
3 52 Figure 3 Comparison of wave pattern experiment and CFD (ferry) Red and blue represent high and low wave heights, respectively, in this contour map. Position and height of divergence waves and transverse waves are largely in agreement between experiment and CFD. Figure 4 shows a comparison of local wave-making circumstances near the stern with a photo. The form of wave-making captured by CFD agrees with the experiment result on the side edges at the end of the stern. Figure 4 Comparison with experiment photo of wave-making around stern (ferry) This shows a comparison of CFD (bottom left) and model experiment (top: photo, bottom right: measuring result) of the local wave circumstances behind the stern of a ferry. The form of waves extending obliquely backward from both corners of the stern agrees in CFD and experiment (red dot-lines in figures below), which looks white in the experiment photo. 2.2 Self-propulsion computing MHI has evaluated the effect of propeller inlet flow by incorporating the UQCM (Unsteady Quasi-Continuous Method) propeller computing method as a body force propeller model. We performed self-propulsion computing by incorporating the same method with the multi-purpose CFD code. In addition, we performed this self-propulsion computing without taking free surface into consideration (in symmetrical condition) due to issues concerning the stability and computing time. So, computed grids are different from those created by wave-making computation. Like wave-making computation, however, we used an unstructured hexahedral grid and truly reflected the complex geometries in front of and behind the propeller. As developed boundary-layer flow enters the spaces in front of and behind the propeller, we tried to increase the accuracy by increasing the grid density higher than usual in these areas. The number of grids reached the millions, one order larger than in other areas, by parallel computing using multi-purpose codes. Figure 5 shows the estimate accuracy of self-propulsion factors (t: thrust deduction coefficient and wm: wake fraction) computed by the aforementioned self-propulsion computing method. Challenges remain in the estimate accuracy, with the wm computed by CFD generally indicating lower figures than those acquired from basin experiments, for example. Accordingly, we are currently estimating self-propulsion performance by always comparing CFD results with experimental results. We will continue to improve the method and leverage the results for improving a stern form that boasts superior self-propulsion performance.
4 53 Figure 5 Estimate accuracy of self-propulsion computing using body force propeller model The thrust deduction coefficient (t) and wake fraction (wm), which are self-propulsive factors, exhibit good mutuality between the experiment and CFD. Given a few challenges including the smaller wm evaluation than in the experiment, estimation is always carried out in comparison with experimental results. 3. Computing examples To develop energy-saving hull forms using the computing method mentioned above, analysis of the flow around the hull is very important. In this section, we will explain the accuracy of flow evaluation using three examples, namely the review of improvement in the stern edge shape using the stern wave height evaluation, flow field evaluation for twin-skeg hull forms and flow field evaluation of the propeller plane behind the shaft bracket, all of which have been difficult using existing CFD computing. 3.1 Evaluation of stern wave pattern Figure 6 is a contour map of a wave pattern by CFD computing for the hull of a high-speed ship before and after improving the stern edge shape. As a result of hull form improvement, waves were lowered immediately behind the stern edge and posterior. Figure 7 shows a comparison of residual resistance in the experiment and CFD computation on these two hull forms, which exhibit the accuracy of CFD computing showing that the hull form improvement resulted in lower residual resistance. Figure 6 CFD comparison of stern wave heights before and after improvement in stern edge shape (ferry) This shows that the wave heights behind the stern are lowered as a result of the improvement in the stern edge shape. Figure 7 Resistance reduced by different stern edge shapes (ferry) This shows CFD also captures resistance reduced in a broad range by improvements in the shape of the stern edge.
5 3.2 Evaluation of flow field of twin-skeg hull form When developing a twin-skeg hull form as shown in Figure 8, evaluating the asymmetric nature of the flow field inside and outside of the skegs becomes important. Shown in the same Figure 8 is a comparison of flow lines between the skegs acquired by paint testing and CFD computing, and the position and forms of the flow separation line, which can be observed in both results, are similar to each other. 54 In the paint test, in which white paint coated on the model ship extends like numerous threads in the direction of the flow, the paint did not extend between the skegs above the red dot-lines in the figure, indicating flow is breaking away in this area. CFD also shows a state where flow focuses on this area and forms a separation line (however, flow lines can be still seen above the separation line as CFD indicates flow lines even when they are slow). Figure 8 Twin-skeg Hull Form and Flow between Skegs Figure 9 shows a comparison of the flow field on the propeller plane on the port side. A strong upflow can be confirmed between the skegs, while inward flow from outer side is generated down below, making the wake at the bottom edge of the skegs flow inward. CFD also captured these characteristic flow trends. In this manner, CFD computing can efficiently evaluate flow field circumstances in detail, even when it is such a complex stern form such as a twin-skeg, and lead to further hull form improvement using this flow field information as a reference. Figure 9 Flow field on propeller plane of twin-skeg hull (left propeller) The bluer the contour map is, the faster the relative flow rate is against the hull. The upflow strengthens between the skegs. Inward flow from outer side down below is making the slow zone behind the skeg flow inward. CFD captures these circumstances as well. 3.3 Evaluation of flow field on propeller plane behind shaft brackets Figure 10 shows the pressure pattern of a hull form embedded with shaft brackets and the propeller plane flow field behind the shaft brackets. In the flow field on the propeller plane, a total of three wakes including that of shaft itself between the wakes of the two brackets can be seen, and this property of the flow field is captured by CFD computing.
6 55 Figure 10 Shaft bracket-embedded hull form s pressure pattern and flow field on propeller plane (left propeller) A total of three relatively slow zones are generated in the lower course of the shaft itself and two brackets by upward and inward flow seen in the flow field vectors on the propeller planes, which is also captured by CFD. 4. Conclusion MHI established a practical CFD method that can evaluate the effect of a complex hull form near the stern or appendages on a ship s performance and flow fields, which are significant factors when developing an energy-saving vessel, by using the latest CFD technology capable of large scale unstructured grids (hexahedral grids) on a scale of millions to tens of millions, as well as robust free surface analyses and high-speed computing based on parallel computers. We are improving the energy-saving performance by applying this method to evaluating wave patterns, the flow field of the twin-skeg hull form and the propeller plane flow field behind the shaft bracket, etc,, which have been difficult to evaluate, in order to derive refinements from the flow field information. From now on, MHI will continue to establish a design method considering scale effect and ship resistance waves, focusing on ship performance in actual seas. Reference 1. Takada et al., Journal of The Japan Institute of Marine Engineering No. 197 (2002) p.63
Application of CFD in connection with ship design
DANSIS meeting Lyngby, 13 May 2009 Application of CFD in connection with ship design www.force.dk Background Method Examples Summary Claus Daniel Simonsen FORCE Technology Background When a ship, which
CFD ANALYSIS OF CONTROLLABLE PITCH PROPELLER USED IN MARINE VEHICLE
CFD ANALYSIS OF CONROLLABLE PICH PROPELLER USED IN MARINE VEHICLE Aditya Kolakoti 1,.V.K.Bhanuprakash 2 & H.N.Das 3 1 M.E in Marine Engineering And Mechanical Handling, Dept of Marine Engineering, Andhra
Multiphase Flow - Appendices
Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume
How To Optimise A Boat'S Hull
Hull form optimisation with Computational Fluid Dynamics Aurélien Drouet, Erwan Jacquin, Pierre-Michel Guilcher Overview Context Software Bulbous bow optimisation Conclusions/perspectives Page 2 HydrOcean
Computational Modeling of Wind Turbines in OpenFOAM
Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi [email protected] ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational
Numerical Simulation of the External Flow Field. Around a Bluff Car*
Numerical Simulation of the External Flow Field Around a Bluff Car* Sun Yongling, Wu Guangqiang, Xieshuo Automotive Engineering Department Shanghai Tongji University Shanghai, China E-mail: [email protected]
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749
FINE TM /Marine. CFD Suite for Marine Applications. Advanced Development for Better Products. www.numeca.com
FINE TM /Marine CFD Suite for Marine Applications Advanced Development for Better Products www.numeca.com FINE TM /Marine FINE /Marine is a unique integrated CFD software environment for the simulation
AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL
14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski
3. Resistance of a Ship 3.2 Estimates based on statistical methods
In the preliminary stages of ship design, the resistance coefficient is estimated with approximate methods based on systematic series or statistical regressions to experimental data. A systematic series
Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine
HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
Marine CFD applications using OpenFOAM
Marine CFD applications using OpenFOAM Andrea Penza, CINECA 27/03/2014 Contents Background at CINECA: LRC experience CFD skills Automatic workflow Reliability workflow OpenFOAM solvers for marine CFD analysis
CFD modelling of floating body response to regular waves
CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table
The INSEAN E779a Propeller Test Case: a Database For CFD Validation
The INSEAN E779a Propeller Test Case: a Database For CFD Validation G.Calcagno,F. Di Felice, M. Felli,S. Franchi, F.Pereira, F.Salvatore INSEAN (Italian Ship Model Basin), via di Vallerano 139, 00128 Rome,
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry
THE ROYAL INSTITUTION OF NAVAL ARCHITECTS
THE ROYAL INSTITUTION OF NAVAL ARCHITECTS APPLICATION OF OpenFOAM TO HULL FORM OPTIMISATION AT STX France S Cordier, L Morand, J-M Roux, STX France S.A., Fr, and E Cortey, CFD-Numerics, Fr SUMMARY After
Resistance & Propulsion (1) MAR 2010. Presentation of ships wake
Resistance & Propulsion (1) MAR 2010 Presentation of ships wake Wake - Overview Flow around a propeller is affected by the presence of a hull Potential and viscous nature of the boundary layer contribute
Very special thanks to Wolfgang Gentzsch and Burak Yenier for making the UberCloud HPC Experiment possible.
Digital manufacturing technology and convenient access to High Performance Computing (HPC) in industry R&D are essential to increase the quality of our products and the competitiveness of our companies.
Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT
Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx
NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE WIND FORCES ACTING ON LNG CARRIER
V European Conference on Computational Fluid Dynamics ECCOMAS CFD 1 J. C. F. Pereira and A. Sequeira (Eds) Lisbon, Portugal, 14 17 June 1 NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE WIND FORCES ACTING ON
Laws and price drive interest in LNG as marine fuel
Laws and price drive interest in LNG as marine fuel The use of LNG as a marine fuel is one of the hottest topics in shipping. This growing interest is driven by legislation and price. By Henrique Pestana
2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013
2013 Code_Saturne User Group Meeting EDF R&D Chatou, France 9 th April 2013 Thermal Comfort in Train Passenger Cars Contact For further information please contact: Brian ANGEL Director RENUDA France [email protected]
Model of a flow in intersecting microchannels. Denis Semyonov
Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required
GAMBIT Demo Tutorial
GAMBIT Demo Tutorial Wake of a Cylinder. 1.1 Problem Description The problem to be considered is schematically in fig. 1. We consider flow across a cylinder and look at the wake behind the cylinder. Air
Multiphysics Software Applications in Reverse Engineering
Multiphysics Software Applications in Reverse Engineering *W. Wang 1, K. Genc 2 1 University of Massachusetts Lowell, Lowell, MA, USA 2 Simpleware, Exeter, United Kingdom *Corresponding author: University
THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA
THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe
Introduction to CFD Analysis
Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
potential in the centre of the sphere with respect to infinity.
Umeå Universitet, Fysik 1 Vitaly Bychkov Prov i fysik, Electricity and Waves, 2006-09-27, kl 16.00-22.00 Hjälpmedel: Students can use any book. Define the notations you are using properly. Present your
How To Run A Cdef Simulation
Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation
Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands
Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes
Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller
J. Marine Sci. Appl. (2013) 12: 13-20 DOI: 10.1007/s11804-013-1166-9 Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller Ying Xiong 1, Zhanzhi Wang 1* and Wanjiang
Using CFD to improve the design of a circulating water channel
2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational
CFD IN CONCEPTUAL SHIP DESIGN
2011 MASTER S THESIS CFD IN CONCEPTUAL SHIP DESIGN MSc in Marine Technology Stud. Techn. Petter Olav Vangbo i ii Master s Thesis in Marine Systems Design Stud. Techn. Petter Vangbo CFD in conceptual ship
Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics
Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in
A Study on Analysis of Clearwell in Water works by Computational Fluid Dynamics
, pp.217-222 http://dx.doi.org/10.14257/astl.2015. A Study on Analysis of Clearwell in Water works by Computational Fluid Dynamics Jinhong Jung 1,1, Gyewoon Choi 2, 1 Environmental and Plant Engineering
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir
Experimental and CFD Study of Wave Resistance of High-Speed Round Bilge Catamaran Hull Forms
Experimental and FD Study of Wave Resistance of High-Speed Round Bilge atamaran Hull Forms Prasanta K Sahoo, Australian Maritime ollege, Launceston/Australia, [email protected] Nicholas A Browne,
Development of Grid-stabilization Power-storage Systems Using Lithium-ion Rechargeable Batteries
48 Development of Grid-stabilization Power-storage Systems Using Lithium-ion Rechargeable Batteries TSUTOMU HASHIMOTO *1 AKIO KURITA *2 MASAAKI MINAMI *3 MASAHIRO YOSHIOKA *2 KATSUAKI KOBAYASHI *4 MASAYUKI
IMO. MSC/Circ.707 19 October 1995. Ref. T1/2.04 GUIDANCE TO THE MASTER FOR AVOIDING DANGEROUS SITUATIONS IN FOLLOWING AND QUARTERING SEAS
INTERNATIONAL MARITIME ORGANIZATION 4 ALBERT EMBANKMENT LONDON SE1 7SR Telephone: 020-7735 7611 Fax: 020-7587 3210 Telex: 23588 IMOLDN G IMO E MSC/Circ.707 19 October 1995 Ref. T1/2.04 GUIDANCE TO THE
Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS
merical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS Abhilash Kumar 1, R. SaravanaSathiyaPrabhahar 2 Mepco Schlenk Engineering College, Sivakasi, Tamilnadu India 1,
Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines
36 Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines KEIICHI SHIRAISHI *1 YOSHIHISA ONO *2 YUKIO YAMASHITA *3 MUSASHI SAKAMOTO *3 The extremely slow steaming of ships has become
Comparison of Hexa-Structured and Hybrid-Unstructured Meshing Approaches for Numerical Prediction of the Flow Around Marine Propellers
First International Symposium on Marine Propulsors smp 09, Trondheim, Norway, June 2009 Comparison of Hexa-Structured and Hybrid-Unstructured Meshing Approaches for Numerical Prediction of the Flow Around
Lecture 7 - Meshing. Applied Computational Fluid Dynamics
Lecture 7 - Meshing Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Why is a grid needed? Element types. Grid types.
NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION
Engineering Review Vol. 32, Issue 3, 141-146, 2012. 141 NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Z. 1* L. 1 V. 2 M. 1 1 Department of Fluid Mechanics and Computational Engineering,
The influence of ship operational parameters on fuel consumption
Scientific Journals Maritime University of Szczecin Zeszyty Naukowe Akademia Morska w Szczecinie 2013, 36(108) z. 1 pp. 2013, 36(108) z. 1 s. ISSN 1733-8670 The influence of ship operational parameters
Introduction to CFD Analysis
Introduction to CFD Analysis Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 2-2 What is CFD? Computational fluid dynamics (CFD) is the science
Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics
European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd
CFD analysis for road vehicles - case study
CFD analysis for road vehicles - case study Dan BARBUT*,1, Eugen Mihai NEGRUS 1 *Corresponding author *,1 POLITEHNICA University of Bucharest, Faculty of Transport, Splaiul Independentei 313, 060042, Bucharest,
GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS
ASME Turbo Expo 2011 June 6 10, 2011 Vancouver, Canada GT 2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS M. Cadorin 1,M. Pinelli
CFD ANALYSIS OF RAE 2822 SUPERCRITICAL AIRFOIL AT TRANSONIC MACH SPEEDS
CFD ANALYSIS OF RAE 2822 SUPERCRITICAL AIRFOIL AT TRANSONIC MACH SPEEDS K.Harish Kumar 1, CH.Kiran Kumar 2, T.Naveen Kumar 3 1 M.Tech Thermal Engineering, Sanketika Institute of Technology & Management,
Simulation of Flow Field and Particle Trajectories in Hard Disk Drive Enclosures
Simulation of Flow Field and Particle Trajectories in Hard Disk Drive Enclosures H. Song*, M. Damodaran*and Quock Y. Ng** *Singapore-Massachusetts Institute of Technology Alliance (SMA) Nanyang Technological
Frictional Resistance Calculations on a Ship using CFD
Frictional Resistance Calculations on a Ship using CFD Dunna Sridhar M E Student Marine Engineering A U C E., Visakhapatnam T V K Bhanuprakash Professor Dept. of Marine Engineering A U C E., Visakhapatnam
A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic
AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty
How To Design A Semidisplacement Yacht
Don t Get the Hump The name van Oossanen is a highly respected one in naval architectural circles. The firm s founder, Piet, devised the appendage that changed the face and location of the America s Cup
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design
Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Background Introduction ATS Company Background New and
Module 6 Case Studies
Module 6 Case Studies 1 Lecture 6.1 A CFD Code for Turbomachinery Flows 2 Development of a CFD Code The lecture material in the previous Modules help the student to understand the domain knowledge required
Tutorial: 2D Pipe Junction Using Hexa Meshing
Tutorial: 2D Pipe Junction Using Hexa Meshing Introduction In this tutorial, you will generate a mesh for a two-dimensional pipe junction, composed of two inlets and one outlet. After generating an initial
M/V Eleranta IMO 9081198. Water Ballast Tank Inspection Report. China Shipping International Shipyard Co. Ltd (CSIS), Changxing Island, Shanghai
M/V Eleranta IMO 9081198 Water Ballast Tank Inspection Report China Shipping International Shipyard Co. Ltd (CSIS), Changxing Island, Shanghai 24 June 2010 Report prepared by: Andrew Cass Page 1 of 17
The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model
The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model Vangelis Skaperdas, Aristotelis Iordanidis, Grigoris Fotiadis BETA CAE Systems S.A. 2 nd Northern Germany OpenFOAM User
Design and Operation of Fuel Efficient Ships. Jan de Kat Director, Energy Efficiency Operational and Environmental Performance Copenhagen
Design and Operation of Fuel Efficient Ships Jan de Kat Director, Energy Efficiency Operational and Environmental Performance Copenhagen Genova 21 November 2013 Energy efficiency: key issues High fuel
Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes
Performance Comparison of a Vertical Axis Wind Turbine using Commercial and Open Source Computational Fluid Dynamics based Codes Taimoor Asim 1, Rakesh Mishra 1, Sree Nirjhor Kaysthagir 1, Ghada Aboufares
University Turbine Systems Research 2012 Fellowship Program Final Report. Prepared for: General Electric Company
University Turbine Systems Research 2012 Fellowship Program Final Report Prepared for: General Electric Company Gas Turbine Aerodynamics Marion Building 300 Garlington Rd Greenville, SC 29615, USA Prepared
ABS TECHNICAL PAPERS 2008 A STERN SLAMMING ANALYSIS USING THREE-DIMENSIONAL CFD SIMULATION. Suqin Wang Email: [email protected]
ABS TECHNICAL PAPERS 8 Proceedings of OMAE 8 7 th International Conference on Offshore Mechanics and Arctic Engineering 15- June, 8, Estoril, Portugal OMAE8-5785 A STERN SLAMMING ANALYSIS USING THREE-DIMENSIONAL
Analysis of hydrodynamic characteristics of unmanned underwater vehicle moving close to the sea bottom
Available online at www.sciencedirect.com ScienceDirect Defence Technology 10 (2014) 76e81 www.elsevier.com/locate/dt Analysis of hydrodynamic characteristics of unmanned underwater vehicle moving close
SINGLE TRAIN PASSING THROUGH A TUNNEL
European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate, J. Périaux (Eds) TU Delft, The Netherlands, 2006 SINGLE TRAIN PASSING THROUGH A TUNNEL Jakub Novák* *Skoda Research,
Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015
EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
GENERAL HULL FORM EQUATIONS
GENERAL HULL FORM EQUATIONS Displacement to Length Ratio Long Tons Displacement.01 LWL 3 LT.01 LWL 3 Prismatic Coefficient Cu. Ft. Displacement M idsection Area LWL A m LWL Block Coefficient Cu. Ft. Displacement
MAXIMISING THE HEAT TRANSFER THROUGH FINS USING CFD AS A TOOL
MAXIMISING THE HEAT TRANSFER THROUGH FINS USING CFD AS A TOOL Sanjay Kumar Sharma 1 and Vikas Sharma 2 1,2 Assistant Professor, Department of Mechanical Engineering, Gyan Vihar University, Jaipur, Rajasthan,
Performance Improvement of Pump-turbine for Large Capacity Pumped Storage Power Plant in USA
Performance Improvement of Pump-turbine for Large Capacity Pumped Storage Power Plant in USA 198 Performance Improvement of Pump-turbine for Large Capacity Pumped Storage Power Plant in USA 300-MW Pump-turbine
How To Model A Horseshoe Vortex
Comparison of CFD models for multiphase flow evolution in bridge scour processes A. Bayón-Barrachina, D. Valero, F.J. Vallès Morán, P. A. López-Jiménez Dept. of Hydraulic and Environmental Engineering
3D Conjugate Heat Transfer Analysis of the Next Generation Inner Reflector Plug for the Spallation Neutron Source
3D Conjugate Heat Transfer Analysis of the Next Generation Inner Reflector Plug for the Spallation Neutron Source Ashraf Abdou Oak Ridge National Laboratory, Oak Ridge TN, USA March 18-20, 2013 STAR Global
LSCFD: Meshing Tools for Open Source CFD A Practical Point of View
LSCFD: Meshing Tools for Open Source CFD A Practical Point of View Juha Kortelainen Report: Meshing Tools for Open Source CFD A Practical Point of View LSCFD Tools for Large Scale
CFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
Modeling wind flow using O.F. Wind, an OpenFOAM based CFD tool: validation of Turbulence Intensity in a testing Suzlon Energy site Ltd.
Modeling wind flow using O.F. Wind, an OpenFOAM based CFD tool: validation of Turbulence Intensity in a testing Suzlon Energy site Ltd. L.Casella 1, W.Langreder 1, A.Fischer 2, M.Ehlen 2, D.Skoutelakos
Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma
Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of
Introduction to ANSYS
Lecture 3 Introduction to ANSYS Meshing 14. 5 Release Introduction to ANSYS Meshing 2012 ANSYS, Inc. March 27, 2014 1 Release 14.5 Introduction to ANSYS Meshing What you will learn from this presentation
Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412
, July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections
Practical Grid Generation Tools with Applications to Ship Hydrodynamics
Practical Grid Generation Tools with Applications to Ship Hydrodynamics Eça L. Instituto Superior Técnico [email protected] Hoekstra M. Maritime Research Institute Netherlands [email protected] Windt
6 J - vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems
Adaptation of General Purpose CFD Code for Fusion MHD Applications*
Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA [email protected] Abstract Analysis of many fusion
Abaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction
Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department
OPTIMISE TANK DESIGN USING CFD. Lisa Brown. Parsons Brinckerhoff
OPTIMISE TANK DESIGN USING CFD Paper Presented by: Lisa Brown Authors: Lisa Brown, General Manager, Franz Jacobsen, Senior Water Engineer, Parsons Brinckerhoff 72 nd Annual Water Industry Engineers and
Key Technologies of Mitsubishi LNG Carriers - Present and Future -
47 Key Technologies of Mitsubishi LNG Carriers - Present and Future - Kazuaki Yuasa* 1 Katsuya Uwatoko* 1 Junshiro Ishimaru* 2 CO2 emission control is recognized as the essential issue related to the greenhouse
INSTALLATION MANUAL. Installation Instructions
INSTALLATION MANUAL Power-Pole Signature Series Shallow Water Anchor Installation Instructions CAUTION: Read this instruction manual carefully. Become familiar with the controls and know how to operate
Computational Fluid Dynamics in Automotive Applications
Computational Fluid Dynamics in Automotive Applications Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom FSB, University of Zagreb, Croatia 1/15 Outline Objective Review the adoption of Computational
CFD Analysis of a Propeller Flow and Cavitation
CFD Analysis of a Propeller Flow and Cavitation S. Subhas PG student NITW V F Saji Scientist C N S T L Visakhapatnam S. Ramakrishna GVP College of Engineering (A) Visakhapatnam H. N Das Scientist F N S
CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM
CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM J. Schabacker, M. Bettelini, Ch. Rudin HBI Haerter AG Thunstrasse 9, P.O. Box, 3000 Bern, Switzerland
Wave driven wind simulations with CFD
Wave driven wind simulations with CFD DeepWind'2013, 24-25 January, Trondheim, Norway Siri Kalvig 1, Richard Kverneland 2 and Eirik Manger 3 1 StormGeo, Norway 2 University of Stavanger, Norway 3 Acona
(1) 2 TEST SETUP. Table 1 Summary of models used for calculating roughness parameters Model Published z 0 / H d/h
Estimation of Surface Roughness using CFD Simulation Daniel Abdi a, Girma T. Bitsuamlak b a Research Assistant, Department of Civil and Environmental Engineering, FIU, Miami, FL, USA, [email protected]
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.
Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,
Aerodynamic Simulation. Viscous CFD Code Validation
Aerodynamic Simulation using STAR-CCM+ Viscous CFD Code Validation 19 March 2013 CD-adapco STAR-CCM+ Code Validation Efforts Kenneth E. Xiques CRM Solutions 4092 Memorial Pkwy SW, Suite 200 Huntsville,
External bluff-body flow-cfd simulation using ANSYS Fluent
External bluff-body flow-cfd simulation using ANSYS Fluent External flow over a bluff body is complex, three-dimensional, and vortical. It is massively separated and it exhibits vortex shedding. Thus,
Modeling and Numerical Blood Flow Analysis of Tibial Artery using CFD
Modeling and Numerical Blood Flow Analysis of Tibial Artery using CFD S.Manimaran Department of Biomedical Engineering C.Muralidharan M.E Assistant Professor Department of Biomedical Engineering Surendra
Using CFD for optimal thermal management and cooling design in data centers
www.siemens.com/datacenters Using CFD for optimal thermal management and cooling design in data centers Introduction As the power density of IT equipment within a rack increases and energy costs rise,
