A Shure Educational Publication AUDIO SYSTEMS GUIDE THEATER PERFORMANCES. By Crispin Tapia
|
|
|
- Angelina Henderson
- 10 years ago
- Views:
Transcription
1 A Shure Educational Publication AUDIO SYSTEMS GUIDE THEATER PERFORMANCES By Crispin Tapia
2
3 Table of Contents Audio Systems Guide for Introduction Microphone Design Dynamic Microphones Condenser Microphones Microphone Directionality Microphone Selection And Placement Lavalier Microphones Headset Microphones Overhead Microphones Boundary Microphones Wireless Microphone Systems Frequency Coordination Bodypack Transmitters Batteries Receivers And Antennas Automatic Frequency Selection Intercom Systems Assistive Listening Systems Personal Monitor Systems Conclusion Other Recommended Reading About the Author Glossary Theater Performances 3
4 Introduction Proper microphone selection and placement in theater applications can dramatically improve and reinforce the impact of the action and emotion on stage. On Broadway as well as on small community stages, in large productions and small, the theater experience relies as heavily on good sound as on any other feature. In small, acoustically pleasing venues, simply projecting your voice may be all that is necessary for everyone to hear. That was how it was done for hundreds of years before the development of electricity and microphones. However, in modern larger theaters and for more complex productions, microphones and sound reinforcement systems often become absolutely necessary. While the physical design of the theater environment and its acoustic qualities must be considered in the design of a sound reinforcement system, the topics we will focus on in this book include microphone selection and placement, and wireless microphone systems. This text will examine how microphones, both wired and wireless, can be used to insure that every word spoken or sung is heard while taking into account some of the complexities of costuming or staging. Some of the text in this booklet is pulled from several of Shure Incorporated s Applications Bulletins and educational booklets which can be found on the Shure Inc. website, It also contains new material, which covers microphone techniques specific to theater productions. These techniques can be useful in all theater applications regardless of venue size. Introduction 4
5 MICROPHONE DESIGN A microphone is a type of transducer, which is a device that converts one form of energy into another. A microphone is capturing acoustic energy, the sound waves of a voice or musical instrument, and converting it into electrical energy. The electrical energy, or the electrical representation of the sound wave, is then transferred to the next device in the audio chain through the microphone cable, or via a wireless system, which sends the audio signal through space using radio waves. There are several types of microphone designs that perform this task using different methods. For our purposes, we will concentrate on the two most common types of microphones used in professional audio today, dynamic microphones and condenser microphones. Dynamic Microphones Dynamic microphones use an assembly consisting of a thin diaphragm, a voice coil, and a magnet. As sound waves strike the diaphragm, which is usually made of a very thin plastic, it causes the attached voice coil to vibrate within the magnet s field. This action, known as electromagnetic induction, generates the electrical representation of the sound wave. This miniature electric generator is a very simple design, yet it is a very cost-effective way of creating an audio signal. Dynamic microphones tend to be more Audio Systems Guide for Dynamic Microphone resistant to rough handling, humidity, and temperature change. They can also handle extremely loud sounds and are almost impossible to overload. For these reasons, dynamic microphones are widely, though not exclusively, used in live sound reinforcement. Condenser Microphones Condenser Microphone Condenser microphones use an assembly consisting of a diaphragm and an electrically charged backplate. The assembly is basically a capacitor, which is a device that can store a charge. In this design, a thin layer called an insulator separates the metal or metal-coated backplate, which is rigid, and the diaphragm, which is flexible. When the condenser element is charged, an electrical field is created between the diaphragm and the backplate. The charge is proportional to the space between them. As sound waves strike the diaphragm and cause it to 5
6 vibrate, the spacing in between the two surfaces varies, affecting the electrical charge in the assembly. This fluctuation creates the electrical representation of the sound wave. There are two types of condenser microphones, distinguished by the method used to charge the element. Electret condenser microphones have a permanently charged backplate. Non-electret, or "externally biased" condensers require a voltage, called phantom power, which is supplied from another device to charge the backplate. Usually, the next device in the audio chain supplies phantom power that is between 12Vdc and 48Vdc. It is supplied directly through the microphone cable. All condensers have active circuitry incorporated into the design, which is required to supply a usable voltage level to the next audio device, and to convert the microphone output to low impedance. This active circuitry is called the pre-amplifier and is often powered by phantom power as well. Some electret condensers have a provision for supplying the pre-amplifier power by means of a battery held either within the handle of the microphone, or in the case of lavaliers, in a small beltpack. In the absence of phantom power the battery takes over. Because of their design, condenser microphones can be considerably more expensive than dynamic microphones. They are also more sensitive to temperature and humidity changes or rough handling. However, condensers provide a great advantage over dynamics in theater applications for a couple of reasons. First, they can be made much smaller than dynamics, making them much easier to mount on or hide in costuming. Secondly, they generally have much better frequency response and higher sensitivity, making them better for use in critical sound reinforcement applications, and better for overhead or boundary microphone techniques where the microphones are placed much further from the performers. Microphone Directionality Whenever you are choosing a microphone for an application, it is important to consider its directionality, sometimes referred to as its polar pattern or pick-up pattern. There are several directional patterns available, the primary being omnidirectional, unidirectional, and bi-directional. A microphone s directional pattern is usually illustrated on its specification sheet or user guide by a polar graph that shows the microphone s sensitivity to sound arriving from different angles. The graphs show the "receiving" end of the microphone at 0 degrees. Omnidirectional Microphone 6
7 An omnidirectional microphone has equal sensitivity at any angle. Sounds are reproduced equally whether arriving at 0 degrees (on axis) or at 180 degrees (the rear of the mic). The important thing to remember is that omnidirectional microphones will pick up ambient or room sound as well as the sound you intend to amplify or record. This can contribute to feedback Cardioid (Unidirectional) Microphone issues in a live sound reinforcement system. Feedback is the unwanted, high-pitched squeal or howl produced when sound from a loudspeaker is picked up by a nearby microphone and re-amplified. For this reason, omnidirectional microphones are often used for direct recording and theater applications (most productions rarely employ onstage monitor loudspeakers, so omnidirectional microphones are Supercardioid Microphone acceptable). A unidirectional microphone is most sensitive to sound arriving on axis and less sensitive to sound as it moves off axis. Using unidirectional microphones can allow higher gain levels from the sound system before feedback becomes a problem. There are two primary types of unidirectional microphones. Cardioid microphones exhibit an upside down heart-shaped pattern with a 130-degree pickup angle in front. Sound is greatly attenuated at 180 degrees. Supercardioid microphones exhibit a narrower pickup angle of around 115 degrees in front and therefore are even less sensitive to ambient sounds. This can provide still higher gain before feedback. However, they do have some sensitivity directly rear of the microphone at 180 degrees, making placement even more critical. Any unidirectional microphone can be very effective in an application with a high level of undesirable ambient sound. This is of great benefit when trying to achieve maximum gain before feedback. Since unidirectional microphones pick up less ambient sounds than omnidirectional microphones, they can be used in situations where you may need to mic a sound source from a slightly farther distance yet still maintain the direct to ambient mix of an up close omni. Unidirectional microphones tend to lose high frequency sensitivity first as the sound source moves further off axis. Because of this, the sound may become "muddy" and less bright when the mic is not pointed directly at the sound source. Unidirectional mics also exhibit proximity effect, which is an increase in bass response as the sound source moves closer to 7
8 the mic. This may cause the sound source to sound "boomy" or "bassy". Depending on the application, this may or may not be desired. Omnidirectional microphones do not exhibit proximity effect and are less susceptible to wind and breath noise. This is an important thing to consider when choosing mics for an outdoor performance. Bi-directional microphones are most sensitive at 0 degrees and 180 degrees, while being least sensitive at 90 degrees (at the sides). The coverage angle at either front or back is about 90 degrees. These mics are used mainly for pickup of two opposing sound sources. They are often used in certain stereo recording techniques, and are incorporated in the design of an MS (mid-side) stereo microphone. They are rarely used in live sound reinforcement or theater applications. MICROPHONE SELECTION AND PLACEMENT Choosing the proper microphone for any given application can also be based on several other factors not yet discussed: price, quality, and especially in theater, physical size and color. Whichever microphone is chosen, it is the first step towards an effective sound system. The goal of any sound reinforcement system is to project the program material to an audience in a manner that allows the person furthest away from the performance area to hear sufficiently. An efficient system will allow enough amplification to occur before feedback is a problem. Feedback can be devastating to any production and severely distracting to the audience and the talent, not to mention the damage it can do to the sound system and your hearing. The system s efficiency can be greatly affected by room acoustics, system components, and the performers themselves, but there are several ways to minimize feedback. Solutions include: making the room less reverberant by treating it with absorptive materials, moving the loudspeakers further away from the microphones, and using unidirectional microphones. Some of these solutions are sometimes costly and not practical for smaller venues with limited resources. However, one of the most effective ways of minimizing feedback is to move the microphone closer to the sound source. In theater applications when it is not practical to use a typical handheld vocal microphone, the use of either a lavalier or headset microphone will best allow you to "close mic" the performers. Most modern lavalier and headset designs are lightweight and discreet. Both do an excellent job of increasing potential gain before feedback. Boundary microphones and overhead microphones can also provide good performance. These mics do not get as close to the sound source and, therefore, may not provide the same amount of potential gain, however, they can be less expensive in the long run and still quite inconspicuous. Let s look at each of these types of microphones, their physical qualities, and the techniques involved in their use. 8
9 Lavalier Microphones Lavalier microphones are made of small elements, usually condenser, designed to be mounted via clip or pin to clothing. They are generally connected to an XLR terminated pre-amp assembly, or for wireless applications, they can be terminated with a variety of connector types. The design of these mics makes them inconspicuous enough to be used in TV broadcast, video production, and of course, theater. Early designs used dynamic elements and were usually hung around the neck on a lanyard. Contemporary designs almost exclusively use condenser elements. They can now be as small as a few millimeters in diameter and weigh only an ounce or so (not Audio Systems Guide for WL50 Subminiature Lavalier Microphone including the pre-amp assembly). They are often available in several colors such as black, white, and tan. Lavaliers come with an array of mounting clips or pins; some include a magnet mount that will avoid creasing or putting holes in clothing. The same small capsules that are used in lavaliers are often used for wire frame headset microphones as well. In an effort to make lavaliers as flexible as possible for different mounting positions, manufacturers have made some lavaliers available with frequency response caps. These caps do not alter any circuitry; rather, they alter the high-frequency response of the mic in one of two ways. They either provide acoustic resistance to the opening of the cartridge, which attenuates the natural high-end frequency response, or they create an acoustical chamber on the front of the cartridge, which enhances the high-end frequency response of the microphone. Note that only omnidirectional microphones are available with this feature as the acoustical characteristics of unidirectional microphones cause them to sound worse when used with response shaping caps. Lavaliers allow you to place the mic much closer to the actor s mouth, increasing gain before feedback. Lavaliers, therefore, allow you to minimize pick up of room noise, stage vibrations, and other unwanted sounds. They are also more easily hidden and less cumbersome. When used with wireless systems, they give performers almost unlimited mobility. In theater applications where a lavalier is preferred, omnidirectional condensers are the most popular. It is true that using unidirectional microphones is one of the general rules to minimizing feedback due to their rejection of off-axis sounds; however, an omnidirectional in these applications is still very effective because of the improved proximity to the performer s mouth. This distance stays consistent as the performer moves around the stage when using wireless lavaliers. Omnidirectional microphones do not exhibit proximity effect, reducing the need to cut low frequency response at the mixer. Another reason using omnidirectionals can be advantageous, is that the frequency response of the mic stays consistent even if the sound source is off axis, or if the mic is in an unusual position. This is an important attribute given that mic technique in theater productions involves the creative positioning of the microphone on a performer. Wardrobe may not allow for the usual lavalier positioning on the chest. 9
10 Let s examine some lavalier techniques that will help get the best performance out of your microphones: Placement Place the mic at the top of the chest, or above the ear, or along the hairline. Avoid placing the mic too high on the chest by the throat. High frequencies can be blocked by the chin and cause the sound to be muffled or "muddy". Microphones that offer a high frequency boost cap can alleviate this to some extent. If placing a lavalier on or near the hairline, consult with the wigmaster to determine the best method to hold it in place. Mics and cables can be secured in the hair using clips, comb clips, bobby pins, Tie clip placement and hairline placement of or even elastic headbands. lavaliers You can also sew them into wigs or barrettes. If the actor will be wearing glasses, the mic can be mounted on the temple area of the glasses. A small piece of clear tape should hold it steady. If placement above the ear is best for your production, you can construct an "ear clip" using a hanger, pipe cleaner, florist s wire, or a heavyweight paper clip. Make a loop on the end that goes over the ear to hold the microphone cartridge. Then, form the wire around the back of the ear and curl the opposite end up around the front of the earlobe to until there is 1/4 of an inch exposed. Cut any excess wire. For added comfort, and to hold the cable, slide some snug fitting surgical tubing or apply heat shrink tubing over the microphone cable and wire. 10
11 Keeping them stable Never use gaffer tape to affix cable to the skin. The glue on this tape can cause skin irritation and may be too sticky. As an alternative you can use surgical tape, spirit gum, medical adhesive, or clear bandage tape. Be sure to provide strain relief for the cable. When mounting a lavalier on the head, the cabling at the point at which the neck bends needs to be the most secure. Make sure there is slack or a sudden movement can pull the microphone out of place. Again, surgical tape is the best choice for securing the cable to the neck. Care and maintenance Be careful not to get makeup into the grill or the element. Use a windscreen to protect the mic whenever possible. Any makeup that gets inside can alter the frequency response or destroy the element altogether. Do not use liquid or soap to clean the mic; this can be more damaging than the makeup. It is generally best to replace the grill of the mic if it becomes covered with makeup. If you must attempt to clean the mic, hold it upside down and brush it lightly with a soft brush or cloth. This will help prevent residue from getting down into the element. To clean adhesives off of the cable, you can use a mix of warm distilled water and no more than 10% alcohol. Check with the manufacturer for any specific cleaning methods for their microphones. It is not uncommon for a microphone to "sweat out", which occurs when the cartridge becomes drenched with sweat and ceases to work properly. In many cases this is temporary. Shaking out the sweat can be effective. If more maintenance is necessary, the microphone can be placed in an airtight box containing a silica gel packet. This will absorb moisture in the box. Sweat can drip down the cable to the capsule. To prevent this you can affix a small cotton or gauze patch around the cable in an inconspicuous position. Some manufacturers offer "sweat rings", which are small plastic or rubber collars that hug the cable and keep moisture from dripping into the capsule. To ensure sweat doesn t enter the connector and cause an electrical short, make sure that the connector has a rubber flex-relief and that it fits snuggly around the cable so that there is no opening for the sweat to drip into the connector. Adding a small piece of heat shrink tubing around the cable and over the solder contacts can help close a gap between the cable and the flex-relief, or add an additional level of assurance in active performances. 11
12 The day-to-day maintenance of your microphones should include letting them thoroughly dry in a cool, dry space after each use. In cases where your microphones are being used extensively in unusually harsh environments like the outdoors, in direct sunlight, in extreme humidity, or any combination of the three, it might be prudent to obtain an airtight box as mentioned above to store and dry your microphones overnight. This is a frequent practice at theme parks and on Broadway. Getting the best sound If the microphone cable is run inside of clothing, tape the cable to the fabric to prevent contact noise, which is caused by cable and clothing rubbing together. Consider sewing a "channel" or "tube" of fabric on the inside of the costume to prevent excess rubbing against the cable. You can also tie a loose, simple knot in the mic cable near the mic, this will help block noise from getting to the capsule. Noise from materials in costuming rubbing together can be difficult to prevent. Synthetic materials make more noise than other materials. Consult with wardrobe to see if there is a practical way to isolate the mic and cable from noise. If using a unidirectional lavalier mic in the chest area, remember that those types of microphones exhibit proximity effect. Because it is much closer to a resonating chest cavity, it may sound boomy. You can compensate for this by using equalization to decrease the low frequencies. Don t be afraid to use equalization. High frequency boost can help brighten a mic that is covered by clothing or positioned in the hairline. Low frequency reduction can help reduce cable noise, breath pops, or wind noise. Keep spare mics on hand. Lavalier mics may eventually need replacement in an abusive environment like theater. Sweat, makeup, and constant tugging on cables and connectors can take their toll on lavaliers. Inspect your mics on a regular basis by plugging them in and listening for odd noises, crackling, or degradation of frequency response. Wiggle the cables and connectors to check for loose connections. Remember that some damage may not be covered by the manufacturer s warranty so exercise care. 12
13 Headset Microphones Let s revisit the concept of micing a sound source as closely as possible to increase gain before feedback. In most theater applications, the actor s mouth is the sound source. A lavalier does a good job of close micing, especially when mounted in front of the ear or on the hairline. However, the ultimate position would be at the performer s mouth. The only way to do this is with a headset microphone. While not quite as discreet as a lavalier, most modern headsets are very lightweight and comfortable for the wearer. Many headsets have a frame that goes over the head but most professional quality headsets have a lightweight wire frame that sits on the ears and wraps around the back of the head, with a short boom arm that holds a condenser element at the corner of the mouth. They are available in various colors so that they can be less obvious to the audience. Condenser headsets have the required pre-amplifier assembly or are terminated in some manner for use with a wireless transmitter. There are omnidirectional headsets and unidirectional headsets, the choice of which can be determined by reviewing the characteristics of each and determining which is best for your application. All headsets should be stable enough to maintain the microphone position at the mouth regardless of the head movements of the actors. More and more large-scale productions are using headsets, especially in high-energy musical performances; and manufacturers are consistently updating their designs to maintain the best performing mix of comfort and sound quality. Beta 53 Overhead Microphones Headworn Microphone The microphone techniques we ve been covering up to this point have involved the use of one microphone on every performer. However, this can be cost prohibitive in many smaller theaters, schools, community theater, or church pageants. An alternative method uses overhead or hanging microphones, sometimes called choir microphones. These capture sound by hanging down from above the stage. Overhead mics usually are comprised of a condenser element mounted on a short gooseneck, which then leads to a thin cable. The length of cable can be up to feet long, and ends in the necessary pre-amplifier assembly. They can be found in various colors and polar patterns. A high quality probe style or "end-address" condenser microphone can also be used, although they are quite a bit larger. There are Illustrative example of overhead microphone placement being used to provide area coverage adapters available that will suspend these more traditional microphones by the cable for overhead use and maintain their position. 13
14 Using overhead microphones to capture sound from above can provide decent sound reinforcement, but you should be realistic as to what to expect. These microphones are further away from the sound source than even a microphone on a floor stand would be, and will pick up more ambient sound than preferred. This, in addition to the possibility of these mics actually being closer to loudspeakers than to the sound source, can lead to significantly reduced gain before feedback. Another factor contributing to feedback is the number of open microphones being used. The more open microphones in a sound reinforcement system, the less potential gain before feedback. Therefore, the idea to put in more mics to cover the area better or to "make it louder" will in fact worsen the situation. It is a must to use as few overhead microphones as necessary. Other things to remember when using overhead microphones: Placement of these microphones is often dictated by the constraints of the stage set. Take into consideration when possible, the position of the actors on stage and install mics accordingly. Planned scenery for a production may make installed overheads unusable due to scenery changes, space limitations, or reflection of sound. Remember that most actors project their voice to the audience. An overhead microphone, if pointed straight down, is pointed at the top of someone s head. Speech is not as intelligible from that vantage point as the high frequency content is lost. At the same time, the microphone can be picking up both the reflected sound off the surface of the stage, as well as mechanical or air handling noise from above. When combined with direct sound, this will provide poor audio quality. For most reinforcement applications, you should stick with a unidirectional polar pattern. Whenever possible, you should hang an overhead mic 2 to 3 feet in front of the nearest actor downstage. The capsule should be aimed slightly upstage. These mics work best when installed 2 to 3 feet above head level. Increasing this variable will reduce your potential gain before feedback. Always observe the 3-to-1 Rule when spacing multiple microphones to cover a larger area. The 3-to-1 Rule states that the microphone to microphone distance should be three times the microphone to sound source distance. This will reduce interference effects such as comb filtering. Remember that overhead microphones will not give you the same performance as a lavalier 3-to-1 Rule 14
15 Boundary Microphones Boundary microphones are an alternative to miking each individual performer, and an alternative to overheads. These mics are designed to be laid flat on an acoustically reflective surface, in this case the stage itself. Again, these mics are usually condenser elements in a low profile housing. The necessary pre-amp can be self-contained or the in-line type found in overheads. They should be placed along the lip of the stage, with a unidirectional polar pattern aiming back at the action on stage. They obviously need to be out of the actors way as far downstage as possible. You should follow the 3-to-1 Rule with these mics as well. The drawbacks to these microphones are some of the same drawbacks we have seen with overhead mics, primarily the distance from the sound source and the proximity to the loudspeakers. Add to this, the pickup of stage Audio Systems Guide for Example of unidirectional boundary microphones being used to provide area coverage for an on-stage application noise from the actors feet, scenery movements, etc. You can alleviate some stage noise by placing a soft felt or foam pad in between the mic and the stage, and decreasing the low frequencies on the EQ. Small boundary microphones can be hidden in permanent scenery, such as on a table in the center of a room scene. Polar pattern for this method is dictated by the microphone s position relative to the actors. Overhead and boundary microphones work best with experienced actors whose voices project well. People with softer voices and some children do not have the ability to project their voices enough for overhead or boundary microphones. In many cases with overhead or boundary mics you may be tempted to turn up the system volume to compensate for the increased distance from the actors, but beware that this can push the system into feedback. A headset or lavalier may still be the best answer for your production because they allow for greater gain before feedback than either overhead or boundary microphones. 15
16 WIRELESS MICROPHONE SYSTEMS To achieve the ultimate in mobility and still maintain the highest potential gain before feedback requires the use of wireless lavalier microphones. Without wireless lavalier microphones in larger productions, movement would be restricted, scene and wardrobe changes would be difficult, and walking or dancing around stage would just become dangerous. Through advances in wireless microphone technology, and the availability of more affordable systems, stage productions now have freedom of movement onstage and off. Bodypack transmitters are easy to conceal, and many wireless systems can be used simultaneously. There are rules to using wireless however, which you must follow. Most of these rules are regarding frequency selection and antenna usage. Much of what has been learned about placement of mics and bodypack transmitters has been learned through years of trial and error. Every production yet to come will no doubt present new challenges and solutions. ULX Wireless Systems Frequency Coordination The process of optimizing wireless performance begins before the product is designed and manufactured. Manufacturers carefully design all components within transmitters and receivers to minimize unfavorable interaction between systems and their environment. Available operating frequencies for wireless systems are also carefully selected to allow users to use their systems with relative peace of mind. However, care must always be taken to choose systems according to the potential benefit to the application, and with advance knowledge of possible sources of radio frequency (RF) interference. By observing a few guidelines when choosing wireless systems, you can minimize the risk of poor performance: A receiver can only demodulate one radio signal at a time. In other words, a wireless receiver on any given frequency can only receive a signal from one transmitter on that frequency. If there are two signals present on the same frequency, the stronger of the two may block out the other, or the output of the receiver will be unusable noise. The analogy most often referred to in explaining this concept is commercial FM radio. In any city, only one station is broadcasting on any given frequency. Many receivers (e.g. car radios) may be tuned to say, 97.9FM, but only one station is broadcasting on that frequency. If you reach an area between two cities, both having stations on 97.9FM, the signal reception is poor and very noisy. 16
17 Broadcast TV channels, whether analog or digital, must be avoided. The great majority of wireless microphone systems operate within the radio frequency range of broadcast television, per FCC regulations. However, FCC regulations prohibit the use of wireless microphone systems on occupied TV frequencies. The strength of RF from broadcast TV antennas can be millions of times stronger than wireless microphone signals. If systems are on an occupied TV frequency, the systems will not operate properly. Manufacturers of wireless microphones can assist you in determining your proximity to TV broadcast antennas and determine which frequencies are open for use and compatible with each other in your area. In multiple system set ups, each wireless system must operate on its own frequency. It is generally recommended that each system s carrier frequency be at least 400 khz (.4 MHz) apart from the next system s carrier frequency. However, this is dependent on the ability of the receiver to "listen" only to its own transmitter. It should never be assumed that simply choosing systems that are each 400 khz apart from each other is improving the set up. In fact, doing so is actually guaranteeing interference problems due to the harmonics generated at multiples of the carrier frequency. Operating frequencies for multiple system set-ups must also be chosen to avoid Intermodulation Distortion, or IMD. Intermodulation is the collective of frequencies produced by combinations of other (non-carrier) frequencies present in wireless components. The use of non-linear circuits in wireless system designs causes the generation of new, weaker radio signals on various multiples of the operating frequency. These can combine with the operating frequency of another system, or that other system s own new signals. The IMD products that are created by two or more systems can be very complex and difficult to calculate. Manufacturers have proprietary computer programs that can calculate these possible interactions for you. amplitude frequency IMDs created by two transmitters 17
18 Bodypack Transmitters Bodypack placement is often a test of the imagination and innovation of the sound designer and wardrobe master. While lavalier microphones are small and easily hidden, wireless bodypack transmitters are much larger and not as easily fastened to the actors, let alone hidden. Add to this the need to coordinate sometimes harried costume changes, and you have a logistical challenge. Most bodypack transmitters are of the same general shape and size. They are a few inches high, a few inches wide and maybe half an inch thick. With a little ingenuity and creativity they can be mounted almost anywhere. Since most come with a standard Examples of transmitters (left to right: handheld, bodypack) belt clip, the obvious easy option is to clip the bodypack onto an actor s clothing at the beltline or on the hip area. They can also fit into pockets of shirts, jackets, or pants with little hassle. Even so, it is important to allow the antenna to be unobstructed and fully extended. Extra pockets of fabric can be sewn into costuming when the bodypack needs to be as unobtrusive as possible without using the clip. When costuming prohibits normal positioning, or if you cannot sew more pockets into the wardrobe, there are other options to consider. The small of the back can be used for placement if a fanny pack or similar harness is used instead of a clip. A bodypack can be held between the shoulder blades and under costuming using a shoulder harness made up of a pouch for the pack and a couple of loops to go around the shoulders. Maintaining stability in some odd locations can require the use of cloth or elastic straps, which can be stable enough to hold bodypacks on to arms and thighs. Affixing a large safety pin to a bodypack fixed with gaffers tape can allow smaller, lighter bodypacks to be affixed to hats or wigs, although this may not be the best choice for physically active performances or dancing. Creative ways of affixing bodypacks to actors are being developed at all levels of theater portable everyday, because every situation is unique. Here are some useful tips to remember: Receiver examples 18
19 NO OK RF signal can be blocked and reflected by metallic surfaces. This can include any costuming that has metal threading or metal plating, the extreme case being your knight in shining armor. Wearing a bodypack under this material will severely degrade RF performance. Proper and improper antenna positions Antennas of bodypacks should always be kept as clear as possible from obstructive surfaces or materials. As stated earlier, an antenna should never be curled up and stuffed into pockets. Allow for strain relief on the mic connector and antenna, so that movement of the actor will not crimp the cable or antenna with their movements. Repetitive strain on the cable will cause failure sooner rather than later. Remember to check cables thoroughly before each performance. You can utilize the lock out features of some bodypacks to make sure the actor cannot accidentally power off the transmitter during a performance, or in the case of frequency agile systems, accidentally change the operating frequency. Make sure to leave the battery as accessible as possible, as you may need to do a quick change unexpectedly. The human body, because of its composition, can cause some RF transmission issues with bodypack transmitters. In certain cases, the body of the actor can potentially inhibit RF transmission. Repositioning the bodypack or the receiving antennas (or both) can overcome this occurrence. Sweat can be potentially harmful to the electronics of a bodypack transmitter. There are many methods sound designers have created to protect bodypacks from sweat. A simple solution is to wear a Neoprene transmitter pouch when practical. While not completely waterproof, it will protect the bodypack from low-level sweat and moisture. Another more protective method is to use a dry condom to cover the bodypack. As unusual as it sounds, it is fairly effective when used properly. An un-powdered, dry surgical glove can also be used. Remember that there are people allergic to latex or other materials, so check with the talent ahead of time before using any method of covering a bodypack next to skin. 19
20 It is a good idea to clearly label your bodypacks in some manner to identify the intended user. Any mix-ups can destroy the continuity of the show and cause the sound engineer to search for the right mixer channel to operate. Do not leave transmitters bunched together on a table or in a bin when they are on. The proximity of the transmitters to each other can increase the likelihood of intermodulation distortion (IMD) manifesting itself on one or more receivers. The same effects can occur when poorly chosen frequencies are used on bodypacks that are then worn on actors that are very close to each other on stage. Proper selection of frequencies is a must. Bodypacks can come equipped with a variety of input connectors, depending on the manufacturer. Most will supply bias voltage for condenser elements. Using one manufacturer s wireless lavalier microphone with another manufacturer s transmitter and receiver is not out of the question. It is a matter of contacting the manufacturer of either and getting the proper "pin outs" of the connector types. It may require purchasing a mic with no connector, or rewiring the proper connector on to the lavalier to match the bodypack. Do not assume that if the connector is the same between manufacturers the mic will work. There are several ways of wiring any given connector. Regarding output power of transmitters, it should be noted that output power is not only regulated by government agencies, but it is also carefully determined by the manufacturer. It is true that higher output power may increase the transmission range of the RF signal (antenna efficiency can also affect range), however it can also cause a higher likelihood of IMD in multiple system setups. Typical range of wireless systems is usually listed on the specification sheet available from the manufacturer. Most theater applications dictate the use of lower power transmitters (5mW-50mW) for greater multi-system compatibility. Also, lower output power can translate to longer battery life. Batteries Battery life varies from model to model and manufacturer to manufacturer. Bodypack transmitter features that can affect battery life are tone key squelch, output power, LED or LCD displays, and antenna efficiency. The battery type required can vary as well, with transmitters using 9V, "AA", or "AAA" batteries. Alkaline batteries provide the best performance for wireless microphone transmitters. They last much longer than basic carbon-zinc batteries, and they maintain a voltage usable to the transmitter Alkaline vs. rechargeable batteries 20
21 until much closer to the end of their life. For maximum battery life, a lithium battery can be used. They can last two to three times longer than an alkaline battery, but they can also be much more expensive. Rechargeable NiCd (Nickel Cadmium) and NiMH (Nickel Metal Hydride) batteries are generally not recommended because they do not have as much power density as alkaline, and in the case of some 9V s, they may in fact only be providing 7.2V, which is not enough for the transmitter to function properly. Rechargeable alkaline batteries are the best choice if rechargeable batteries are absolutely necessary, however, no 9V rechargeable alkaline is available yet. Receivers and Antennas Setup of wireless system receivers involves first the antenna-to-receiver interface and then antenna placement. The simplest setup involves a receiver with the antenna(s) permanently attached. Receivers with non-detachable antennas should be placed on an open surface or shelf, in line-of-sight to the transmitter, for proper operation. They are often not suitable for rack mounting except perhaps as a single unit at the top of a rack and then only if the antennas are mounted on the front of the receiver or if they can project through the top of the rack. A receiver with detachable antennas offers more versatility in setup. In most cases these antennas are attached to the rear of the receiver. If the receiver is to be mounted in a metal rack the antennas must be brought to the outside of the rack. Some designs allow the antennas to be moved to the front of the receiver, while others provide an accessory panel for front mounting. Again, the receiver should be mounted high enough in the rack so that the antennas are essentially in the open. Here is a review of general rules concerning setup and use of receiver antennas: Maintain line-of-sight between the transmitter and receiver antennas as much as possible. Avoid metal objects, walls, and large numbers of people between the receiving antenna and its associated transmitter. Ideally, this means that receiving antennas should be in the same room as the transmitters and elevated above the audience or other obstructions. 1/4 wave and 1/2 wave antennas UHF range 21
22 22 Keep the receiver antenna at a reasonable distance to the transmitter. The maximum distance is not constant but is limited by transmitter power, intervening objects, interference, and receiver sensitivity. Closer is preferable, but a minimum distance of about 10 feet is recommended to avoid potential intermodulation products in the receiver. Ideally, it is better to have the antenna/receiver combination near the transmitter (just off stage), and run a long audio cable back to the mix position, than it is to run a long antenna cable or to transmit over long distances. Use the proper type of receiver antenna. A 1/4-wave antenna can be used if it is mounted directly to the receiver, to an antenna distribution device, or to another panel that acts as a ground-plane. If the antenna is to be located at a distance from the receiver, a 1/2-wave antenna is required. This type has somewhat increased sensitivity over the 1/4-wave and does not require a ground-plane. For installations requiring more distant antenna placement or in cases of strong interfering sources it may be necessary to use a directional antenna suitably aimed. They are sensitive to RF in the forward direction and much less sensitive to RF at the rear. Select the correctly tuned receiver antennas. Most antennas have a finite bandwidth making them suitable for receivers operating within only a certain frequency band. When antenna distribution systems are used, receivers should be grouped with antennas of the appropriate frequency band as much as possible. Telescoping antennas should be extended to their proper length. To get the best RF reception from a diversity receiver (those with 2 antennas), the minimum separation between its antennas should be 1/4 wavelength (about 16 inches for VHF, 4 inches for UHF). The effect improves somewhat up to a separation of about one wavelength. Diversity performance does not change substantially beyond this separation distance. However, overall coverage of very large areas may be improved by further separation. Locate receiver antennas away from any suspected sources of interference. These include other receiver antennas as well as digital equipment like CD players, digital effects units, lighting control systems, etc. All of these devices have the potential to emit electromagnetic interference, which can result in poor RF reception, noise, and other problems. Mount receiver antennas away from metal objects. Ideally, antennas should be in the open or perpendicular to metal structures such as racks, grids, metal studs, etc. They should be at least 1/4 wavelength from any parallel metal structure. All antennas in a multiple system setup should be at least 1/4 wavelength apart.
23 Orient receiver antennas properly. If transmitter antennas are generally vertical then receiver antennas should be approximately vertical as well. If transmitter antenna orientation is unpredictable then receiver antennas may be oriented up to 45 degrees from vertical. Use the proper antenna cable for remotely locating receiver antennas. A minimum length of the appropriate low-loss cable equipped with the proper connectors will give the best results. Because of increasing losses at higher frequencies, UHF systems may require special cables and active antenna amplifiers. Refer to the manufacturer s recommendations for antenna extension cables and amplifiers. Use an antenna distribution system when possible. This will minimize the overall number of antennas and may reduce interference problems with multiple receivers. For two receivers a passive splitter may be used. For three or more receivers active splitters are strongly recommended. Automatic Frequency Selection A new technology being introduced into wireless microphone receivers is the automatic frequency scan and set capability. With this technology, the receiver can be instructed to scan a set of frequencies and determine the most appropriate frequency for that particular set up. The receiver scans the set of frequencies while measuring RF signal strength. The RF signal can be other RF sources such as local TV broadcast, wireless microphone systems, or RF "noise". In any case, the manufacturer has programmed into the receiver an acceptable threshold level for RF strength from these outside sources. When the RF signal strength on a scanned frequency is below the threshold, the receiver determines that the frequency is usable. It then sets itself to that frequency, or the user acknowledges the frequency scan result and sets the receiver manually. The transmitters may still need to be manually set to the receiver s chosen frequency, although some newer systems can also set the transmitter frequency via an infrared communication link. For multiple system set ups, the procedures can vary according to the scanning abilities of the receiver. Some receivers may be able to scan pre-programmed groups of frequencies to determine which group has the greatest number of compatible systems. This automatic frequency scanning technology can simplify and shorten the set up process, however, it may take time for the technology to be widely available. 23
24 INTERCOM SYSTEMS Intercom systems are communication networks designed to allow production staff to talk to one another from different areas of the venue. These systems are separate from any sound reinforcement equipment reproducing the performance. To monitor the performance itself, these systems can provide for an input from the main sound reinforcement system so staff can synchronize cues. Intercom systems most often are permanently installed systems that have individual stations located in different key areas of the venue. They are found at the front of house (FOH) mix position, spotlight positions, backstage, dressing rooms, etc. To allow two-way communication, intercom stations may have a built-in speaker/mic, or provide inputs for headsets and microphones. Some stations may be in bodypack form for easy use by semi-mobile staff, or for use in portable systems. Other stations can be wall mounted, rack mounted, table top, or telephone handset type. Intercoms can be configured in many different ways, from a simple 2-station system, to systems of 60 or more with digital control panels and switching systems for multiple channels. There are wireless intercom systems available, which often work in the same frequency range as wireless microphones. In these cases wireless frequency coordination becomes even more critical to avoid compatibility issues. ASSISTIVE LISTENING SYSTEMS Assistive listening systems are generally used to provide improved sound to individuals with hearing impairments. They may also be used to provide simultaneous translation of the program into other languages. They consist of a single transmitter and as many receivers as necessary. The transmitter is about the same size as a typical wireless microphone receiver with an attached antenna and is AC powered. The receivers are small, battery operated packs with an attached earpiece or headphones, or in some cases they can be adapted to the user s hearing StarSound 600 System. An example of an infrared assistive listening device (photo courtesy of Phonic Ear Inc. SM2 Headworn Microphone. An example of a microphone used in intercom systems aid. These systems are operated in the 72MHz-76MHz range, which is reserved specifically for them. No license is required. The source is most often a feed of the overall mix from the main sound reinforcement system. 24
25 An alternative technology uses infrared transmitters and receivers. Again, a single transmitter is used with multiple receivers. The transmitter is usually placed at an elevated location at the front of the theater where listeners facing forward can see it. The receivers are sometimes a small clip-on pack with an IR sensor at the top or occasionally a headset with an attached IR sensor. Since these are not radio systems, there is no concern for frequency, licensing, or radio interference. The only operating concern is to avoid strong, direct sunlight on the receiver IR sensors. IR systems will only work in a single room. The infrared signal is unable to travel through walls to an adjacent room. This can be either a benefit or a hindrance depending on the application. Assistive listening systems are a reliable and relatively inexpensive technology, widely used in theaters, houses of worship, and schools. In fact, the Americans with Disabilities Act (ADA) requires their use in many public facilities. Receivers are generally made available to people at the performance by the venue. However, since the receivers are fairly inexpensive and transmitters are standardized, some individuals may purchase their own receivers to carry with them to performances. PERSONAL MONITOR SYSTEMS Personal Monitor Technology was born out of concert sound applications but is now becoming more popular in some theater applications. These systems are used to provide monitoring or foldback directly to the ears of a performer. The system parts are essentially the same as an Assistive Listening System: an AC powered transmitter, a battery powered bodypack receiver and earpieces. However, PSM 400 Wireless Personal Monitor System in-ear monitor systems are engineered to provide full range, high quality stereo sound to listeners with "normal" hearing. In addition, the earpieces are designed to seal out ambient sound to provide greater control of the mix and a fair degree of hearing protection. The source for in-ear systems is usually a combination of auxiliary mix outputs and/or direct channel outputs from the main sound reinforcement system, depending on the requirements of the listener. It is possible to customize a different mix for individual performers if each has his or her own transmitter/receiver. These systems are easily integrated with conventional mixers or dedicated monitor consoles. In theater applications, a director s feed can be mixed into the signal the performer is hearing in-ear. The director can then talk directly to the talent to provide cues, direction, and even dialogue prompts, all without the knowledge of the audience. If there are live musicians accompanying the show, they can use personal monitors to hear director s cues as well as monitor their own performance. In addition, the sound designer will be able to improve the overall sound in the house due to the lack of interference from monitor loudspeakers normally used by live musicians. 25
26 CONCLUSION The subjects of microphone design and selection, wireless microphone application, and associated audio processing are no doubt going to continue to evolve and expand. Each new production will require a new set of requirements and parameters that the sound designer or sound engineer will need to meet. New technologies will lead to perhaps more affordable and user-friendly products, but the principles of microphones and audio systems will remain the same. The topics that were covered within this book provide the foundation by which you can address your theater s microphone and wireless system needs. 26
27 Reference Information Recommended Shure Microphone Models Audio Systems Guide for Category Model Pattern Wired Lavalier MC50B Omnidirectional MC51B Cardioid MX183 Omnidirectional MX184 Supercardioid MX185 Cardioid SM93 Omnidirectional Wireless Lavalier WL50 Omnidirectional WL51 Cardioid WL183 Omnidirectional WL184 Supercardioid WL185 Cardioid WL93 Omnidirectional Wired Headset Beta 53 Omnidirectional Beta 54 Supercardioid WH30XLR Cardioid Wireless Headset WBH53 Omnidirectional WBH54 Supercardioid WH30TQG Cardioid Overhead MX202 O, C or S Overhead (probe style) KSM141 O and C (dual) KSM137 Cardioid KSM109 Cardioid SM81 Cardioid PG81 Cardioid Boundary MX393 O, C or S MX391 O, C or S Key: O = omnidirectional, C = cardioid, S = supercardioid 27
28 Reference Information OTHER RECOMMENDED READING Yamaha Sound Reinforcement Handbook Davis, Gary & Jones, Ralph. Hal Leonard Publishing Co. The Microphone Book Eargle, John. Focal Press. Sound Design in the Theater Bracewell, John. Prentice Hall Publishing Architectural Acoustics Egan, M. David. McGraw Hill Book Co. 28
29 Reference Information Audio Systems Guide for ABOUT THE AUTHOR Crispin Tapia Crispin Tapia is an Applications Specialist at Shure Incorporated. He has been active in the Chicago music scene for many years as a performer, and has experience in live sound and studio recording. He has earned both a B.A. in Psychology from the University of Illinois at Chicago, and a B.A. in Audio Engineering from Columbia College Chicago. His responsibilities at Shure Incorporated include conducting product training seminars to Shure dealers, Shure staff, and end users across the country. 29
30 Reference Information Glossary 3-to-1 Rule when using multiple microphones, the distance between microphones should be at least 3 times the distance from each microphone to its intended sound source. Ambient sound local or background sounds. Bias voltage a fixed DC voltage which establishes the operating characteristic of a circuit element such as a transistor. Boundary microphone a microphone designed to be mounted on an acoustically reflective surface. Cardioid microphone a unidirectional microphone with moderately wide front pickup (131 degrees). Angle of best rejection is 180 degrees from the front of the microphone, that is, directly at the rear. Comb filtering the variations in frequency response caused when a single sound source travels multiple paths to the listener s ear, causing a "hollow" sound quality. The resultant frequency response graph resembles a comb. Can also occur electronically with multiple microphones picking up the same sound source. Demodulation the recovery of the original modulating information from a radio signal. Diversity receiver design which picks up a radio signal simultaneously at multiple locations and intelligently switches or combines to yield the best continuous signal. Dynamic microphone a microphone that generates an electrical signal when sound waves cause a conductor to vibrate in a magnetic field. In a moving-coil microphone, the conductor is a coil of wire attached to the diaphragm. Electret a material (such as Teflon) that can retain a permanent electric charge. Feedback in a PA system consisting of a microphone, amplifier, and loudspeaker, feedback is the ringing or howling sound caused by amplified sound form the loudspeaker entering the microphone and being re-amplified. Gain amplification of sound level or voltage. Gain-before-feedback the amount of gain that can be achieved in a sound system before feedback or ringing occurs. Condenser microphone a microphone that generates an electrical signal when sound waves vary the spacing between two charged surfaces: the diaphragm and the backplate. IM intermodulation, frequencies produced by combinations of other frequencies in non-linear devices. 30
31 Reference Information Glossary Audio Systems Guide for IMD intermodulation distortion, another name for IM. Impedance in an electrical circuit, opposition to the flow of alternating current, measured in ohms. A high-impedance microphone has an impedance of 10,000 ohms or more. A low-impedance microphone has an impedance of 50 to 600 ohms. Lavalier microphone generally a small, condenser element worn on the chest area and mounted via a lanyard, clip, or pin. Omnidirectional microphone a microphone that picks up sound equally in all directions. Phantom power a method of providing power to the electronics of a condenser microphone through the microphone cable. Receiver device that is sensitive to radio signals and recovers information from them. RF radio frequency. Sensitivity a rating to express how "hot" the microphone is by exposing the microphone to a specified sound field level. Supercardioid microphone a unidirectional microphone with tighter front pickup angle (115 degrees) than a cardioid, but with some rear pickup. Angle of best rejection is 126 degrees from the front of the microphone, that is, 54 degrees from the rear. Transducer a device that converts one form of energy to another. Transmitter device which converts information to a radio signal. Wavelength the physical distance between successive complete cycles of a wave, inversely proportional to frequency, dependent on properties of medium. 31
32 Additional Shure Publications Available: Printed and electronic versions of the following guides are available free of charge. To obtain your complimentary copies, call one of the phone numbers listed below or visit Audio Systems Guide for Music Educators Audio Systems Guide for Houses of Worship Selection and Operation of Audio Signal Processors Selection and Operation of Wireless Microphone Systems Our Dedication to Quality Products Shure offers a complete line of microphones and wireless microphone systems for everyone from first-time users to professionals in the music industry for nearly every possible application. For over eight decades, the Shure name has been synonymous with quality audio. All Shure products are designed to provide consistent, high-quality performance under the most extreme real-life operating conditions. United States, Canada, Latin America, Caribbean: Shure Incorporated, 5800 West Touhy Ave, Niles, IL , USA Phone: US Fax: Int l Fax: Europe, Middle East, Africa: Shure Europe GmbH, Phone: Fax: Asia, Pacific: Shure Asia Limited, Phone: Fax: Shure Incorporated AL0000 AL1532B
COUNTRYMAN E6 OMNIDIRECTIONAL EARSET MICROPHONE
COUNTRYMAN E6 OMNIDIRECTIONAL EARSET MICROPHONE Thanks for choosing the Countryman E6 Omnidirectional Earset microphone. We re confident you ll find the E6 Omni to be the finest, most natural sounding
Turbo X. www.smartwireless.co.uk. 594 channel UHF true diversity
Turbo X 594 channel UHF true diversity The new Turbo X series from Smart Wireless is the culmination of two years of research and development into advanced wireless technology. Using sophisticated RF design
WIRELESS MICROPHONE SYSTEMS
INTRODUCTION TO WIRELESS MICROPHONE SYSTEMS A Shure Educational Publication INTRODUCTION TO WIRELESS MICROPHONE SYSTEMS Table of Contents Product Glossary... 4 Discover the components of a wireless system.
Sweet Adelines Microphone and Sound System Guidelines
Page 1 Sweet Adelines Microphone and Sound System Guidelines This document establishes a common source of microphone and sound system guidelines for the members of the Sweet Adelines. These guidelines
Introduction. A Shure Educational Publication. Personal Monitor Systems
Introduction A Shure Educational Publication Personal Monitor Systems What s Inside?] Personal Monitor Systems Throughout this introductory publication, components and systems common to Shure Personal
SLX WIRELESS SYSTEM The out-of-the-box wireless solution
Wireless Systems PGW PGX SLX ULX UHF-R SLX WIRELESS SYSTEM The out-of-the-box wireless solution Sound installations need powerful wireless tools which can be set-up quickly and used confidently. SLX Wireless
Wireless. with Personal Mix Control and EP3 Dynamic Earphones
Wireless In-Ear Monitor Systems with Personal Mix Control and EP3 Dynamic Earphones Why In-Ear Monitors? Clarity is first among the many reasons to make the switch from traditional floor monitors to wireless
UB1 P R O F E S S I O N A L M I C R O P H O N E S
UB1 P R O F E S S I O N A L M I C R O P H O N E S Table of Contents Introduction........................... 1 UB1 Features............................2 Installing the UB1......................3-6 Operating
GLX-D DIGITAL WIRELESS SYSTEMS WIRELESS INTELLIGENCE TAKES THE STAGE.
GLX-D DIGITAL WIRELESS SYSTEMS WIRELESS INTELLIGENCE TAKES THE STAGE. GLX-D Digital Wireless Systems CLEARLY A DIFFERENT KIND OF WIRELESS. It s live audio at a whole new level: Shure GLX-D Digital Wireless
Instruction manual EAR SET 1 EAR SET 4
Instruction manual EAR SET 1 EAR SET 4 Contents Safety instructions... 2 Delivery includes... 3 Ear Set 1... 3 Ear Set 4... 3 Ear Set 1 / Ear Set 4... 4 Features of the Ear Set 1 / Ear Set 4... 4 Putting
Model WH20 User Guide
Model WH20 User Guide 2005, Shure Incorporated 27G3078 (Rev. 7) Printed in U.S.A. GENERAL The Shure Model WH20 is a rugged, light-weight, dynamic headset microphone that provides high-quality voice pickup.
VAT CALCULATED AT 23% (AS FROM 1/1/12)
VAT CALCULATED AT 23% (AS FROM 1/1/12) AKG D5 The D 5 dynamic vocal microphone for lead and backing vocals delivers a powerful sound even on the noisiest stage. Its supercardioid polar pattern ensures
PS 29M DUAL CHANNEL BELTPACK IN METAL CASE
PS 29M DUAL CHANNEL BELTPACK IN METAL CASE USER MANUAL October 2013 This product is designed and manufactured by: ASL Intercom BV Zonnebaan 42 3542 EG Utrecht The Netherlands Phone: +31 (0)30 2411901 Fax:
User s Manual. Copyright 2014 Trick Technologies Oy
User s Manual Copyright 2014 Trick Technologies Oy Catchbox Pro Module Catchbox Cover Contents 1 Safety Instructions...4-5 2 Quick Start... 6-15 3 Product Description... 16-18 Overview...16 Compatibility...17
Single Transistor FM Transmitter Design
Single Transistor FM Transmitter Design In telecommunications, frequency modulation (FM) conveys information over a carrier wave by varying its frequency. FM is commonly used at VHF radio frequencies for
SP1790JK 900MHz Wireless Indoor/Outdoor Speakers. User Manual INTRODUCTION FEATURES IMPORTANT SAFETY INFORMATION
SP1790JK 900MHz Wireless Indoor/Outdoor Speakers INTRODUCTION This 900 MHz digital hybrid wireless speaker system uses the latest wireless technology that enables you to enjoy music and TV sound anywhere
TELIKOU Intercom System. MS-500(4+1 channel) Main Station Instruction Manual
TELIKOU Intercom System MS-500(4+1 channel) Main Station Instruction Manual TELIKOU Systems All Rights Reserved While TELIKOU makes every attempt to maintain the accuracy of the information contained in
Active Monitor Box McCrypt S.T.E.V.E. 15. Order No. 30 17 06
Active Monitor Box McCrypt S.T.E.V.E. 15 Order No. 30 17 06 1 McCrypt Active Monitor 15 Introduction Dear Customer, Thank you for purchasing this McCrypt Active Monitor. You have chosen a quality product
Table of Contents. Introduction... 1 SE50 Features... 2 Using the SE50...3 Specifications... 4
Table of Contents Introduction....................................................... 1 SE50 Features...................................................... 2 Using the SE50......................................................3
TV & Assistive Listening Devices
10 TV & Assistive Listening Devices TV & Assistive Listening Devices l Relaxing at the end of the day watching TV l Enjoying listening to music l Catching up with family & friends at a restaurant l Developing
Germanium Diode AM Radio
Germanium Diode AM Radio LAB 3 3.1 Introduction In this laboratory exercise you will build a germanium diode based AM (Medium Wave) radio. Earliest radios used simple diode detector circuits. The diodes
Congratulations! Thank you!
TM-47 ORDERCODE D1370 Congratulations! You have bought a great, innovative product from DAP Audio. The DAP Audio Microphone range brings excitement to any venue. Whether you want simple plug-&-play action
PROFESSIONAL MICROPHONES
C03 0-10dB Multi-Pattern Studio Condenser Microphone 0-10dB PROFESSIONAL MICROPHONES Table Of Contents Introduction 3 C03 Features 3 Operating the C03 4-6 Powering the C03 4 Setting up the Signal Level
Hear The Future...Now! SIEM-2T/SIEM-2R
Hear The Future...Now! SIEM-2T/SIEM-2R UHF PLL Mono In Ear Monitoring System 856 59508-03 ATTENTION Please pay high attention to the following information. The guideline published by Occupational Safety
Four Critical Factors to Consider
Four Critical Factors to Consider 1 The rush of the wind outside the cockpit. Sound is a critical part of the flying experience. That s why choosing a headset is so important. You want one that provides
M3 Instruction Manual
M3 Instruction Manual www.rodemic.com (EMC, LVD) Introduction Congratulations on purchasing the microphone. M3 The M3 was created to allow you to achieve the very best results from both live performance
Jarv Nmotion BTHL-201 Bluetooth Stereo Earbuds Users Guide
Jarv Nmotion BTHL-201 Bluetooth Stereo Earbuds Users Guide Features: Bluetooth wireless technology Comfortable lightweight in-ear design with detachable sports ear hooks for added support High Definition
TELIKOU Intercom System. TM-200 Main Station. Instruction Manual
Intercom System TM-200 Main Station Instruction Manual TELIKOU Systems All Rights Reserved I. Introduction Thank you for choosing TELIKOU intercom product. TM-200 main station is suitable for television
Using FM. A guide for children and their families on how to use an FM solution with hearing aids
Using FM A guide for children and their families on how to use an FM solution with hearing aids Congratulations on your new FM solution!! This booklet tells you how to use your FM solution, where to use
Generating Element. Frequency Response. Polar Pattern. Impedance. Output Level
Generating Element Frequency Response Polar Pattern Impedance Output Level Weight Pro 7: Dynamic Pro 7 ic: ic Electret Pro 7: 100 Hz - 12 khz Pro 7 ic: 35 Hz - 12 khz Pro 7: Heil Cardioid Pro 7 ic: Cardioid
V0910 SENNSIS. Making Your Tour. State of the Art. TourGuide 2020-D
V0910 SENNSIS Making Your Tour State of the Art TourGuide 2020-D Liquid Crystal Display shows the channel number, volume level, battery status and RF reception strength Volume control Channel selector
ULX-D DIGITAL WIRELESS
Wireless Systems QLX-D ULX-D UHF-R AXIENT TM ULX-D DIGITAL WIRELESS Shure ULX-D Digital Wireless offers uncompromising 24-bit audio clarity and extremely efficient RF performance with single, dual, and
WIRELESS SYSTEMS GUIDE
A Shure Educational Publication WIRELESS SYSTEMS GUIDE By Gino Sigismondi and Crispin Tapia Table of Contents Wireless Systems Guide for Introduction..................................... 4 Section One.....................................
MICROPHONE TECHNIQUES
A Shure Educational Publication MICROPHONE TECHNIQUES REINFORCEMENT Table of Contents Microphone Techniques Introduction... 4 Microphone Characteristics... 5 Musical Instrument Characteristics... 11 Acoustic
Operation Manual for Users
Operation Manual for Users Model No.: FLTAMFMRCD!!!!!!!!!! ATTENTION!!!!!!!!!! THE RESET BUTTON MUST BE PRESSED TO ENSURE PROPER OPERATION. SEE INSTRUCTION MANUAL Table of Contents Table of Contents ---------------------------------------------------------------------------------------------
Crown International, Inc P.O. Box 1000, Elkhart, Indiana 46515-1000 (219) 294-8200 Fax (219) 294-8329 www.crownaudio.
PZM, PCC, SASS, GLM, LM, and CM 2000 Crown International, All rights reserved. PZM, PCC, SASS and DIFFEROID, are registered trademarks of Crown International, Inc. Also exported as Amcron 128114-1 6/00
HI-FI FM TRANSMITTER. MS-100 series INSTRUCTION MANUAL
HI-FI FM TRANSMITTER MS-100 series INSTRUCTION MANUAL CANADA Operation of this device is subject to the following two conditions: (1) This device may not cause interference and (2) this device must accept
Generic - Hearing Loop - (AFILS) U.S. System Specification
This document is a generic specification for any Hearing Loop (Audio Frequency Induction Loop System). For the remainder of the document, we will refer to using the term Hearing Loop rather than Audio
UHF WIRELESS MICROPHONE SYSTEMS
UHF WIRELESS MICROPHONE SYSTEMS Wireless Convenience with Newly Enhanced Versatility, Reliability & Cost Efficiency WM-527 Handheld Vocal Wireless Microphone Dynamic microphone unit: Unidirectional Maximum
TV hearing aid BL-8008A BL-8008B. Manual
TV hearing aid BL-8008A BL-8008B Manual A. Product instruction 1. What is TV hearing aid 2. Theory 3. Features 4. Functions 4.1 TV hearing aid function 4.2 Normal hearing aid function 4.3 Wired hearing
SOUND REINFORCEMENT IN THE JAZZ CHOIR
SOUND REINFORCEMENT IN THE JAZZ CHOIR Michele Weir (www.micheleweir.com and www.michmusic.com) I. THE EQUIPMENT A. Microphones Use one mic per singer whenever possible. Unidirectional dynamic mics are
AM TRANSMITTERS & RECEIVERS
Reading 30 Ron Bertrand VK2DQ http://www.radioelectronicschool.com AM TRANSMITTERS & RECEIVERS Revision: our definition of amplitude modulation. Amplitude modulation is when the modulating audio is combined
INSTRUCTION MANUAL PLEASE READ ALL THE INSTRUCTIONS COMPLETELY BEFORE USE AND SAVE THIS MANUAL FOR FUTURE REFERENCE
INSTRUCTION MANUAL PLEASE READ ALL THE INSTRUCTIONS COMPLETELY BEFORE USE Ver. 2.0 AND SAVE THIS MANUAL FOR FUTURE REFERENCE Table of Contents Unpacking... 3 About the CCRadio-EP... 4 Quick Start Guide...
Subminiature Load Cell Model 8417
w Technical Product Information Subminiature Load Cell 1. Introduction... 2 2. Preparing for use... 2 2.1 Unpacking... 2 2.2 Using the instrument for the first time... 2 2.3 Grounding and potential connection...
EH-20 20m antenna. By VE3RGW
EH-20 20m antenna By VE3RGW Equivalent circuit of EH-20 (prototype 2A) antenna system. Upper cylinder Lower cylinder Ground Counter pose Phasing coil Impedance transformer and tune circuit Tune coil Feed
Conference Equipment Rental
Conference Equipment Rental - Simultaneous Interpretation System - Tour Guide System - Sound & Lighting System - Conference Microphone - Projector and Screen - Digital Video Camera - Office Automation
B. Equipment shall be furnished and installed as specified. No substitutions will be allowed.
CLASSROOM SOUNDFIELD DISTRIBUTION SYSTEM PART 1 GENERAL 1.1 RELATED DOCUMENTS: A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification
RF carrier frequency ranges Modulation Audio bandwidth THD Signal/noise ratio Audio outputs
The WMS4500 analog reference wireless microphone system provides highest channel quantity, maximum reliability and easy setup. Combining several frequency bands allows to operate up to 70 channels simultaneously
Brief Introduction... 2. Thump Bluetooth Wireless Headphones features... 2. What s in the package?... 2. Bluetooth Wireless technology...
Thump User Guide Thank you for choosing the Thump Bluetooth Wireless Headphones. Please read this guide carefully to ensure your ease in using your Thump features fully. Reproduction, transfer, distribution
The Do s and Don ts of Pressure Transducers
The Do s and Don ts of Pressure Transducers ABSTRACT When specifying a pressure transducer for a process measurement, a number of items have to be considered. Some of the more important ones are discussed
WIRE, TERMINAL AND CONNECTOR REPAIR CONDUCTORS
CONDUCTORS Conductors are needed to complete the path for electrical current to flow from the power source to the working devices and back to the power source. Special wiring is needed for battery cables
PSP3. Stereo M/S preamplifier. User manual
PSP3 Stereo M/S preamplifier User manual AETA AUDIO 361, avenue du Général de Gaulle 92140 Clamart FRANCE Tél. +33 (0)1 41361212 Fax +33 (0)1 41361213 Telex 631178 Web : http://www.aetausa.com 55 000 020
ReSound Vea Mini, standard and power
Hearing Instrument Supplement ReSound Vea Mini, standard and power behind-the-ear (BTE) hearing instruments This supplement details the how-to aspects of your newly purchased hearing instruments. Please
Contents. Product Code -------------------------------------------------------15. Page 1
Contents Important Safety Instructions -------------------------------------2 BT HP01 --------------------------------------------------------------4 BT HP01 Anatomy ---------------------------------------------------5
Canalis. CANALIS Principles and Techniques of Speaker Placement
Canalis CANALIS Principles and Techniques of Speaker Placement After assembling a high-quality music system, the room becomes the limiting factor in sonic performance. There are many articles and theories
TecEar s Top Ten ALD Picks
Assistive listening devices compliment the capabilities of digital hearing aids and cochlear implants, significantly enhancing the user's ability to use phones, cell phones, TV/DVD, and audio devices such
Jarv Joggerz BT-301 Bluetooth Stereo Headphones Users Guide
Jarv Joggerz BT-301 Bluetooth Stereo Headphones Users Guide Features: Bluetooth Wireless technology Compact design fits in the palm of your hand and weighs less than 2 oz. Comfortable Behind the Neck design
Customizable Multi-Zone Wireless Audio
WhitePaper Customizable Multi-Zone Wireless Audio Innovating Wireless Audio Integration Peerless-AV Introduces the PeerSound Wireless Audio System By: Todd Mares Homeowners looking to integrate the latest
USING THE RECORDING KIT By [email protected] Version: 23 January 2015
USING THE RECORDING KIT By [email protected] Version: 23 January 2015 This document is a short introduction on how to use the recording kit. Reading thru this document will save you valuable time and
Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection
w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force
BeoLab 1. User s guide
BeoLab 1 User s guide Legal notice: CAUTION RISK OF ELECTRIC SHOCK DO NOT OPEN CAUTION: To reduce the risk of electric shock, do not remove cover (or back). No User-serviceable parts inside. Refer servicing
UB1 AIR CONDITIONING UNIT INSTALLATION INSTRUCTIONS
UB1 AIR CONDITIONING UNIT INSTALLATION INSTRUCTIONS INSTALLATION INSTRUCTIONS: Carefully read these instructions before installing your new air-conditioner. AUSTRALIAN AUTOMOTIVE AIR AL00500054E 1 Table
VoiceTone T1 USER S MANUAL
VoiceTone T1 USER S MANUAL Important Safety Instructions 1 Read these instructions. 2 Keep these instructions. 3 Heed all warnings. 4 Follow all instructions. 5 Do not use this apparatus near water. 6
How To Make A Sound Reinforcement System Work For A Room
AUDIO SYSTEMS GUIDE By Crispin Tapia and Chris Lyons A Shure Educational Publication AUDIO SYSTEMS GUIDE Table of Contents Audio Systems Guide for CHAPTER 1 Introduction... 4 Importance of Sound Quality...
Copyright Exertis GO Connect Official Revolabs distributor for Netherlands, Belgium & Luxembourg 25-3-2015
2015 Copyright Official Revolabs distributor for Netherlands, Belgium & Luxembourg 25-3-2015 Content Revolabs Executive Elite Systems... 3 Revolabs Executive HD Systems... 4 Revolabs HD Systems... 5 Revolabs
CAT 885 Troubleshooting Guide
CAT 885 Troubleshooting Guide Symptom Problem Isolation Steps Resolution No sound from speaker power on the amplifier is on and LED on the power button is glowing blue. power LED in middle of Lightspeed
PGXD Wireless System. Shure PGXD Wireless. PGXD sans fil de Shure. Shure PGXD Sem Fio. 2010 Shure Incorporated 27B14513 (Rev. 2) Printed in U.S.A.
PGXD Wireless System Shure PGXD Wireless PGXD sans fil de Shure Shure PGXD Sem Fio 2010 Shure Incorporated 27B14513 (Rev. 2) Printed in U.S.A. D D D D D D D D PGXD PGX Digital Wireless Systems Offering
************* OWNER'S MANUAL BAMF800/2 BAMF1250/2 BAMF1800/2 BAMF2200/2 BAMF2600/2 BAMF1200/4 BAMF1600/4 BAMF2000/1D BAMF4000/1D BAMF5500/1D
************* OWNER'S MANUAL BAMF800/2 BAMF1250/2 BAMF1800/2 BAMF2200/2 BAMF2600/2 BAMF1200/4 BAMF1600/4 BAMF2000/1D BAMF4000/1D BAMF5500/1D INTRODUCTION Power Acoustik amplifiers provide high-performance
AUDIO SYSTEMS GUIDE. VIDEO AND FILM PRODUCTION By Chris Lyons. A Shure Educational Publication
AUDIO SYSTEMS GUIDE VIDEO AND FILM PRODUCTION By Chris Lyons A Shure Educational Publication AUDIO SYSTEMS GUIDE VIDEO AND FILM PRODUCTION By Chris Lyons Table of Contents Audio Systems Guide for Introduction...
INSTRUCTION MANUAL PLEASE READ ALL THE INSTRUCTIONS COMPLETELY BEFORE USE AND SAVE THIS MANUAL FOR FUTURE REFERENCE
INSTRUCTION MANUAL PLEASE READ ALL THE INSTRUCTIONS COMPLETELY BEFORE USE AND SAVE THIS MANUAL FOR FUTURE REFERENCE m Before Use Please read IMPORTANT SAFETY INSTRUCTIONS on page 10 before use. It is important
Safety Warnings and Guidelines
Safety Warnings and Guidelines Thank you for purchasing this Wireless Speaker Amplifier! For best results, please thoroughly read this manual and carefully follow the instructions. Please pay extra attention
CONTENTS. Zulu User Guide 3
Copyright Lightspeed Aviation, Inc., 2008. All rights reserved. Lightspeed Aviation is a trademark and Zulu and FRC are registered trademarks of Lightspeed Aviation, Inc. Bluetooth is a registered trademark
VAT CALCULATED AT 23% (AS FROM 1/1/12)
VAT CALCULATED AT 23% (AS FROM 1/1/12) HEADSET & LAVALIER MICROPHONES FOR MA SERIES MU-53L Uni-directional premium lavalier microphone in black. 10mm 45.60 56.09 MU-53LS Uni-directional premium lavalier
Sound System Basics for Live Indian Classical Music
Sound System Basics for Live Indian Classical Music By Madhu Mohan Komaragiri Page 1 of 7 The purpose of this article is to introduce the basic concepts of sound system applicable to live Indian classical
Wireless Home Security Alarm System AM 500
Wireless Home Security Alarm System AM 500 12 MONTH GUARANTEE Installation & Operating Instructions INTRODUCTION The AM500 is a simple self-contained alarm system. It protects the home by sounding a siren
Instruction Sheet ACS-101. General Description. Specifications. Amplified Broadband UHF Combiner-Splitter. Overall. Antenna Splitter.
ACS-101 Amplified Broadband UHF Combiner-Splitter General Description The ACS-101 (Antenna Combiner Splitter 10 to 1) is an amplified and filtered broadband splitter-combiner. It allows up to 10 base stations
Wireless In-Ear Audio Monitor
University of Nebraska - Lincoln Computer Engineering Senior Design Project Wireless In-Ear Audio Monitor Team Stonehenge: Erin Bartholomew Paul Bauer Nate Lowry Sabina Manandhar May 4, 2010 Contents 1
MODEL WH30 CONDENSER HEADSET MICROPHONE
Models WH30TQG and WH30XLR User Guide MODEL WH30 CONDENSER HEADSET MICROPHONE MICROPHONE DE CASQUE ÉLECTROSTATIQUE SHURE MODÈLE WH30 KONDENSATOR KOPFMIKROFON- MODELL SHURE WH30 MICROFONO DE CONDENSADOR
LT-82 Stationary IR Transmitter
LT-82 Stationary IR Transmitter Configuration LT-82-0 (North America) LT-82-02 (Asia, UK) LT-82-03 (Euro) The Listen LT-82 is the heart of a stationary IR listening system. It takes the desired audio signal
Owner s Guide Brugervejledning Bedienungsanleitung Guía de usuario Omistajan opas Notice d utilisation Felhasználói útmutató Manuale di istruzioni
Owner s Guide Brugervejledning Bedienungsanleitung Guía de usuario Omistajan opas Notice d utilisation Felhasználói útmutató Manuale di istruzioni Gebruiksaanwijzing Podręcznik użytkownika Bruksanvisningen
PAR Tablet 10 Quick Start Guide
ParTech, Inc. 8383 Seneca Turnpike New Hartford, NY 13413 p.800.458.6898 www.partech.com PAR Tablet 10 Quick Start Guide PN 770505503 This material has been created in order to accommodate a wide range
Telex Operating Instructions
Telex Operating Instructions Airman 850 General Description The Telex Airman 850 is designed for use in aircraft with low noise levels. Ambient noise levels in such aircraft cockpits may be considered
Cheat Sheet for Local Church Audio Training Sound Essentials. Kick:
Cheat Sheet for Local Church Audio Training Sound Essentials Thank you for attending this session and supporting your church s ministry. I believe that, as a sound technician, you are a vital part of the
White Paper Effective Audio For Video Conferencing. January 2013. S. Ann Earon, Ph.D. President, Telemanagement Resources International Inc.
White Paper Effective Audio For Video Conferencing January 2013 S. Ann Earon, Ph.D. President, Telemanagement Resources International Inc. 2013 ClearOne Inc. All rights reserved. No part of this document
TV Ears 5.0 Digital & Dual Digital Quick Start Guide
TV Ears 5.0 Digital & Dual Digital Quick Start Guide Voice Clarifying Circuitry CUSTOM FIT YOUR HEADSET Follow these directions to adjust the width of the headset for your comfort. TV EARS All TV Ears
Widex Dex FAQ. General
Widex Dex FAQ General Q: What is WidexLink Technology? A: WidexLink is the proprietary digital wireless transmission technology for hearing aids and external devices like cell phones, TV etc Q: What is
User Manual. Please read this manual carefully before using the Phoenix Octopus
User Manual Please read this manual carefully before using the Phoenix Octopus For additional help and updates, refer to our website To contact Phoenix Audio for support, please send a detailed e-mail
Selecting the Right Conference Phone for Different Room Environments
Selecting the Right Conference Phone for Different Room Environments 1 Introduction When was the last time you used a conference phone? Today? Yesterday? It probably hasn t been more than a day or two.
SDX Submersible Depth Transmitter User Manual
SDX Submersible Depth Transmitter User Manual January 2011 USER INFORMATION Stevens makes no warranty as to the information furnished in these instructions and the reader assumes all risk in the use thereof.
WIRELESS SYSTEM THE GUITARIST THE PRESENTER THE VOCAL ARTIST
WIRELESS SYSTEM THE GUITARIST THE PRESENTER THE VOCAL ARTIST THE TWO MINUTE USER S GUIDE ENGLISH The instructions on this page will help you get your system up and running in minutes. For more detailed
ELECTRICAL AUDIO EApreq
ELECTRICAL AUDIO EApreq (Preliminary Info) The EAPreq is a two channel transformer-based microphone preamp/equalizer. The preamp is designed to allow the character of the input transformer to color the
Audio for Music Videoconferencing: A Set-Up Guide
Audio for Music Videoconferencing: A Set-Up Guide Prepared by the Manhattan School of Music Distance Learning Program to support best practice in Music Distance Learning. 1 P a g e Dear Colleagues, This
Rental Price List. Effective 01/01/2013. Page1
Rental Price List Effective 01/01/2013 Page1 Who we are: Founded in 1980, Barinas is a full-service translation and simultaneous interpretation company committed to delivering consistently superior quality
ULX-D DIGITAL WIRELESS
Wireless Systems PGW PGX SLX ULX-D UHF-R AXIENT ULX-D DIGITAL WIRELESS Shure ULX-D offers a premium 24-bit/48kHz digital audio quality combined with spectrum-efficient, reliable and intelligent RF performance,
ARTICLE. Sound in surveillance Adding audio to your IP video solution
ARTICLE Sound in surveillance Adding audio to your IP video solution Table of contents 1. First things first 4 2. Sound advice 4 3. Get closer 5 4. Back and forth 6 5. Get to it 7 Introduction Using audio
Hearcentres Guide to Hearing Aid Terminology
Hearcentres Guide to Hearing Aid Terminology Sophisticated modern hearing aids use a number of complicated technologies and techniques to ensure great improvements in hearing. Not only are the terms used
T855 Day & Night Security Camera
T855 Day & Night Security Camera For use with Swann 4500 DVR EN INSTRUCTION MANUAL MT855_091014E Swann 2014 Before you begin Introduction Congratulations on your purchase of this T850 Day & Night Security
CS510 /CS520. Wireless Headset System. User Guide
CS510 /CS520 Wireless Headset System User Guide Contents Welcome 3 What s in the Box 4 Base and Headset Basics 5 Accessories 6 Headset Set Up 7 Connect Your Desk Phone 8 Connect the Power 8 Charge the
MOTIV. Digital Microphones and Recording Solutions PLUG AND PLAY RECORDING, AT HOME ANYWHERE.
TM MOTIV Digital Microphones and Recording Solutions PLUG AND PLAY RECORDING, AT HOME ANYWHERE. MV88 Digital stereo condenser microphone for iphone, ipod and ipad Stereo recording, on the go. Convenience
