Bringing Big Data into the Enterprise
|
|
|
- Gertrude Jacobs
- 10 years ago
- Views:
Transcription
1 Bringing Big Data into the Enterprise Overview When evaluating Big Data applications in enterprise computing, one often-asked question is how does Big Data compare to the Enterprise Data Warehouse (EDW)? What does Big Data bring to the organization that the EDW cannot handle? This article presents a technical and business discussion on the Big Data question. The technical discussion assumes familiarity with data architecture. The business discussion draws some conclusions about the actual application of Big Data in the enterprise. Big Data vs. the Enterprise Data Warehouse Big Data hardware is quite similar to the EDW s massively parallel processing (MPP) SQLbased database servers. EDW vendors include Teradata, Oracle Exadata, IBM Netezza and Microsoft PDW SQL Server. Both Big Data and EDW SQL database servers are composed of a large racks of Intel servers (each server called a node) and both distribute data across the nodes. Each node has local hard drive(s) for data storage and does not use a centralized storage system such as a Storage Area Network (SAN) in order to prevent I/O contention. The first major technology difference is that Big Data s most common software platform, known as Hadoop, is free, open source and runs on commodity (non-proprietary) hardware. Most EDW vendors use propriety hardware with additional hardware accelerators to allow the servers to work better as a SQL style relational database. These hardware costs, when combined with the EDW vendor s proprietary software, typically reach cost levels that are exponentially higher per Terabyte than when using a Hadoop big data platform. Hadoop has more limitations than a SQL relational database but is far more scalable at a much lower price. While Hadoop and EDW databases break apart large data sets into massively parallel systems, the actual implementation is substantially different. EDW databases parallelizes the data across smaller logical SQL database that exist on each node. Data is imported via a loading process that divides the data into the logical databases on a row by row basis, based on a data key column. 1 P age
2 This extract, transformation and loading (ETL) process typically does additional data cleansing and data homogenization that matches the data with existing data in the EDW. In contrast, Hadoop locates source files across a distributed file system (DFS). Conceptually, each file represents a segment or a partition of a table and files are simply duplicated across three nodes for redundancy. Hadoop data processing then uses direct access to the files. In other words, source files can be copied as is into the DFS which adds additional metadata to the file to aid in efficient data retrieval. This loading process is simpler and faster than a typical EDW ETL load. The result: Hadoop can process large volumes of data, assuming the source data files are in a readable and ready state. Hadoop also needs the data to be self-contained, with the database analyst not looking to join the data to other data tables as is typically done in a relational database. You can still join data together, particularly using HBase extensions, but you would not use a normalized data model that is considered a best practice in SQL database modeling. An EDW database may have hundreds or even thousands of tables. Hadoop requires massive de-normalization and may have as few as one or two tables. Hadoop does not excel at merging data across nodes at the detail data level, only at the reduce stage. The reduce stage is analogous to merging summarized data. Hadoop requires what is called co-location of data at the same node. In other words, if data in file A joins with data in file B, then file A and B must exist on the same node. EDW databases do not have this limitation. While they will perform better with a data model and indexing that co-locates data, in a normalized data model it is usually impossible to co-locate all tables. As discussed earlier, EDW vendors have considerable technologies to allow for flexible data models. Also of interest is the fact that Big Data has a much shorter development time to load data but a longer development time to query the data. EDWs have long lead times to add data sources to the database, but the time to write SQL queries is relatively short. Hadoop s map-reduce query language is Java (with other scripting option) with HBase and/or Pig SQL-like extensions that can aid in development. These still require higher skills and more time consuming effort than simply writing SQL. Business intelligence front ends are also limited with Big Data as compared with the EDW. This weakness will improve over time as Hadoop matures as a product. In summary, Hadoop s limitations with data modeling prevent its application as a data warehousing database. Hadoop methodologies are in many ways brute force and simplicity. 2 P age
3 But it s that simplicity that make it applicable for certain purposes. Many large data sets exist in the enterprise that actually fit within its limitations. When that environment exists, Big Data can bring analytics and business intelligence (BI) at warp speed. Increasing Financial Gains from Low Value, High Volume Data There are basically two types of data being created by enterprises and their customers: Low value, high volume data High value, low volume data The typical EDW contains high value data that stores accounting, finance, sales, inventory, and other operational data. Each record in the database has real dollars associated with it. An enterprise needs to track dollars flowing through its operations and wants an end-to-end integrated view of that data. An EDW uses considerable resources to load that data from the various operational databases so all the data can be analyzed together. The EDW has hundreds, if not thousands, of tables that are in some way related. Although an EDW may have terabytes of high value data, that volume is still relatively low compared to the amount of that for low value data. This ratio typically has a proportionality relative to the size of the enterprise. Low value data often does not have direct dollars associated with it. It is data typically not sourced from production databases. Application designers have already identified the high value data and integrated it into the application databases. Low value data is external from that process. It is usually sourced from files created from an application, instrumentation, monitoring, industrial controls or other system logs. Given the source of low value data being log files, one of the great features of Hadoop is that these log files plays well with Hadoop s file centric methodology described earlier. Log files are also typically self-contained with all related attributed on a single row. In other words, the data is within the denormalized Hadoop data model limitation. Examples of low value, high volume data include: Website analytics Mobile app tracking Photo and video archives Social data and networking usage Collection of internet data via web crawlers Data collection from various systems including security cameras, factory instrumentations or robotics, medical records 3 P age
4 The value proposition for Big Data is that it s a relatively cheap system to analyze large volumes of low value data that would otherwise be too expensive to implement using an EDW system. This allows enterprises to gain additional sources of intelligence that would otherwise have poor ROI or a high risk to unproven value. Companies should view Big Data as business unit in the same way they typically view the EDW as a business unit. Most of the management processes will be similar. The main difference are the database server itself, employee skills sets and of course the data sources. Big Data Application Examples There are countless possibilities for Big Data applications. Tremendous volumes of low value data are currently being created by most companies. Anything that can be electronically monitored and its data acquired is a candidate. Anything in the enterprise that has potential business value should be evaluated and considered. The bottom line is that Big Data technologies lower the bar of what is economically feasible to acquire and analyze. Listed below are a few possibilities: Computer Usage Analysis: Log files from applications servers from larger websites or mobile apps. Usage Data from Social Networking: Enterprises can track their brand trending, allowing quick responses to both positive and derogatory damage to the brand. Web Crawling the Internet: Identifying and storing relevant information of an enterprise from the Internet. There are many variations of this concept. One example is corporate financial data that allows investors to identify desirable statistical scenarios for investing. Security Camera Analysis: Convert video feeds into traffic movements and store in Big Data so that traffic patterns can be analyzed. This allows on premise analysis of customer activity beyond market basket analysis of an EDW which only looks at actual purchases. One can correlate actual customer purchases with actual customer paths through the store to determine optimal store layouts. There is existing video content analysis software to convert video to traffic movement. Factory Automation Data: Collect data from factory robotics, industrial controls, sensory instruments, RFID, and so on. Medical Equipment Instrumentation: Analyzing 3D imaging systems. 4 P age
5 Scientific Instrumentation: Collect data from data intense scientific experiments in astronomy, atmospheric science, genomics, biogeochemical, biological and other complex scientific research. GPS Tracking and Transportation: Tracking rolling stock and conditions, military surveillance, and so on. Internet/Network Analysis: Track data passing through switches and routers. This is just a small sample of some of the potential uses for Big Data analytics. Much like companies evaluate data sources for their EDW they will need to review data sources for Big Data analytics. ROI calculations will be different but the payoffs can be substantial. Adding data sources to Hadoop costs much less than increasing data in your EDW. Consider the following from a ROI perspective: Costs for the server are a fraction of EDW server costs Disk space cost is minimal on Hadoop ETL development requires less time Summary With lower costs, you have lower risks of failure. The company needs to be willing to experiment and see what business value can be found in low value data sources. The EDW is here to stay, but in today s market of dramatically increasing high volume, low value data, the Big Data platform for some applications will yield dramatic results. One data point in a recent survey by Dice, a leading tech job site, analytics and big data jobs are now in their top 10 list. A year ago they hardly got a mention. 5 P age
6 Authored by Fred Zimmerman Fred Zimmerman, a Data Architect for the consulting firm StatSlice Systems ( is a veteran of data warehouse, business intelligence and database solutions with over 17 years of experience at Fortune 500 companies. Fred has proven experience integrating innovative ideas with industry best practices with the end result being streamlined, scalable and versatile data solutions. Fred has designed business intelligence solutions for Verizon, Walmart, WellPoint, Coca- Cola Enterprises, Bank One (now Chase), Shell Oil, Microsoft Consulting Services and EDS (now Hewlett Packard). His numerous specialties include experience with data warehousing, business intelligence and analytics, Master Data Management, all large-scale databases plus Hadoop and Hbase, and most Business Intelligence and ETL platforms (Microsoft, OBIEE, MicroStrategy, and Informatica). For More Information For more information about StatSlice Systems products and services, call (214) or us at [email protected]. Please visit us at This article will be published in the May/June 2013 edition of Enterprise Executive magazine StatSlice Systems. All rights reserved. This article is for informational purposes only. StatSlice makes no warranties, express or implied, in this document. 6 P age
Big Data on Microsoft Platform
Big Data on Microsoft Platform Prepared by GJ Srinivas Corporate TEG - Microsoft Page 1 Contents 1. What is Big Data?...3 2. Characteristics of Big Data...3 3. Enter Hadoop...3 4. Microsoft Big Data Solutions...4
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM
David Chappell SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM A PERSPECTIVE FOR SYSTEMS INTEGRATORS Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Business
Bringing Big Data to People
Bringing Big Data to People Microsoft s modern data platform SQL Server 2014 Analytics Platform System Microsoft Azure HDInsight Data Platform Everyone should have access to the data they need. Process
Testing Big data is one of the biggest
Infosys Labs Briefings VOL 11 NO 1 2013 Big Data: Testing Approach to Overcome Quality Challenges By Mahesh Gudipati, Shanthi Rao, Naju D. Mohan and Naveen Kumar Gajja Validate data quality by employing
AGENDA. What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story. Our BIG DATA Roadmap. Hadoop PDW
AGENDA What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story Hadoop PDW Our BIG DATA Roadmap BIG DATA? Volume 59% growth in annual WW information 1.2M Zetabytes (10 21 bytes) this
Parallel Data Warehouse
MICROSOFT S ANALYTICS SOLUTIONS WITH PARALLEL DATA WAREHOUSE Parallel Data Warehouse Stefan Cronjaeger Microsoft May 2013 AGENDA PDW overview Columnstore and Big Data Business Intellignece Project Ability
Cost-Effective Business Intelligence with Red Hat and Open Source
Cost-Effective Business Intelligence with Red Hat and Open Source Sherman Wood Director, Business Intelligence, Jaspersoft September 3, 2009 1 Agenda Introductions Quick survey What is BI?: reporting,
Big Data Success Step 1: Get the Technology Right
Big Data Success Step 1: Get the Technology Right TOM MATIJEVIC Director, Business Development ANDY MCNALIS Director, Data Management & Integration MetaScale is a subsidiary of Sears Holdings Corporation
In-Memory Analytics for Big Data
In-Memory Analytics for Big Data Game-changing technology for faster, better insights WHITE PAPER SAS White Paper Table of Contents Introduction: A New Breed of Analytics... 1 SAS In-Memory Overview...
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
SQL Maestro and the ELT Paradigm Shift
SQL Maestro and the ELT Paradigm Shift Abstract ELT extract, load, and transform is replacing ETL (extract, transform, load) as the usual method of populating data warehouses. Modern data warehouse appliances
ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION
ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION EXECUTIVE SUMMARY Oracle business intelligence solutions are complete, open, and integrated. Key components of Oracle business intelligence
An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics
An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,
Apache Hadoop in the Enterprise. Dr. Amr Awadallah, CTO/Founder @awadallah, [email protected]
Apache Hadoop in the Enterprise Dr. Amr Awadallah, CTO/Founder @awadallah, [email protected] Cloudera The Leader in Big Data Management Powered by Apache Hadoop The Leading Open Source Distribution of Apache
Big Data and Its Impact on the Data Warehousing Architecture
Big Data and Its Impact on the Data Warehousing Architecture Sponsored by SAP Speaker: Wayne Eckerson, Director of Research, TechTarget Wayne Eckerson: Hi my name is Wayne Eckerson, I am Director of Research
The Future of Data Management
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class
Big Data and Data Science: Behind the Buzz Words
Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing
Oracle BI EE Implementation on Netezza. Prepared by SureShot Strategies, Inc.
Oracle BI EE Implementation on Netezza Prepared by SureShot Strategies, Inc. The goal of this paper is to give an insight to Netezza architecture and implementation experience to strategize Oracle BI EE
Offload Enterprise Data Warehouse (EDW) to Big Data Lake. Ample White Paper
Offload Enterprise Data Warehouse (EDW) to Big Data Lake Oracle Exadata, Teradata, Netezza and SQL Server Ample White Paper EDW (Enterprise Data Warehouse) Offloads The EDW (Enterprise Data Warehouse)
Tap into Hadoop and Other No SQL Sources
Tap into Hadoop and Other No SQL Sources Presented by: Trishla Maru What is Big Data really? The Three Vs of Big Data According to Gartner Volume Volume Orders of magnitude bigger than conventional data
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics Platform. Contents Pentaho Scalability and
Information Architecture
The Bloor Group Actian and The Big Data Information Architecture WHITE PAPER The Actian Big Data Information Architecture Actian and The Big Data Information Architecture Originally founded in 2005 to
An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database
An Oracle White Paper June 2012 High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database Executive Overview... 1 Introduction... 1 Oracle Loader for Hadoop... 2 Oracle Direct
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Microsoft Analytics Platform System. Solution Brief
Microsoft Analytics Platform System Solution Brief Contents 4 Introduction 4 Microsoft Analytics Platform System 5 Enterprise-ready Big Data 7 Next-generation performance at scale 10 Engineered for optimal
Please give me your feedback
Please give me your feedback Session BB4089 Speaker Claude Lorenson, Ph. D and Wendy Harms Use the mobile app to complete a session survey 1. Access My schedule 2. Click on this session 3. Go to Rate &
Business Usage Monitoring for Teradata
Managing Big Analytic Data Business Usage Monitoring for Teradata Increasing Operational Efficiency and Reducing Data Management Costs How to Increase Operational Efficiency and Reduce Data Management
BIG DATA APPLIANCES. July 23, TDWI. R Sathyanarayana. Enterprise Information Management & Analytics Practice EMC Consulting
BIG DATA APPLIANCES July 23, TDWI R Sathyanarayana Enterprise Information Management & Analytics Practice EMC Consulting 1 Big data are datasets that grow so large that they become awkward to work with
Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities
Technology Insight Paper Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities By John Webster February 2015 Enabling you to make the best technology decisions Enabling
The Enterprise Data Hub and The Modern Information Architecture
The Enterprise Data Hub and The Modern Information Architecture Dr. Amr Awadallah CTO & Co-Founder, Cloudera Twitter: @awadallah 1 2013 Cloudera, Inc. All rights reserved. Cloudera Overview The Leader
A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY
A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY Analytics for Enterprise Data Warehouse Management and Optimization Executive Summary Successful enterprise data management is an important initiative for growing
EMC/Greenplum Driving the Future of Data Warehousing and Analytics
EMC/Greenplum Driving the Future of Data Warehousing and Analytics EMC 2010 Forum Series 1 Greenplum Becomes the Foundation of EMC s Data Computing Division E M C A CQ U I R E S G R E E N P L U M Greenplum,
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014 Ralph Kimball Associates 2014 The Data Warehouse Mission Identify all possible enterprise data assets Select those assets
SQL Server 2012 Parallel Data Warehouse. Solution Brief
SQL Server 2012 Parallel Data Warehouse Solution Brief Published February 22, 2013 Contents Introduction... 1 Microsoft Platform: Windows Server and SQL Server... 2 SQL Server 2012 Parallel Data Warehouse...
Microsoft s SQL Server Parallel Data Warehouse Provides High Performance and Great Value
Microsoft s SQL Server Parallel Data Warehouse Provides High Performance and Great Value Published by: Value Prism Consulting Sponsored by: Microsoft Corporation Publish date: March 2013 Abstract: Data
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
POLAR IT SERVICES. Business Intelligence Project Methodology
POLAR IT SERVICES Business Intelligence Project Methodology Table of Contents 1. Overview... 2 2. Visualize... 3 3. Planning and Architecture... 4 3.1 Define Requirements... 4 3.1.1 Define Attributes...
Advanced In-Database Analytics
Advanced In-Database Analytics Tallinn, Sept. 25th, 2012 Mikko-Pekka Bertling, BDM Greenplum EMEA 1 That sounds complicated? 2 Who can tell me how best to solve this 3 What are the main mathematical functions??
W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract
W H I T E P A P E R Deriving Intelligence from Large Data Using Hadoop and Applying Analytics Abstract This white paper is focused on discussing the challenges facing large scale data processing and the
High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances
High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances Highlights IBM Netezza and SAS together provide appliances and analytic software solutions that help organizations improve
SQL Server 2012 PDW. Ryan Simpson Technical Solution Professional PDW Microsoft. Microsoft SQL Server 2012 Parallel Data Warehouse
SQL Server 2012 PDW Ryan Simpson Technical Solution Professional PDW Microsoft Microsoft SQL Server 2012 Parallel Data Warehouse Massively Parallel Processing Platform Delivers Big Data HDFS Delivers Scale
ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process
ORACLE OLAP KEY FEATURES AND BENEFITS FAST ANSWERS TO TOUGH QUESTIONS EASILY KEY FEATURES & BENEFITS World class analytic engine Superior query performance Simple SQL access to advanced analytics Enhanced
Unlock your data for fast insights: dimensionless modeling with in-memory column store. By Vadim Orlov
Unlock your data for fast insights: dimensionless modeling with in-memory column store By Vadim Orlov I. DIMENSIONAL MODEL Dimensional modeling (also known as star or snowflake schema) was pioneered by
Luncheon Webinar Series May 13, 2013
Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration
Big Data Technologies Compared June 2014
Big Data Technologies Compared June 2014 Agenda What is Big Data Big Data Technology Comparison Summary Other Big Data Technologies Questions 2 What is Big Data by Example The SKA Telescope is a new development
RapidDecision EDW: THE BETTER WAY TO DATA WAREHOUSE
RapidDecision EDW: THE BETTER WAY TO DATA WAREHOUSE GET THE MOST COMPLETE, REAL-TIME VIEW OF YOUR BUSINESS DATA Data, data everywhere but no complete view or meaningful analysis in sight. Sound familiar?
Data Virtualization A Potential Antidote for Big Data Growing Pains
perspective Data Virtualization A Potential Antidote for Big Data Growing Pains Atul Shrivastava Abstract Enterprises are already facing challenges around data consolidation, heterogeneity, quality, and
Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce
Analytics in the Cloud Peter Sirota, GM Elastic MapReduce Data-Driven Decision Making Data is the new raw material for any business on par with capital, people, and labor. What is Big Data? Terabytes of
EMC BACKUP MEETS BIG DATA
EMC BACKUP MEETS BIG DATA Strategies To Protect Greenplum, Isilon And Teradata Systems 1 Agenda Big Data: Overview, Backup and Recovery EMC Big Data Backup Strategy EMC Backup and Recovery Solutions for
UNIFY YOUR (BIG) DATA
UNIFY YOUR (BIG) DATA ANALYTIC STRATEGY GIVE ANY USER ANY ANALYTIC ON ANY DATA Scott Gnau President, Teradata Labs [email protected] t Unify Your (Big) Data Analytic Strategy Technology excitement:
Harnessing the power of advanced analytics with IBM Netezza
IBM Software Information Management White Paper Harnessing the power of advanced analytics with IBM Netezza How an appliance approach simplifies the use of advanced analytics Harnessing the power of advanced
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE AGENDA Introduction to Big Data Introduction to Hadoop HDFS file system Map/Reduce framework Hadoop utilities Summary BIG DATA FACTS In what timeframe
Next Generation Data Warehousing Appliances 23.10.2014
Next Generation Data Warehousing Appliances 23.10.2014 Presentert av: Espen Jorde, Executive Advisor Bjørn Runar Nes, CTO/Chief Architect Bjørn Runar Nes Espen Jorde 2 3.12.2014 Agenda Affecto s new Data
Data processing goes big
Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,
Data Mining in the Swamp
WHITE PAPER Page 1 of 8 Data Mining in the Swamp Taming Unruly Data with Cloud Computing By John Brothers Business Intelligence is all about making better decisions from the data you have. However, all
Extending the Enterprise Data Warehouse with Hadoop Robert Lancaster. Nov 7, 2012
Extending the Enterprise Data Warehouse with Hadoop Robert Lancaster Nov 7, 2012 Who I Am Robert Lancaster Solutions Architect, Hotel Supply Team [email protected] @rob1lancaster Organizer of Chicago
How to Enhance Traditional BI Architecture to Leverage Big Data
B I G D ATA How to Enhance Traditional BI Architecture to Leverage Big Data Contents Executive Summary... 1 Traditional BI - DataStack 2.0 Architecture... 2 Benefits of Traditional BI - DataStack 2.0...
Senior Business Intelligence/Engineering Analyst
We are very interested in urgently hiring 3-4 current or recently graduated Computer Science graduate and/or undergraduate students and/or double majors. NetworkofOne is an online video content fund. We
Applied Business Intelligence. Iakovos Motakis, Ph.D. Director, DW & Decision Support Systems Intrasoft SA
Applied Business Intelligence Iakovos Motakis, Ph.D. Director, DW & Decision Support Systems Intrasoft SA Agenda Business Drivers and Perspectives Technology & Analytical Applications Trends Challenges
IBM Netezza High Capacity Appliance
IBM Netezza High Capacity Appliance Petascale Data Archival, Analysis and Disaster Recovery Solutions IBM Netezza High Capacity Appliance Highlights: Allows querying and analysis of deep archival data
An Overview of SAP BW Powered by HANA. Al Weedman
An Overview of SAP BW Powered by HANA Al Weedman About BICP SAP HANA, BOBJ, and BW Implementations The BICP is a focused SAP Business Intelligence consulting services organization focused specifically
Innovative technology for big data analytics
Technical white paper Innovative technology for big data analytics The HP Vertica Analytics Platform database provides price/performance, scalability, availability, and ease of administration Table of
Moving Large Data at a Blinding Speed for Critical Business Intelligence. A competitive advantage
Moving Large Data at a Blinding Speed for Critical Business Intelligence A competitive advantage Intelligent Data In Real Time How do you detect and stop a Money Laundering transaction just about to take
Native Connectivity to Big Data Sources in MSTR 10
Native Connectivity to Big Data Sources in MSTR 10 Bring All Relevant Data to Decision Makers Support for More Big Data Sources Optimized Access to Your Entire Big Data Ecosystem as If It Were a Single
Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data
INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are
Hadoop and Relational Database The Best of Both Worlds for Analytics Greg Battas Hewlett Packard
Hadoop and Relational base The Best of Both Worlds for Analytics Greg Battas Hewlett Packard The Evolution of Analytics Mainframe EDW Proprietary MPP Unix SMP MPP Appliance Hadoop? Questions Is Hadoop
Are You Ready for Big Data?
Are You Ready for Big Data? Jim Gallo National Director, Business Analytics February 11, 2013 Agenda What is Big Data? How do you leverage Big Data in your company? How do you prepare for a Big Data initiative?
WINDOWS AZURE DATA MANAGEMENT AND BUSINESS ANALYTICS
WINDOWS AZURE DATA MANAGEMENT AND BUSINESS ANALYTICS Managing and analyzing data in the cloud is just as important as it is anywhere else. To let you do this, Windows Azure provides a range of technologies
NoSQL for SQL Professionals William McKnight
NoSQL for SQL Professionals William McKnight Session Code BD03 About your Speaker, William McKnight President, McKnight Consulting Group Frequent keynote speaker and trainer internationally Consulted to
Big Data Maximizing the Flow
Technology Insight Paper Big Data Maximizing the Flow By John Webster August 15, 2012 Enabling you to make the best technology decisions Big Data Maximizing the Flow 1 Big Data Maximizing the Flow 2 The
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Wayne W. Eckerson Director of Research, TechTarget Founder, BI Leadership Forum Business Analytics
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Deploy. Friction-free self-service BI solutions for everyone Scalable analytics on a modern architecture
Friction-free self-service BI solutions for everyone Scalable analytics on a modern architecture Apps and data source extensions with APIs Future white label, embed or integrate Power BI Deploy Intelligent
Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence
Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence Appliances and DW Architectures John O Brien President and Executive Architect Zukeran Technologies 1 TDWI 1 Agenda What
The Next Wave of Data Management. Is Big Data The New Normal?
The Next Wave of Data Management Is Big Data The New Normal? Table of Contents Introduction 3 Separating Reality and Hype 3 Why Are Firms Making IT Investments In Big Data? 4 Trends In Data Management
Nothing in this job description restricts management's right to assign or reassign duties and responsibilities to this job at any time.
H22111, page 1 Nothing in this job description restricts management's right to assign or reassign duties and responsibilities to this job at any time. DUTIES This is a non-career term job at the Metropolitan
Scaling Your Data to the Cloud
ZBDB Scaling Your Data to the Cloud Technical Overview White Paper POWERED BY Overview ZBDB Zettabyte Database is a new, fully managed data warehouse on the cloud, from SQream Technologies. By building
BIG DATA: FROM HYPE TO REALITY. Leandro Ruiz Presales Partner for C&LA Teradata
BIG DATA: FROM HYPE TO REALITY Leandro Ruiz Presales Partner for C&LA Teradata Evolution in The Use of Information Action s ACTIVATING MAKE it happen! Insights OPERATIONALIZING WHAT IS happening now? PREDICTING
Implementing a Data Warehouse with Microsoft SQL Server 2012 MOC 10777
Implementing a Data Warehouse with Microsoft SQL Server 2012 MOC 10777 Course Outline Module 1: Introduction to Data Warehousing This module provides an introduction to the key components of a data warehousing
End to End Solution to Accelerate Data Warehouse Optimization. Franco Flore Alliance Sales Director - APJ
End to End Solution to Accelerate Data Warehouse Optimization Franco Flore Alliance Sales Director - APJ Big Data Is Driving Key Business Initiatives Increase profitability, innovation, customer satisfaction,
Business Intelligence In SAP Environments
Business Intelligence In SAP Environments BARC Business Application Research Center 1 OUTLINE 1 Executive Summary... 3 2 Current developments with SAP customers... 3 2.1 SAP BI program evolution... 3 2.2
INVESTOR PRESENTATION. First Quarter 2014
INVESTOR PRESENTATION First Quarter 2014 Note to Investors Certain non-gaap financial information regarding operating results may be discussed during this presentation. Reconciliations of the differences
Big Data Buzzwords From A to Z. By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012
Big Data Buzzwords From A to Z By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012 Big Data Buzzwords Big data is one of the, well, biggest trends in IT today, and it has spawned a whole new generation
Dell Cloudera Syncsort Data Warehouse Optimization ETL Offload
Dell Cloudera Syncsort Data Warehouse Optimization ETL Offload Drive operational efficiency and lower data transformation costs with a Reference Architecture for an end-to-end optimization and offload
SQL Server Business Intelligence on HP ProLiant DL785 Server
SQL Server Business Intelligence on HP ProLiant DL785 Server By Ajay Goyal www.scalabilityexperts.com Mike Fitzner Hewlett Packard www.hp.com Recommendations presented in this document should be thoroughly
News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren
News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business
COURSE 20463C: IMPLEMENTING A DATA WAREHOUSE WITH MICROSOFT SQL SERVER
Page 1 of 8 ABOUT THIS COURSE This 5 day course describes how to implement a data warehouse platform to support a BI solution. Students will learn how to create a data warehouse with Microsoft SQL Server
Integrating Hadoop. Into Business Intelligence & Data Warehousing. Philip Russom TDWI Research Director for Data Management, April 9 2013
Integrating Hadoop Into Business Intelligence & Data Warehousing Philip Russom TDWI Research Director for Data Management, April 9 2013 TDWI would like to thank the following companies for sponsoring the
Implementing a Data Warehouse with Microsoft SQL Server
Page 1 of 7 Overview This course describes how to implement a data warehouse platform to support a BI solution. Students will learn how to create a data warehouse with Microsoft SQL 2014, implement ETL
Using Attunity Replicate with Greenplum Database Using Attunity Replicate for data migration and Change Data Capture to the Greenplum Database
White Paper Using Attunity Replicate with Greenplum Database Using Attunity Replicate for data migration and Change Data Capture to the Greenplum Database Abstract This white paper explores the technology
IBM Netezza 1000. High-performance business intelligence and advanced analytics for the enterprise. The analytics conundrum
IBM Netezza 1000 High-performance business intelligence and advanced analytics for the enterprise Our approach to data analysis is patented and proven. Minimize data movement, while processing it at physics
